Yu. G. Kovalev

1D NONNEGATIVE SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

Yu. G. Kovalev. 1D nonnegative Schrödinger operators with point interactions, Mat. Stud. 39 (2013), 150-163.

Let Y be an infinite discrete set of points in \mathbb{R}, satisfying the condition $\inf \left\{\left|y-y^{\prime}\right|, y, y^{\prime} \in Y\right.$, $\left.y^{\prime} \neq y\right\}>0$. In the paper we prove that the systems $\{\delta(x-y)\}_{y \in Y},\left\{\delta^{\prime}(x-y)\right\}_{y \in Y}$, $\left\{\delta(x-y), \delta^{\prime}(x-y)\right\}_{y \in Y}$ form Riesz bases in the corresponding closed linear spans in the Sobolev spaces $W_{2}^{-1}(\mathbb{R})$ and $W_{2}^{-2}(\mathbb{R})$. As an application, we prove the transversalness of the Friedrichs and Kreĭn nonnegative selfadjoint extensions of the nonnegative symmetric operators A_{0}, A^{\prime}, and H_{0} defined as restrictions of the operator $A=-\frac{d^{2}}{d x^{2}}, \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$ to the linear manifolds $\operatorname{dom}\left(A_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, y \in Y\right\}, \operatorname{dom}\left(A^{\prime}\right)=\left\{g \in W_{2}^{2}(\mathbb{R}): g^{\prime}(y)=0, y \in Y\right\}$, and $\operatorname{dom}\left(H_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, f^{\prime}(y)=0, y \in Y\right\}$, respectively. Using the divergence forms, the basic nonnegative boundary triplets for $A_{0}^{*}, A^{\prime *}$, and H_{0}^{*} are constructed.
Ю. Г. Ковалев. 1D неотрииательные операторы Шрёдингера с точечными взаимодействиями // Мат. Студії. - 2013. - Т.39, №2. - С.150-163.

Пусть Y бесконечное дискретное множество точек в \mathbb{R}, удовлетворяющее условию $\inf \left\{\left|y-y^{\prime}\right|, y, y^{\prime} \in Y, y^{\prime} \neq y\right\}>0$. Мы показываем, что системы $\{\delta(x-y)\}_{y \in Y},\left\{\delta^{\prime}(x-\right.$ $y)\}_{y \in Y},\left\{\delta(x-y), \delta^{\prime}(x-y)\right\}_{y \in Y}$ образуют базисы Рисса в соответствующих замкнутых линейных оболочках в пространствах Соболева $W_{2}^{-1}(\mathbb{R})$ и $W_{2}^{-2}(\mathbb{R})$. В приложении мы доказываем трансверсальность неотрицательных самосопряженных расширений Фридрихса и Крейна неотрицательных симметрических операторов A_{0}, A^{\prime} и H_{0}, определенных как сужение оператора $A=-\frac{d^{2}}{d x^{2}}, \operatorname{dom}(A)=W_{2}^{2}(\mathbb{R})$ на линейные многообразия $\operatorname{dom}\left(A_{0}\right)=$ $\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, y \in Y\right\}, \operatorname{dom}\left(A^{\prime}\right)=\left\{g \in W_{2}^{2}(\mathbb{R}): g^{\prime}(y)=0, y \in Y\right\}$ и $\operatorname{dom}\left(H_{0}\right)=$ $\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, f^{\prime}(y)=0, y \in Y\right\}$ соответственно. Используя дивергентную форму, построены базисные неотрицательные граничные тройки для $A_{0}^{*}, A^{* *}$ и H_{0}^{*}.

1. Introduction. Let \mathbb{Z} be the set of all integers and let $\mathbb{Z}_{-}=\{j \in \mathbb{Z}, j \leq-1\}, \mathbb{Z}_{+}=$ $\{j \in \mathbb{Z}, j \geq 1\}$. By \mathbb{J} we will denote one of the sets $\mathbb{Z}, \mathbb{Z}_{-}, \mathbb{Z}_{+}$. Let Y be a finite or infinite monotone sequence of points in \mathbb{R}. When Y is infinite we will suppose that

$$
\begin{equation*}
\inf \left\{\left|y_{j}-y_{k}\right|, j \neq k\right\}=d>0 \tag{1}
\end{equation*}
$$

For an infinite Y, the following three cases are possible

$$
\begin{gathered}
Y=\left\{y_{j}, j \in \mathbb{Z}\right\}, \text { if } \inf \{Y\}=-\infty \text { and } \sup \{Y\}=+\infty \\
Y=\left\{y_{j}, j \in \mathbb{Z}_{-}\right\}, \text {if } y_{-1}=\sup \{Y\}<+\infty, Y=\left\{y_{j}, j \in \mathbb{Z}_{+}\right\}, \text {if } y_{1}=\inf \{Y\}>-\infty
\end{gathered}
$$

Clearly, the notation $Y=\left\{y_{j},: j \in \mathbb{J}\right\}$ serves all these cases.
2010 Mathematics Subject Classification: 34L40, 46E35, 47A20, 47B25, 81Q10.
Keywords: point interaction; Riesz basis; boundary triplet; the Friedrichs extension; the Krein extension.

Let $W_{2}^{ \pm 1}(\mathbb{R}), W_{2}^{ \pm 2}(\mathbb{R})$ be Sobolev spaces. Define in the Hilbert space $L_{2}(\mathbb{R})$ the linear operators

$$
\begin{gather*}
\operatorname{dom}\left(A_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, y \in Y\right\}, A_{0}:=-\frac{d^{2}}{d x^{2}}, \tag{2}\\
\operatorname{dom}\left(A^{\prime}\right)=\left\{g \in W_{2}^{2}(\mathbb{R}): g^{\prime}(y)=0, y \in Y\right\}, A^{\prime}:=-\frac{d^{2}}{d x^{2}}, \tag{3}\\
\operatorname{dom}\left(H_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}): f(y)=0, f^{\prime}(y)=0, y \in Y\right\}, H_{0}:=-\frac{d^{2}}{d x^{2}} . \tag{4}
\end{gather*}
$$

The operators A_{0}, A^{\prime}, and H_{0} are basic for investigations of Hamiltonians on the real line corresponding to the δ, δ^{\prime} and $\delta-\delta^{\prime}$ interactions, respectively ([1]). They are symmetric, densely defined, closed, and nonnegative ([1]), and are restrictions of the selfadjoint and nonnegative operator A defined by

$$
\begin{equation*}
\operatorname{dom}(A)=W_{2}^{2}(\mathbb{R}), \quad A=-\frac{d^{2}}{d x^{2}} \tag{5}
\end{equation*}
$$

In addition, the operators A_{0} and A^{\prime} are symmetric extensions of the operator H_{0}. The adjoint operators are given by

$$
\begin{gather*}
\operatorname{dom}\left(A_{0}^{*}\right)=W_{2}^{1}(\mathbb{R}) \cap W_{2}^{2}(\mathbb{R} \backslash Y), A_{0}^{*}=-\frac{d^{2}}{d x^{2}}, \\
\operatorname{dom}\left(A^{\prime *}\right)=\left\{g \in W_{2}^{2}(\mathbb{R}): g^{\prime}(y+)=g^{\prime}(y-), y \in Y\right\}, A^{\prime *}=-\frac{d^{2}}{d x^{2}}, \tag{6}\\
\operatorname{dom}\left(H_{0}^{*}\right)=W_{2}^{2}(\mathbb{R} \backslash Y), H_{0}^{*}=-\frac{d^{2}}{d x^{2}} .
\end{gather*}
$$

It is well known ([1]) that

$$
\begin{equation*}
\delta_{y}=\delta(x-y) \in W_{2}^{-1}(\mathbb{R}) \backslash L_{2}(\mathbb{R}),\left(\delta_{y}\right)^{\prime}=\delta^{\prime}(x-y) \in W_{2}^{-2}(\mathbb{R}) \backslash W_{2}^{-1}(\mathbb{R}) \tag{7}
\end{equation*}
$$

where $\delta(x-y)$ and $\delta^{\prime}(x-y)$ are the delta-function and its derivative.
We have the following chain of Hilbert spaces $W_{2}^{2}(\mathbb{R}) \subset W_{2}^{1}(\mathbb{R}) \subset L_{2}(\mathbb{R}) \subset W_{2}^{-1}(\mathbb{R}) \subset$ $W_{2}^{-2}(\mathbb{R})$ The triplets $W_{2}^{2}(\mathbb{R}) \subset L_{2}(\mathbb{R}) \subset W_{2}^{-2}(\mathbb{R})$ and $W_{2}^{1}(\mathbb{R}) \subset L_{2}(\mathbb{R}) \subset W_{2}^{-1}(\mathbb{R})$ are rigged Hilbert spaces, i.e., the Hilbert space $W_{2}^{-2}(\mathbb{R})\left(W_{2}^{-1}(\mathbb{R})\right.$, respectively $)$ is the set of all continuous anti-linear functionals on $W_{2}^{2}(\mathbb{R})\left(\right.$ on $W_{2}^{1}(\mathbb{R})$, respectively, [6]).

Let $Y=\left\{y_{j} \in \mathbb{R}, j \in \mathbb{J}\right\}$ be a discrete set in \mathbb{R} satisfying (1). Define the following subspaces

$$
\begin{aligned}
& \left.\Phi=\overline{W_{2}^{-2}(\mathbb{R})} \overline{\overline{\operatorname{span}}}\left\{\delta^{\prime}(x-y), y \in Y\right\} \quad \text { (the closure in } \quad W_{2}^{-2}(\mathbb{R})\right), \\
& \Psi_{-1}=\overline{\operatorname{Span}_{2}^{-1}(\mathbb{R})}\{\delta(x-y), y \in Y\} \quad\left(\text { the closure in } \quad W_{2}^{-1}(\mathbb{R})\right), \\
& \Psi_{-2}=\underset{W_{2}^{-2}(\mathbb{R})}{\overline{\operatorname{span}}}\{\delta(x-y), \quad y \in Y\} \quad\left(\text { the closure in } \quad W_{2}^{-2}(\mathbb{R})\right), \\
& \left.\Omega=\underset{W_{2}^{-2}(\mathbb{R})}{\overline{\operatorname{span}}}\left\{\delta(x-y), \delta^{\prime}(x-y), \quad y \in Y\right\} \quad \text { (the closure in } \quad W_{2}^{-2}(\mathbb{R})\right) .
\end{aligned}
$$

Clearly, $\Psi_{-1} \subseteq \Psi_{-2}$. It is known $([1])$ that $\Phi \cap L_{2}(\mathbb{R})=\{0\}, \Psi_{-2} \cap L_{2}(\mathbb{R})=\{0\}, \Omega \cap L_{2}(\mathbb{R})=$ $\{0\}$. Therefore, the operators A^{\prime}, A_{0}, and H_{0} are densely defined and

$$
\begin{gather*}
\operatorname{dom}\left(A^{\prime}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}):(f, \varphi)=0, \varphi \in \Phi\right\} \tag{8}\\
\operatorname{dom}\left(A_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}):(f, \psi)=0, \psi \in \Psi_{-2}\right\} \tag{9}\\
\operatorname{dom}\left(H_{0}\right)=\left\{f \in W_{2}^{2}(\mathbb{R}):(f, \omega)=0, \omega \in \Omega\right\} \tag{10}
\end{gather*}
$$

In this paper we establish some new connections between the Sobolev spaces $W_{2}^{1}(\mathbb{R}), W_{2}^{2}(\mathbb{R})$ and the Hilbert space ℓ_{2}. Using these connections we prove that

- $\Psi_{-1}=\Psi_{-2}$;
- the systems $\left\{\delta\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}},\left\{\delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}},\left\{\delta\left(x-y_{j}\right), \delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}}$ form the Riesz bases of the subspaces Ψ_{-2}, Φ, and Ω, respectively;
- the Friedrichs and Krein extensions of A^{\prime}, A_{0}, and H_{0} are mutually transversal.

Finally, we construct basic positive boundary triplets ([2], [3]) for A^{*}, A_{0}^{*}, and H_{0}^{*} and give descriptions of all nonnegative selfadjoint extensions.
2. The Sobolev spaces $W_{2}^{1}(\mathbb{R}), W_{2}^{2}(\mathbb{R})$ and the Hilbert space ℓ_{2}. In this Section we establish some connections between the Hilbert spaces $W_{2}^{1}(\mathbb{R}), W_{2}^{2}(\mathbb{R})$ and the Hilbert space $\ell_{2}(\mathbb{J})$.

Proposition 1. Suppose Y is infinite and (1) holds. Then

1) If $g \in W_{2}^{2}(\mathbb{R})$ then the sequences $\left\{g\left(y_{j}\right), y_{j} \in Y\right\}$ and $\left\{g^{\prime}\left(y_{j}\right), y_{j} \in Y\right\}$ belong to $\ell_{2}(\mathbb{J})$. Moreover, there exists a positive constants c such that

$$
\left\|\left\{g\left(y_{j}\right)\right\}\right\|_{\ell_{2}(\mathbb{J})} \leq c\|g\|_{W_{2}^{2}(\mathbb{R})},\left\|\left\{g^{\prime}\left(y_{j}\right)\right\}\right\|_{\ell_{2}(\mathbb{J})} \leq c\|g\|_{W_{2}^{2}(\mathbb{R})}, \forall g \in W_{2}^{2}(\mathbb{R}) .
$$

2) If $\left\{a_{j}, j \in \mathbb{J}\right\},\left\{b_{j}, j \in \mathbb{J}\right\} \in \ell_{2}(\mathbb{J})$ then there exists a function $g \in W_{2}^{2}(\mathbb{R})$ such that $g\left(y_{j}\right)=a_{j}, g^{\prime}\left(y_{j}\right)=b_{j}, \forall j \in \mathbb{J}$.
Proof. 1) Let $g \in W_{2}^{2}(\mathbb{R})$. One can verify that the equalities
$g\left(y_{j}\right)=\frac{1}{2} \int_{\mathbb{R}} e^{-\left|x-y_{j}\right|}\left(g(x)-\operatorname{sgn}\left(x-y_{j}\right) g^{\prime}(x)\right) d x, g^{\prime}\left(y_{j}\right)=\frac{1}{2} \int_{\mathbb{R}} e^{-\left|x-y_{j}\right|}\left(g^{\prime}(x)-\operatorname{sgn}\left(x-y_{j}\right) g^{\prime \prime}(x)\right) d x$
hold. Further

$$
\left|g\left(y_{j}\right)\right| \leq \frac{1}{2} \sum_{n \in \mathbb{J}}\left(\int_{y_{n-1}}^{y_{n}} e^{-2\left|x-y_{j}\right|} d x\right)^{1 / 2}\left(\int_{y_{n-1}}^{y_{n}}\left|g(x)-\operatorname{sgn}\left(x-y_{j}\right) g^{\prime}(x)\right|^{2} d x\right)^{1 / 2}=\frac{1}{2} \sum_{n \in \mathbb{J}} M_{j n} h_{n}
$$

where $\left\{h_{n}, n \in \mathbb{J}\right\} \in \ell_{2}(\mathbb{J})$ because

$$
\begin{gathered}
\sum_{n \in \mathbb{J}} h_{n}^{2}=\sum_{n \in \mathbb{J}} \int_{y_{n-1}}^{y_{n}}\left|g(x)-\operatorname{sgn}\left(x-y_{j}\right) g^{\prime}(x)\right|^{2} d x \leq \\
\leq 2 \sum_{n \in \mathbb{J}} \int_{y_{n-1}}^{y_{n}}\left(|g(x)|^{2}+\left|g^{\prime}(x)\right|^{2}\right) d x \leq 2\|g\|_{W_{2}^{2}(\mathbb{R})}^{2}<\infty, \\
\sum_{n \in \mathbb{J}} M_{j n}=\sum_{n \in \mathbb{J}}\left(\int_{y_{n-1}}^{y_{n}} e^{-2\left|x-y_{j}\right|} d x\right)^{1 / 2} \leq \sum_{n \in \mathbb{J}} \frac{1}{\sqrt{2}}\left\{\begin{array}{c}
e^{-\left|y_{n}-y_{j}\right|}, \quad n \leq j, \\
e^{-\left|y_{n-1}-y_{j}\right|}, \quad n \geq j+1,
\end{array}\right\} \leq \\
\leq \sqrt{2} \sum_{m \in \mathbb{Z}} e^{-|m| d}=\sqrt{2} \frac{e^{d}+1}{e^{d}-1} .
\end{gathered}
$$

Let M be the linear operator in $\ell_{2}(\mathbb{J})$ given by the matrix $\left\|M_{j n}\right\|_{j, n \in J}$. Then the Holmgren bound of M ([1, Appendix C]) satisfies

$$
\|M\|_{H}=\left(\sup _{j \in \mathbb{J}} \sum_{n \in \mathbb{J}}\left|M_{j n}\right|\right)^{1 / 2}\left(\sup _{n \in \mathbb{J}} \sum_{j \in \mathbb{J}}\left|M_{j n}\right|\right)^{1 / 2} \leq \sqrt{2} \frac{e^{d}+1}{e^{d}-1}<\infty .
$$

It follows that M is bounded in $\ell_{2}(\mathbb{J})$. Hence

$$
\begin{gather*}
\sum_{j \in \mathbb{I}}\left|g\left(y_{j}\right)\right|^{2} \leq \frac{1}{4} \sum_{j \in \mathbb{J}}\left(\sum_{n \in \mathbb{J}} M_{j n} h_{n}\right)^{2}=\frac{1}{4}\|M h\|_{\ell_{2}(\mathbb{J})}^{2} \leq \\
\leq \frac{1}{4}\|M\|_{H}^{2}\|g\|_{W_{2}^{2}(\mathbb{R})}^{2} \leq\left(\frac{1}{\sqrt{2}} \frac{e^{d}+1}{e^{d}-1}\right)^{2}\|g\|_{W_{2}^{2}(\mathbb{R})}^{2}=c_{1}^{2}\|g\|_{W_{2}^{2}(\mathbb{R})}^{2}<\infty . \tag{11}
\end{gather*}
$$

Similarly $\sum_{j \in \mathbb{J}}\left|g^{\prime}\left(y_{j}\right)\right|^{2} \leq c_{2}^{2}\|g\|_{W_{2}^{2}(\mathbb{R})}^{2}<\infty$. So, $\left\{g\left(y_{j}\right), y_{j} \in Y\right\},\left\{g^{\prime}\left(y_{j}\right), y_{j} \in Y\right\} \in \ell_{2}(\mathbb{J})$.
2) Let

$$
f_{\alpha}(t)= \begin{cases}e \cdot \exp \left(\frac{\alpha^{2}}{t^{2}-\alpha^{2}}\right) \frac{-\alpha^{2}(a+b t)}{t^{2}-\alpha^{2}}, & |t| \leq \alpha \\ 0, & \text { otherwise }\end{cases}
$$

Clearly $f_{\alpha}(t) \in W_{2}^{2}(\mathbb{R})$ and $f_{\alpha}(0)=a$. Further

$$
f_{\alpha}^{\prime}(t)= \begin{cases}e \cdot \exp \left(\frac{\alpha^{2}}{t^{2}-\alpha^{2}}\right) \frac{\alpha^{2}}{\left(t^{2}-\alpha^{2}\right)^{3}}\left(b t^{4}+2 a t^{3}+2 b \alpha^{2} t^{2}+b \alpha^{4}\right), & |t| \leq \alpha \\ 0, & \text { otherwise }\end{cases}
$$

and $f_{\alpha}^{\prime}(0)=b$.

$$
f_{\alpha}^{\prime \prime}(t)= \begin{cases}e \cdot \exp \left(\frac{\alpha^{2}}{t^{2}-\alpha^{2}}\right) \frac{\alpha^{2}\left(-2 b t^{7}-6 a t^{6}-12 b \alpha^{2} t^{5}-4 a \alpha^{2} t^{4}-2 b \alpha^{4} t^{3}+6 a \alpha^{4} t^{2}+8 b \alpha^{6} t\right)}{\left(t^{2}-\alpha^{2}\right)^{5}}, & |t| \leq \alpha \\ 0, & \text { otherwise }\end{cases}
$$

Let $\left\{a_{k}, k \in \mathbb{J}\right\},\left\{b_{k}, k \in \mathbb{J}\right\} \in \ell_{2}(\mathbb{J})$,

$$
g_{k}(x)=f_{d / 2}\left(x-y_{k}\right)= \begin{cases}e \cdot \exp \left(\frac{(d / 2)^{2}}{\left(x-y_{k}\right)^{2}-(d / 2)^{2}}\right) \frac{-(d / 2)^{2}\left(a_{k}+b_{k}\left(x-y_{k}\right)\right)}{\left(x-y_{k}\right)^{2}-(d / 2)^{2}}, & \left|x-y_{k}\right| \leq d / 2 ; \\ 0, & \text { otherwise },\end{cases}
$$

and $g(x)=\sum_{k \in \mathbb{J}} g_{k}(x)$, then $g\left(y_{k}\right)=a_{k}, \quad g^{\prime}\left(y_{k}\right)=b_{k}$. Now we show that the function $g(x)$ belongs to $W_{2}^{2}(\mathbb{R})$.

$$
\begin{gathered}
\int_{\mathbb{R}}|g(x)|^{2} d x=\int_{\mathbb{R}} \sum_{k \in \mathbb{J}}\left|g_{k}(x)\right|^{2} d x \leq \\
\leq \sum_{k \in \mathbb{J}} \int_{y_{k}-d / 2}^{y_{k}+d / 2} e^{2} \cdot \exp \left(\frac{2(d / 2)^{2}}{\left(x-y_{k}\right)^{2}-(d / 2)^{2}}\right) \frac{(d / 2)^{4}\left|a_{k}+b_{k}\left(x-y_{k}\right)\right|^{2}}{\left(\left(x-y_{k}\right)^{2}-(d / 2)^{2}\right)^{2}} d x= \\
=\sum_{k \in \mathbb{I}} e^{2}(d / 2)^{4} \int_{-d / 2}^{d / 2} \exp \left(\frac{2(d / 2)^{2}}{t^{2}-(d / 2)^{2}}\right) \frac{\left|a_{k}+b_{k} t\right|^{2}}{\left(t^{2}-(d / 2)^{2}\right)^{2}} d t \leq \\
\leq 2 e^{2}(d / 2)^{4} \sum_{k \in \mathbb{J}}\left[\left|a_{k}\right|^{2} \int_{-d / 2}^{d / 2} \exp \left(\frac{2(d / 2)^{2}}{t^{2}-(d / 2)^{2}}\right) \frac{d t}{\left(t^{2}-(d / 2)^{2}\right)^{2}}+\right.
\end{gathered}
$$

$$
\left.+\left|b_{k}\right|^{2} \int_{-d / 2}^{d / 2} \exp \left(\frac{2(d / 2)^{2}}{t^{2}-(d / 2)^{2}}\right) \frac{t^{2} d t}{\left(t^{2}-(d / 2)^{2}\right)^{2}}\right]
$$

Set

$$
I_{1}=\int_{-d / 2}^{d / 2} \exp \left(\frac{2(d / 2)^{2}}{t^{2}-(d / 2)^{2}}\right) \frac{d t}{\left(t^{2}-(d / 2)^{2}\right)^{2}}, \quad I_{2}=\int_{-d / 2}^{d / 2} \exp \left(\frac{2(d / 2)^{2}}{t^{2}-(d / 2)^{2}}\right) \frac{t^{2} d t}{\left(t^{2}-(d / 2)^{2}\right)^{2}}
$$

then we obtain $\int_{\mathbb{R}}|g(x)|^{2} d x \leq 2 e^{2}(d / 2)^{4}\left(\|a\|_{\ell_{2}(\mathbb{J})}^{2} I_{1}+\|b\|_{\ell_{2}(\mathbb{J})}^{2} I_{2}\right)<\infty$. Similarly

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|g^{\prime}(x)\right|^{2} d x \leq e^{2}(d / 2)^{4}\left(\|a\|_{\ell_{2}(\mathbb{J})}^{2} P_{1}+\|b\|_{\ell_{2}(\mathbb{J})}^{2} P_{2}\right)<\infty \\
& \int_{\mathbb{R}}\left|g^{\prime \prime}(x)\right|^{2} d x \leq e^{2}(d / 2)^{4}\left(\|a\|_{\ell_{2}(\mathbb{J})}^{2} S_{1}+\|b\|_{\ell_{2}(\mathbb{J})}^{2} S_{2}\right)<\infty
\end{aligned}
$$

So, $g(x) \in W_{2}^{2}(\mathbb{R})$.
Corollary 1. If $f \in W_{2}^{1}(\mathbb{R})$ then the sequence $\left\{f\left(y_{j}\right), y_{j} \in Y\right\}$ belongs to $\ell_{2}(\mathbb{J})$.
Proof. Due to inequality (11) we have

$$
\left\|\left\{f\left(y_{j}\right), \quad y_{j} \in Y\right\}\right\|_{\ell_{2}(\mathbb{J})}^{2} \leq\left(\frac{1}{\sqrt{2}} \frac{e^{d}+1}{e^{d}-1}\right)^{2}\|f\|_{W_{2}^{1}(\mathbb{R})}^{2}<\infty
$$

Proposition 2. If $f \in W_{2}^{1}(\mathbb{R} \backslash Y)$ then the sequence $\left\{f\left(y_{j}+\right)-f\left(y_{j}-\right), y_{j} \in Y\right\}$ belongs to $\ell_{2}(\mathbb{J})$.

Proof. Let $g(x)$ from $W_{2}^{1}(\mathbb{R} \backslash Y)$ be real, then the equalities

$$
\begin{align*}
g^{2}\left(y_{j}-\right)-g^{2}\left(y_{j-1}+\right) e^{-\left(y_{j}-y_{j-1}\right)} & =\int_{y_{j-1}+}^{y_{j}-} e^{-\left|x-y_{j}\right|}\left(g^{2}(x)+2 g(x) g^{\prime}(x)\right) d x \\
g^{2}\left(y_{j-1}+\right)-g^{2}\left(y_{j}-\right) e^{-\left(y_{j}-y_{j-1}\right)} & =\int_{y_{j-1}+}^{y_{j}-} e^{-\left|x-y_{j-1}\right|}\left(g^{2}(x)-2 g(x) g^{\prime}(x)\right) d x \tag{12}
\end{align*}
$$

hold. From (12) we have

$$
\begin{gathered}
\left(g^{2}\left(y_{j}-\right)+g^{2}\left(y_{j-1}+\right)\right)\left(1-e^{-\left(y_{j}-y_{j-1}\right)}\right)= \\
=\int_{y_{j-1}+}^{y_{j}-}\left[g^{2}(x)\left(e^{-\left|x-y_{j}\right|}+e^{-\left|x-y_{j-1}\right|}\right)+2 g(x) g^{\prime}(x)\left(e^{-\left|x-y_{j}\right|}-e^{-\left|x-y_{j-1}\right|}\right)\right] d x \leq \\
\leq \int_{y_{j-1}+}^{y_{j}-}\left[2 g^{2}(x)+4\left|g(x) g^{\prime}(x)\right|\right] d x \leq \int_{y_{j-1}+}^{y_{j}-}\left[4 g^{2}(x)+2 g^{\prime 2}(x)\right] d x
\end{gathered}
$$

Since $1-e^{-\left(y_{j}-y_{j-1}\right)} \geq 1-e^{-d}$, we obtain

$$
\sum_{j \in \mathbb{J}}\left(g^{2}\left(y_{j}-\right)+g^{2}\left(y_{j-1}+\right)\right)\left(1-e^{-d}\right) \leq \int_{\mathbb{R} \backslash Y}\left[4 g^{2}(x)+2{g^{\prime}}^{2}(x)\right] d x
$$

and hence

$$
\begin{equation*}
\sum_{j \in \mathbb{J}}\left(g^{2}\left(y_{j}-\right)+g^{2}\left(y_{j}+\right)\right)<\infty . \tag{13}
\end{equation*}
$$

Consider $f(x)=f_{R}(x)+i f_{I}(x)$ from $W_{2}^{1}(\mathbb{R} \backslash Y)$, then for $f_{R}(x)$ and $f_{I}(x)$ inequality (13) holds and hence $\sum_{j \in \mathbb{J}}\left(\left|f\left(y_{j}-\right)\right|^{2}+\left|f\left(y_{j}+\right)\right|^{2}\right)<\infty$.

Since $\left|f\left(y_{j}+\right)-f\left(y_{j}-\right)\right|^{2} \leq 2\left(\left|f\left(y_{j}-\right)\right|^{2}+\left|f\left(y_{j}+\right)\right|^{2}\right)$, we obtain that $\left\{f\left(y_{j}+\right)-f\left(y_{j}-\right)\right.$, $j \in \mathbb{J}\} \in \ell_{2}(\mathbb{J})$.
3.1. Applications. Let A be an unbounded self-adjoint operator in a Hilbert space H and let $H_{+2} \subset H_{+1} \subset H \subset H_{-1} \subset H_{-2}$ be the chain of rigged Hilbert spaces ([6]) constructed by means of $A: H_{+2}=\operatorname{dom}(A), H_{+1}=\operatorname{dom}\left(|A|^{1 / 2}\right)$ with norms $\|f\|_{k}=\left(|A|^{k / 2} f \|^{2}+\right.$ $\left.\|f\|^{2}\right)^{1 / 2}, k \in\{1,2\}$. The "negative" Hilbert spaces $H_{-k}(k \in\{1,2\})$ are the completion of H with respect to the norms

$$
\|f\|_{-k}=\sup _{g \in H_{k},\|g\|_{k}=1}|(f, g)| .
$$

The operator A has an extension $\mathbf{A} \in \mathcal{L}\left(H_{k}, H_{k-2}\right), k \in\{0,1\}\left(H_{0}:=H\right)$ and $|\mathbf{A}|^{1 / 2} \in$ $\mathcal{L}\left(H_{k}, H_{k-1}\right), k \in\{-1,0\}$ is an extension of $|A|^{1 / 2}$. The resolvent $\mathrm{R}_{z}=(A-z I)^{-1}, z \in \rho(A)$ has an extension $\mathbf{R}_{z}=(\mathbf{A}-z I)^{-1} \in \mathcal{L}\left(H_{-k}, H_{-k+2}\right), k \in\{0,1,2\}$. Let Φ be a subspace in H_{-2} such that

$$
\begin{equation*}
\Phi \cap H=\{0\} \tag{14}
\end{equation*}
$$

then the operator A^{\prime} defined by

$$
\begin{equation*}
\operatorname{dom}\left(A^{\prime}\right)=\left\{f \in H_{+2}:(f, \varphi)=0 \quad \text { for all } \quad \varphi \in \Phi\right\}, A^{\prime}=A \upharpoonright \operatorname{dom}\left(A^{\prime}\right) \tag{15}
\end{equation*}
$$

is a closed, densely defined symmetric operator with the defect numbers equal to dim Φ. For the defect subspace $\mathfrak{N}_{z}\left(A^{\prime}\right)=\operatorname{ker}\left(A^{\prime *}-z I\right)$ the formula $\mathfrak{N}_{z}\left(A^{\prime}\right)=\mathbf{R}_{z} \Phi$ holds.

Suppose that A is a nonnegative operator. Then as it is well known, A is the Friedrichs extension of A^{\prime} if and only if $\Phi \cap H_{-1}=\{0\}$.

The operator A given by (5) is nonnegative and self-adjoint in $H=L_{2}(\mathbb{R})$. Set for convenience

$$
H_{+2}=\operatorname{dom}(A)=W_{2}^{2}(\mathbb{R}), H_{+1}=\operatorname{dom}\left(A^{1 / 2}\right)=W_{2}^{1}(\mathbb{R}), H_{-1}=W_{2}^{-1}(\mathbb{R}), \quad H_{-2}=W_{2}^{-2}(\mathbb{R})
$$

As mentioned above, (see (7)) one has $\delta_{y}=\delta(x-y) \in H_{-1} \backslash H,\left(\delta_{y}\right)^{\prime}=\delta^{\prime}(x-y) \in H_{-2} \backslash H_{-1}$. Let $Y=\left\{y_{j} \in \mathbb{R}, j \in \mathbb{J}\right\}$ be a discrete set in \mathbb{R} satisfying (1).

The defect subspaces of A^{\prime}, A_{0}, and H_{0} are given by (see [1])

$$
\begin{gathered}
\mathfrak{N}_{\lambda}\left(A^{\prime}\right)=\overline{\operatorname{span}}\left\{\operatorname{sgn}\left(x-y_{j}\right) \exp \left(i \sqrt{\lambda}\left|x-y_{j}\right|\right), j \in \mathbb{J}\right\}, \\
\mathfrak{N}_{\lambda}\left(A_{0}\right)=\overline{\operatorname{span}}\left\{\exp \left(i \sqrt{\lambda}\left|x-y_{j}\right|\right), j \in \mathbb{J}\right\}, \\
\mathfrak{N}_{\lambda}\left(H_{0}\right)=\overline{\operatorname{span}}\left\{\exp \left(i \sqrt{\lambda}\left|x-y_{j}\right|\right), \operatorname{sgn}\left(x-y_{j}\right) \exp \left(i \sqrt{\lambda}\left|x-y_{j}\right|\right), j \in \mathbb{J}\right\},
\end{gathered}
$$

respectively.
3.2. Riesz bases. Recall [8] that a countable set of vectors $\left\{g_{j}\right\}$ forms a Riesz basis in a separable Hilbert space \mathfrak{H} if $\overline{\operatorname{span}}\left\{g_{j}\right\}=\mathfrak{H}$ and there exist two positive numbers a_{1} and a_{2}
such that for each positive integer n and each collection of complex numbers $\left\{c_{1}, c_{2}, \ldots c_{n}\right\}$ one has

$$
a_{2} \sum_{j=1}^{n}\left|c_{j}\right|^{2} \leq\left\|\sum_{j=1}^{n} c_{j} g_{j}\right\|_{\mathfrak{H}}^{2} \leq a_{1} \sum_{j=1}^{n}\left|c_{j}\right|^{2} .
$$

Since $\left\{e_{j}\right\}_{j \in \mathbb{J}}$ forms a Riesz basis \mathfrak{H}, every $f \in \mathfrak{H}$ has an expansion $f=\sum_{j \in \mathbb{J}} c_{j} e_{j}$ with $\sum_{j \in \mathfrak{J}}\left|c_{j}\right|^{2}<\infty$, and conversely, if $\sum_{j \in J}\left|c_{j}\right|^{2}<\infty$ then the series $\sum_{j \in \mathbb{J}} c_{j} e_{j}$ converges in \mathfrak{H}.

Proposition 3. The systems $\left\{\delta\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}},\left\{\delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}}$ and $\left\{\delta\left(x-y_{j}\right), \delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}}$ form Riesz bases of the subspaces Ψ_{-2}, Φ and Ω, respectively.

Proof. We will show that $\left\{\delta\left(x-y_{j}\right), \delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}}$ is a Riesz basis of the subspace Ω.
Let $f=\sum_{j} a_{j} \delta\left(x-y_{j}\right)+b_{j} \delta^{\prime}\left(x-y_{j}\right) \in \Omega$, where $\left\{a_{j}\right\}_{j \in \mathbb{J}},\left\{b_{j}\right\}_{j \in \mathbb{J}} \in l_{2}(\mathbb{J})$, then using the first statement of Propositions (1) we get

$$
\begin{gathered}
\left\|\sum_{j} a_{j} \delta\left(x-y_{j}\right)+b_{j} \delta^{\prime}\left(x-y_{j}\right)\right\|_{H_{-2}}^{2}=\sup _{g \in H_{+2},\|g\|_{H_{+2}}=1}|(f, g)|^{2}= \\
=\sup _{g \in H_{+2},\|g\|_{H_{+2}}=1}\left|\sum_{j} a_{j} g\left(y_{j}\right)+b_{j} g^{\prime}\left(y_{j}\right)\right|^{2} \leq \\
\leq 2\left(\sup _{g \in H_{+2},\|g\|_{H_{+2}}=1} \sum_{j}\left|a_{j}\right|^{2} \sum_{j}\left|g\left(y_{j}\right)\right|^{2}+\sup _{g \in H_{+2},\|g\|_{H_{+2}}=1} \sum_{j}\left|b_{j}\right|^{2} \sum_{j}\left|g^{\prime}\left(y_{j}\right)\right|^{2}\right)= \\
=C_{1}\|a\|_{\ell_{2}(\mathbb{J})}^{2}+C_{2}\|b\|_{\ell_{2}(\mathbb{J})}^{2}<\infty .
\end{gathered}
$$

On the other hand, using the second statement of Proposition (1) we have

$$
\sup _{g \in H_{+2},\|g\|_{H_{+2}}=1}\left|\sum_{j} a_{j} g\left(y_{j}\right)+b_{j} g^{\prime}\left(y_{j}\right)\right|^{2} \geq\left|\sum_{j} a_{j} \frac{\overline{a_{j}}}{\|a\|}+b_{j} \frac{\overline{b_{j}}}{\|b\|}\right|^{2}=\left(\|a\|_{\ell_{2}(\mathbb{J})}+\|b\|_{\ell_{2}(\mathbb{J})}\right)^{2}
$$

Therefore, the system $\left\{\delta\left(x-y_{j}\right), \delta^{\prime}\left(x-y_{j}\right)\right\}_{j \in \mathbb{J}}$ forms a Riesz basis of the subspace Ω.
The other statements can be proved similarly.
3.3. Transversalness of the Friedrichs and Kreı̆n extensions. Let H be a separable Hilbert space and let \mathcal{A} be a densely defined closed symmetric and nonnegative operator. Denote by \mathcal{A}^{*} the adjoint to \mathcal{A}, by $\widetilde{\mathcal{A}}$ a nonnegative selfadjoint extension of \mathcal{A}. It is well known ([1]) that the operator \mathcal{A} admits at least one nonnegative self-adjoint extension \mathcal{A}_{F} called the Friedrichs extension, which is defined as follows. Denote by $\mathcal{A}[\cdot, \cdot]$ the closure of the sesquilinear form (see [10])

$$
\mathcal{A}[f, g]=(\mathcal{A} f, g), f, g \in \operatorname{dom}(\mathcal{A}),
$$

and let $\mathcal{D}[\mathcal{A}]$ be the domain of this closure. According to the first representation theorem ([10]) there exists a nonnegative self-adjoint operator \mathcal{A}_{F} associated with $\mathcal{A}[\cdot, \cdot]$, i.e., $\left(\mathcal{A}_{F} h, \psi\right)$ $=\mathcal{A}[h, \psi], \psi \in \mathcal{D}[\mathcal{A}], h \in \operatorname{dom}\left(\mathcal{A}_{F}\right)$. Clearly $\mathcal{A} \subset \mathcal{A}_{F} \subset \mathcal{A}^{*}$, where \mathcal{A}^{*} is the adjoint operator to \mathcal{A}. It follows that $\operatorname{dom}\left(\mathcal{A}_{F}\right)=\mathcal{D}[\mathcal{A}] \cap \operatorname{dom}\left(\mathcal{A}^{*}\right)$. By the second representation theorem, the equalities $\mathcal{D}[\mathcal{A}]=\operatorname{dom}\left(\mathcal{A}_{F}^{1 / 2}\right)$ and $\mathcal{A}[\phi, \psi]=\left(\mathcal{A}_{F}^{1 / 2} \phi, \mathcal{A}_{F}^{1 / 2} \psi\right), \phi, \psi \in \mathcal{D}[\mathcal{A}]$ hold.
M. G. Kreĭn in [14] discovered one more nonnegative self-adjoint extension of \mathcal{A} having extremal property to be minimal (in the sense of the corresponding quadratic forms) among others nonnegative self-adjoint extensions of \mathcal{A}. This extension we will denote by \mathcal{A}_{K} and call it the Kreĭn extension of \mathcal{A}.

Recall that two selfadjoint extensions $\widetilde{\mathcal{A}}_{1}$ and $\widetilde{\mathcal{A}}_{2}$ of a symmetric operator \mathcal{A} are called disjoint if $\operatorname{dom}\left(\widetilde{\mathcal{A}}_{1}\right) \cap \operatorname{dom}\left(\widetilde{\mathcal{A}}_{2}\right)=\operatorname{dom}(\mathcal{A})$ and transversal if $\operatorname{dom}\left(\widetilde{\mathcal{A}}_{1}\right)+\operatorname{dom}\left(\widetilde{\mathcal{A}}_{2}\right)=\operatorname{dom}\left(\mathcal{A}^{*}\right)$. We need the following statement ([4], [16]).
Proposition 4. The Friedrichs and Kreĭn extensions \mathcal{A}_{F} and \mathcal{A}_{K} are transversal if $\mathfrak{N}_{z} \subset$ $\operatorname{dom}\left(\mathcal{A}_{K}^{1 / 2}\right)$ at least for one (hence for all) $z \in \mathbb{C} \backslash[0, \infty)$.

In what follows we will consider our operators (2)-(4) in the p-representation by means of the Fourier transform

$$
\widehat{f}(p)=(\mathcal{F} f)(p)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i p x} d x
$$

Note that

$$
\left(\mathcal{F} \delta_{y}\right)(p)=\widehat{\delta}_{y}(p)=\frac{1}{\sqrt{2 \pi}} e^{-i p y},\left(\mathcal{F} \delta_{y}^{\prime}\right)(p)=\widehat{\delta}_{y}^{\prime}(p)=\frac{i p e^{-i p y}}{\sqrt{2 \pi}}
$$

and the Fourier transformation \mathcal{F} is a unitary operator from $L_{2}(\mathbb{R}, d x)$ onto $L_{2}(\mathbb{R}, d p)$. In addition

$$
\begin{gathered}
\operatorname{dom}(\widehat{A})=\widehat{H}_{+2}=\left\{\hat{f} \in L_{2}(\mathbb{R}, d p): \int_{\mathbb{R}}|\widehat{f}(p)|^{2}\left(p^{4}+1\right) d p<\infty\right\},(\widehat{A} \widehat{f})(p)=p^{2} \widehat{f}(p), \\
\operatorname{dom}\left(\widehat{A}^{1 / 2}\right)=\widehat{H}_{+1}=\left\{\widehat{f} \in L_{2}(\mathbb{R}, d p): \int_{\mathbb{R}}|\widehat{f}(p)|^{2}\left(p^{2}+1\right) d p<\infty\right\},\left(\widehat{A^{1 / 2}} \widehat{f}\right)(p)=|p| \widehat{f}(p) \\
\operatorname{dom}\left(\widehat{A^{\prime}}\right)=\left\{\hat{f} \in \widehat{H}_{+2}: \int_{\mathbb{R}} p e^{i p y_{j}} \hat{f}(p) d p=0, j \in \mathbb{J}\right\},\left(\widehat{A^{\prime}} \widehat{f}\right)(p)=p^{2} \widehat{f}(p) \\
\operatorname{dom}\left(\widehat{A}_{0}\right)=\left\{\hat{f} \in \widehat{H}_{+2}: \int_{\mathbb{R}} e^{i p y_{j}} \hat{f}(p) d p=0, j \in \mathbb{J}\right\},\left(\widehat{A}_{0} \widehat{f}\right)(p)=p^{2} \widehat{f}(p), \\
\operatorname{dom}\left(\widehat{H}_{0}\right)=\left\{\hat{f} \in \widehat{H}_{+2}: \int_{\mathbb{R}} e^{i p y_{j}} \hat{f}(p) d p=0, \int_{\mathbb{R}} p e^{i p y_{j}} \hat{f}(p) d p=0 j \in \mathbb{J}\right\},\left(\widehat{H}_{0} \widehat{f}\right)(p)=p^{2} \widehat{f}(p) .
\end{gathered}
$$

The pairs of operators $\langle\widehat{A}, A\rangle,\left\langle\widehat{A}^{\prime}, A^{\prime}\right\rangle,\left\langle\widehat{A}_{0}, A_{0}\right\rangle$, and $\left\langle\widehat{H_{0}}, H_{0}\right\rangle$ are unitary equivalent since $\mathcal{F} A=\widehat{A} \mathcal{F}$. Clearly, $\widehat{H}_{+2}=\mathcal{F} H_{+2}, \widehat{H}_{+1}=\mathcal{F} H_{+1}$,

$$
\begin{aligned}
& \widehat{H}_{-1}=\mathcal{F} H_{-1}=\left\{\widehat{f}(p): \frac{\hat{f}(p)}{p^{2}+1} \in \widehat{H}_{+1}\right\},\|\widehat{f}(p)\|_{\widehat{H}_{-1}}^{2}=\int_{\mathbb{R}} \frac{|\widehat{f}(p)|^{2}}{p^{2}+1} d p \\
& \widehat{H}_{-2}=\mathcal{F} H_{-2}=\left\{\widehat{f}(p): \frac{\hat{f}(p)}{p^{4}+1} \in \widehat{H}_{+2}\right\},\|\widehat{f}(p)\|_{\widehat{H}_{-2}}^{2}=\int_{\mathbb{R}} \frac{|\widehat{f}(p)|^{2}}{p^{4}+1} d p \\
& \widehat{\mathbf{A}} \hat{f}=p^{2} \hat{f}(p), \quad \widehat{\mathbf{A}}: \widehat{H}_{+1} \rightarrow \widehat{H}_{-1}, \quad L_{2}(\mathbb{R}) \rightarrow \widehat{H}_{-2}
\end{aligned}
$$

Let $\widehat{\Phi}=\mathcal{F} \Phi, \widehat{\Psi}_{-1}=\mathcal{F} \Psi_{-1}, \widehat{\Psi}_{-2}=\mathcal{F} \Psi_{-2}, \widehat{\Omega}=\mathcal{F} \Omega$. Then

$$
\begin{gathered}
\widehat{\Phi}=\overline{\overline{\operatorname{span}}}\left\{p e^{-i p y_{j}}, j \in \mathbb{J}\right\}, \quad \widehat{\Psi}_{-2}=\overline{\widehat{H}_{-2}} \\
\widehat{\Psi}_{-1}=\underset{\widehat{\operatorname{span}}_{-2}}{\widehat{\bar{H}}_{-1}}\left\{e^{-i p y_{j}}, j \in \mathbb{J}\right\}, \\
\left.e^{-i p y_{j}}, j \in \mathbb{J}\right\}, \quad \widehat{\Omega}=\overline{\overline{\operatorname{span}}_{-2}}\left\{e^{-i p y_{j}}, p e^{-i p y_{j}}, j \in \mathbb{J}\right\} .
\end{gathered}
$$

Theorem 1. The equality $\Psi_{-2}=\Psi_{-1}$ holds.
Proof. Let $f \in \Psi_{-2}$, then $f=\sum_{k} c_{k} \delta\left(x-y_{k}\right), \sum_{k \in \mathbb{J}}\left|c_{k}\right|^{2}<\infty$. Using Corollary (1) we have $\|f\|_{H_{-1}}^{2}=\sup _{g \in H_{1},\|g\|_{1}=1}|(f, g)|^{2}=\sup _{g \in H_{1},\|g\|_{1}=1}\left|\sum_{k \in \mathbb{J}} c_{k} g\left(y_{k}\right)\right|^{2} \leq \sum_{k \in \mathbb{J}}\left|c_{k}\right|^{2} \sup _{g \in H_{1},\|g\|_{1}=1} \sum_{k \in \mathbb{J}}\left|g\left(y_{k}\right)\right|^{2}<\infty$.

Therefore, $\Psi_{-2} \subset H_{-1}$ and $\Psi_{-2}=\Psi_{-1}$.
Corollary 2. The systems $\left\{e^{-i p y_{j}}\right\}_{j \in \mathbb{J}},\left\{p e^{-i p y_{j}}\right\}_{j \in \mathbb{J}}$ and $\left\{\frac{e^{-i p y_{j}}}{p^{2}+1}\right\}_{j \in \mathbb{J}},\left\{\frac{p e^{-i p y_{j}}}{p^{2}+1}\right\}_{j \in \mathbb{J}}$ form Riesz bases of the subspaces $\widehat{\Psi}_{-1}, \widehat{\Phi}$ and $\widehat{\mathfrak{N}}_{-1}\left(\widehat{A}_{0}\right), \widehat{\mathfrak{N}}_{-1}\left(\widehat{A}^{\prime}\right)$, respectively.

Proof. Since the operator \mathcal{F} unitarily maps H_{-2} onto \widehat{H}_{-2}, by Proposition 3, the systems $\left\{e^{-i p y_{j}}\right\}_{j \in \mathbb{J}}$ and $\left\{p e^{-i p y_{j}}\right\}_{j \in \mathbb{J}}$ form Riesz bases of $\widehat{\Psi}_{-1}$ and $\widehat{\Phi}$, respectively. Let $\widehat{\mathfrak{N}}_{-1}\left(\widehat{A}^{\prime}\right)=$ $\operatorname{ker}\left(\widehat{A^{\prime *}}+I\right), \widehat{\mathfrak{N}}_{-1}\left(\widehat{A}_{0}\right)=\operatorname{ker}\left(\widehat{A_{0}^{*}}+I\right)$. Then $\widehat{\mathfrak{N}}_{-1}\left(\widehat{A^{\prime}}\right)=(\widehat{\mathbf{A}}+I)^{-1} \widehat{\Phi}, \quad \widehat{\mathfrak{N}}_{-1}\left(\widehat{A}_{0}\right)=(\widehat{\mathbf{A}}+I)^{-1} \widehat{\Psi}_{-1}$, and $\left\{\frac{p e^{-i p y_{j}}}{p^{2}+1}\right\}_{j \in \mathbb{J}}$ is a Riesz basis of $\widehat{\mathfrak{N}}_{-1}\left(\widehat{A}^{\prime}\right) \subset H,\left\{\frac{e^{-i p y_{j}}}{p^{2}+1}\right\}_{j \in \mathbb{J}}$ is a Riesz basis of $\widehat{\mathfrak{N}}_{-1}\left(\widehat{A}_{0}\right) \subset$ \widehat{H}_{+1}.

Theorem 2. The equality $\Phi \cap H_{-1}=\{0\}$ holds.
Proof. Let $g \in \widehat{\Phi}$, then $g(p)=\sum_{k} c_{k} p e^{-i p y_{k}}$, but by Corollary (2) $\int_{\mathbb{R}} \frac{1}{p^{2}+1}\left|\sum_{k} c_{k} p e^{-i p y_{k}}\right|^{2} d p=$ ∞, hence g does not belong to \widehat{H}_{-1}, i.e. $\widehat{\Phi} \cap \widehat{H}_{-1}=\{0\}$ and $\Phi \cap H_{-1}=\{0\}$.

Corollary 3. The Friedrichs and Krĕ̆n extensions of the operators H_{0}, A^{\prime}, A_{0} are transversal. Proof. Let $u \in \widehat{\mathfrak{N}}_{-1}\left(\widehat{H}_{0}\right)$, then $u(p)=\sum_{k} a_{k} \frac{e^{-i p y_{k}}}{p^{2}+1}+b_{k} \frac{p e^{-i p y_{k}}}{p^{2}+1}$. Using Corollary (2) we have

$$
\begin{aligned}
\sup _{f \in \operatorname{dom}\left(\widehat{H}_{0}\right)} \frac{\left|\left(\widehat{H}_{0} f, u\right)\right|^{2}}{\left(\widehat{H}_{0} f, f\right)} & =\sup _{f \in \operatorname{dom}\left(\widehat{H}_{0}\right)} \frac{\left|\int_{\mathbb{R}} p^{2} f(p) \overline{u(p)} d p\right|^{2}}{\int_{\mathbb{R}} p^{2}|f(p)|^{2} d p} \leq \sup _{f \in \operatorname{dom}\left(\widehat{H}_{0}\right)} \frac{\int_{\mathbb{R}} p^{4}|f(p)|^{2} d p \int_{\mathbb{R}}|u(p)|^{2} d p}{\int_{\mathbb{R}} p^{2}|f(p)|^{2} d p} \leq \\
& \leq \int_{\mathbb{R}}\left(\left|\sum_{k} \frac{a_{k} e^{-i p y_{k}}}{p^{2}+1}\right|^{2}+\left|\sum_{k} \frac{b_{k} p e^{-i p y_{k}}}{p^{2}+1}\right|^{2}\right) d p<\infty .
\end{aligned}
$$

So, $\widehat{\mathfrak{N}}_{-1}\left(\widehat{H}_{0}\right) \subset \operatorname{dom}\left(\widehat{H}_{0 K}^{1 / 2}\right)$. Therefore, due to Proposition 4 the extensions $\widehat{H}_{0 F}$ and $\widehat{H}_{0 K}$ as well as $H_{0 F}$ and $H_{0 K}$ are transversal.

Transversalness of the Friedrichs and Kreĭn extensions of the operators A^{\prime} and A_{0} can be proved similarly.

Corollary 4. The operator A is the Friedrichs extension of the operator A^{\prime}.
Proof. Since $\Phi \cap H_{-1}=\{0\}$, we get that $A_{F}^{\prime}=A$.
3.4. Basic boundary triplets for operators $A_{0}^{*}, A^{* *}$ and H_{0}^{*}. Let S be a closed densely defined symmetric operator with equal defect numbers in \mathfrak{H}. Let \mathcal{H} be some Hilbert space, Γ_{1} and Γ_{2} be linear mappings of $\operatorname{dom}\left(S^{*}\right)$ into \mathcal{H}. A triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ is called a boundary triplet for adjoint operator S^{*} ([7], [11], [9]), if

$$
\begin{equation*}
\left(S^{*} x, y\right)-\left(x, S^{*} y\right)=\left(\Gamma_{1} x, \Gamma_{0} y\right)_{\mathcal{H}}-\left(\Gamma_{0} x, \Gamma_{1} y\right)_{\mathcal{H}} \quad \text { for all } \quad x, y \in \operatorname{dom}\left(S^{*}\right), \tag{16}
\end{equation*}
$$

and a mapping $\Gamma: x \mapsto\left\{\Gamma_{0} x, \Gamma_{1} x\right\}, x \in \operatorname{dom}\left(S^{*}\right)$ is a surjection of $\operatorname{dom}\left(S^{*}\right)$ onto $\mathcal{H} \oplus \mathcal{H}$.
Let S be a densely defined and nonnegative operator. Suppose that the Friedrichs and Krel̆n extensions of S are transversal. The boundary triplet $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ for S^{*} is called basic ([2], [3] rigid for positive definite S [17]) if $\operatorname{ker}\left(\Gamma_{0}\right)=\operatorname{dom}\left(S_{F}\right), \operatorname{ker}\left(\Gamma_{1}\right)=\operatorname{dom}\left(S_{K}\right)$. A basic boundary triplet is positive [2] and (see [3]) $S_{K}[x, y]=\left(S^{*} x, y\right)-\left(\Gamma_{1} x, \Gamma_{0} y\right)_{\mathcal{H}}, x, y \in$ $\operatorname{dom}\left(S^{*}\right)$.

Proposition 5 ([2]). Let S be a densely defined and nonnegative operator with transversal Friedrichs and Krĕ̆n extensions and let $\Pi=\left\{\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right\}$ be a basic boundary triplet for S^{*}. Then the mapping

$$
\begin{equation*}
\Theta \mapsto S_{\Theta}:=S^{*} \upharpoonright \Gamma^{-1} \Theta=S^{*} \upharpoonright\left\{f \in \operatorname{dom}\left(S^{*}\right):\left(\Gamma_{0} f, \Gamma_{1} f\right) \in \Theta\right\} \tag{17}
\end{equation*}
$$

establishes a bijective correspondence between the set of all selfadjoint nonnegative linear relations Θ in \mathcal{H} and the set of all nonnegative selfadjoint extensions of $S_{\Theta} \subseteq S^{*}$ of S.

Assume that
(A) L_{1} and L_{2} are two closed densely defined operators in the Hilbert space \mathfrak{H} taking values in a Hilbert space H and such that $L_{1} \subset L_{2}$.

Theorem 3 ([5]). Let condition (A) be fulfilled. If the operator $\mathcal{A}=L_{2}^{*} L_{1}$ is densely defined and $\mathcal{A}^{*}=L_{1}^{*} L_{2}$, then

1) the operator $\mathcal{A}_{F}=L_{1}^{*} L_{1}$ is the Friedrichs extension of \mathcal{A};
2) the Friedrichs and Kreĭn extensions of \mathcal{A} are transversal;
3) the operator

$$
\begin{aligned}
& \operatorname{dom} \mathcal{A}_{K}=\left\{f \in \operatorname{dom}\left(L_{2}\right): P_{\operatorname{ran}\left(L_{1}\right)} L_{2} f \in \operatorname{dom}\left(L_{2}^{*}\right)\right\}, \\
& \mathcal{A}_{K} f=L_{2}^{*} P_{\operatorname{ran}\left(L_{1}\right)} L_{2} f=L_{1}^{*} L_{2} f, f \in \operatorname{dom}\left(\mathcal{A}_{K}\right)
\end{aligned}
$$

is the Kreĭn extension of \mathcal{A} and

$$
\mathcal{D}\left[\mathcal{A}_{K}\right]=\operatorname{dom}\left(L_{2}\right), \mathcal{A}_{K}[u, v]=\left(P_{\operatorname{ran}\left(L_{1}\right)} L_{2} u, P_{\operatorname{ran}\left(L_{1}\right)} L_{2} v\right), u, v=\operatorname{dom}\left(L_{2}\right) .
$$

The operator $\mathcal{A}=L_{2}^{*} L_{1}$ called an operator in the divergence form.
According to V. E. Lyantse and O. G. Storozh ([15]) a pair $\{\mathcal{H}, \Gamma\}$ is called a boundary pair for $L_{1} \subset L_{2}$, if \mathcal{H} is a Hilbert space, $\Gamma \in \mathcal{L}\left(\operatorname{dom}\left(L_{2}\right), \mathcal{H}\right)$ and $\operatorname{ker}(\Gamma)=\operatorname{dom}\left(L_{1}\right), \operatorname{ran}(\Gamma)=\mathcal{H}$. Let $\{\mathcal{H}, \Gamma\}$ be a boundary pair for $L_{1} \subset L_{2}$. Then there exists a linear operator $G \in$ $\mathcal{L}\left(\operatorname{dom}\left(L_{1}^{*}\right), \mathcal{H}\right)$ such that $\{\mathcal{H}, G\}$ is a boundary pair for $L_{2}^{*} \subset L_{1}^{*}$ and the Green identity

$$
\begin{equation*}
\left(L_{1}^{*} f, u\right)_{H}-\left(f, L_{2} u\right)_{\mathfrak{H}}=(G f, \Gamma u)_{\mathcal{H}}, f \in \operatorname{dom}\left(L_{1}^{*}\right), u \in \operatorname{dom}\left(L_{2}\right) \tag{18}
\end{equation*}
$$

holds. The set $\{\mathcal{H}, G, \Gamma\}$ is called the boundary triplet for a pair of the operators $L_{1} \subset L_{2}$.
Theorem 4. Let condition (A) be fulfilled and let $\{\mathcal{H}, G, \Gamma\}$ be a boundary triplet for $L_{1} \subset L_{2}$. If the operator $\mathcal{A}=L_{2}^{*} L_{1}$ is densely defined and $\mathcal{A}^{*}=L_{1}^{*} L_{2}$, then

1. the triplet $\Pi=\left\{\mathcal{H}, \Gamma, G P_{\operatorname{ran}\left(L_{1}\right)} L_{2}\right\}$ is a basic for \mathcal{A}^{*};
2. the mapping

$$
\begin{equation*}
\Theta \mapsto \mathcal{A}_{\Theta}:=\mathcal{A}^{*} \upharpoonright \Gamma^{-1} \Theta=\mathcal{A}^{*} \upharpoonright\left\{f \in \operatorname{dom}\left(\mathcal{A}^{*}\right):\left(\Gamma f, G P_{\overline{\operatorname{ran}}\left(L_{1}\right)} L_{2} f\right) \in \Theta\right\} \tag{19}
\end{equation*}
$$

establishes a bijective correspondence between all nonnegative selfadjoint extensions of the operator \mathcal{A} and all nonnegative selfadjoint linear relations Θ in \mathcal{H}.

Proof. By Theorem 3, the Friedrichs and Kreĭn extensions of \mathcal{A} are transversal, $\mathcal{D}\left[\mathcal{A}_{K}\right]=$ $\operatorname{dom}\left(L_{2}\right), \mathcal{D}\left[\mathcal{A}_{F}\right]=\operatorname{dom}\left(L_{1}\right)$. Hence, $\{\mathcal{H}, \Gamma\}$ is a boundary pair for \mathcal{A}. Let $x \in \operatorname{dom}\left(\mathcal{A}^{*}\right)=$ $\operatorname{dom}\left(L_{1}^{*} L_{2}\right)$ and $y \in \operatorname{dom}\left(L_{2}\right)$. Then $P_{\operatorname{ran}\left(L_{1}\right)} L_{2} x=L_{2} x-P_{\operatorname{ker}\left(L_{1}^{*}\right)} L_{2} x \in \operatorname{dom}\left(L_{1}^{*}\right)$. Using Theorem 3 and (18) we get

$$
\begin{aligned}
& \mathcal{A}_{K}[x, y]=\left(P_{\operatorname{ran}\left(L_{1}\right)} L_{2} x, L_{2} u\right)_{H}=\left(L_{1}^{*} P_{\operatorname{ran}\left(L_{1}\right)} L_{2} x, y\right)_{\mathfrak{H}}-\left(G P_{\operatorname{ran}\left(L_{1}\right)} L_{2} x, \Gamma y\right)_{\mathcal{H}}= \\
& \quad=\left(L_{1}^{*} L_{2} x, y\right)_{\mathfrak{H}}-\left(G P_{\overline{\mathrm{ran}}\left(L_{1}\right)} L_{2} x, \Gamma y\right)_{\mathcal{H}}=\left(\mathcal{A}^{*} x, y\right)_{\mathfrak{H}}-\left(G P_{\overline{\mathrm{ran}}\left(L_{1}\right)} L_{2} x, \Gamma y\right)_{\mathcal{H}} .
\end{aligned}
$$

In particular, for $x, y \in \operatorname{dom}\left(\mathcal{A}^{*}\right)$ taking into account that the form $\mathcal{A}_{K}[x, y]$ is Hermitian, we have $\left(\mathcal{A}^{*} x, y\right)-\left(x, \mathcal{A}^{*} y\right)=\left(G P_{\mathrm{ran}\left(L_{1}\right)} L_{2} x, \Gamma y\right)_{\mathcal{H}}-\left(\Gamma x, G P_{\mathrm{ran}\left(L_{1}\right)} L_{2} y\right)_{\mathcal{H}}$. Thus, the triplet $\Pi=\left\{\mathcal{H}, \Gamma, G P_{\operatorname{ran}\left(L_{1}\right)} L_{2}\right\}$ is basic for S^{*}. From Proposition 5 we get that statement (2) holds true.

Consider in $L_{2}(\mathbb{R})$ the following operators

$$
\begin{align*}
\operatorname{dom}\left(\mathcal{L}_{0}\right)=\{ & \left\{f \in W_{2}^{1}(\mathbb{R}): f(y)=0, y \in Y\right\}, \quad \mathcal{L}_{0}=i \frac{d}{d x} \tag{20}\\
& \operatorname{dom}(\mathcal{L})=W_{2}^{1}(\mathbb{R}), \quad \mathcal{L}=i \frac{d}{d x} \tag{21}
\end{align*}
$$

From (20) it follows that \mathcal{L}_{0} is a densely defined symmetric operator and its adjoint \mathcal{L}_{0}^{*} is given by

$$
\begin{equation*}
\operatorname{dom}\left(\mathcal{L}_{0}^{*}\right)=W_{2}^{1}(\mathbb{R} \backslash Y), \mathcal{L}_{0}^{*}=i \frac{d}{d x} \tag{22}
\end{equation*}
$$

The operator \mathcal{L} is a selfadjoint extension of \mathcal{L}_{0}. So, we have $\mathcal{L}_{0} \subset \mathcal{L} \subset \mathcal{L}_{0}^{*}$. From (3)-(22) it follows that

$$
\begin{equation*}
A_{0}=\mathcal{L} \mathcal{L}_{0}, A^{\prime}=\mathcal{L}_{0} \mathcal{L}, H_{0}=\mathcal{L}_{0}^{2}, A=\mathcal{L}^{2}, A_{0}^{*}=\mathcal{L}_{0}^{*} \mathcal{L}, A^{*}=\mathcal{L} \mathcal{L}_{0}^{*}, H_{0}^{*}=\mathcal{L}_{0}^{* 2} \tag{23}
\end{equation*}
$$

Using representation (23) and Theorem 3 the explicit expressions for the Friedrichs and Krĕ̆n extensions of A_{0}, A^{\prime} and H_{0} and their transversalness have been obtained in [5]. In the next statements for the operators $A^{\prime *}, A_{0}^{*}$ and H_{0}^{*} explicit expressions for the basic boundary triplets and abstract boundary conditions for all nonnegative selfadjoint extensions are obtained.

Proposition 6. Set

$$
\begin{gathered}
\mathcal{H}=\left\{\begin{array}{ll}
\mathbb{C}^{m}, & Y \text { consists of } m \text { points; } \\
\ell_{2}(\mathbb{J}), & Y \text { is infinite, }
\end{array} \quad \operatorname{dom}(\Gamma)=W_{2}^{1}(\mathbb{R} \backslash Y),\right. \\
\Gamma u=\left\{i\left(u\left(y_{j}+\right)-u\left(y_{j}-\right)\right), j \in \mathbb{J}\right\}, \operatorname{dom}(G)=W_{2}^{1}(\mathbb{R}), \quad G f=\left\{f\left(y_{j}\right), j \in \mathbb{J}\right\} .
\end{gathered}
$$

Then
(i) $\{\mathcal{H}, \Gamma, G\}$ is the boundary triplet for pair $\mathcal{L} \subset \mathcal{L}_{0}^{*}$;
(ii) the triplet $\Pi=\left\{\mathcal{H}, \Gamma, G \mathcal{L}_{0}^{*}\right\}$ is basic for $A^{\prime *}$, where $G \mathcal{L}_{0}^{*}$ is given by the relation $G \mathcal{L}_{0}^{*} f=$ $\left\{i f^{\prime}\left(y_{j}\right), j \in \mathbb{J}\right\}, f \in \operatorname{dom}\left(A^{*}\right) ;$
(iii) the mapping
$\Theta \mapsto A_{\Theta}^{\prime}=A^{\prime *} \upharpoonright\left\{f \in \operatorname{dom}\left(A^{\prime *}\right):\left(\left\{i\left(f\left(y_{j}+\right)-f\left(y_{j}-\right)\right), j \in \mathbb{J}\right\},\left\{i f^{\prime}\left(y_{j}\right), j \in \mathbb{J}\right\}\right) \in \Theta\right\}$
establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator A^{\prime} and all nonnegative selfadjoint linear relation Θ in \mathcal{H}.

Proof. By the definition of a boundary triplet for the pair $L_{1} \subset L_{2}$, where $L_{1}=\mathcal{L}, L_{2}=\mathcal{L}_{0}^{*}$ we get $\operatorname{dom}(\Gamma)=\operatorname{dom}\left(L_{2}\right)=\operatorname{dom}\left(\mathcal{L}_{0}^{*}\right)=W_{2}^{1}(\mathbb{R} \backslash Y)$ and $\operatorname{ker}(\Gamma)=\operatorname{dom}(\mathcal{L})=W_{2}^{1}(\mathbb{R})$. Similarly, $\operatorname{dom}(\Phi)=\operatorname{dom}\left(L_{1}^{*}\right)=\operatorname{dom}(\mathcal{L})=W_{2}^{1}(\mathbb{R}), \operatorname{ker}(\Phi)=\operatorname{dom}\left(L_{2}^{*}\right)=\operatorname{dom}\left(\mathcal{L}_{0}\right)=\{u \in$ $\left.W_{2}^{1}(\mathbb{R}): u(y)=0, y \in Y\right\}$. Further, the Green identity

$$
\begin{gathered}
\left(L_{1}^{*} f, u\right)_{\mathfrak{H}}-\left(f, L_{2} u\right)_{H}=\int_{\mathbb{R}} i f^{\prime}(x) \overline{u(x)} d x-\int_{\mathbb{R}} f(x) \overline{i u^{\prime}(x)} d x= \\
=i \sum_{j \in \mathbb{J}}\left(\int_{I_{j}} f^{\prime}(x) \overline{u(x)} d x+\int_{I_{j}} f(x) \overline{u^{\prime}(x)} d x\right)=\left.i \sum_{j \in \mathbb{J}} f(x) \overline{u(x)}\right|_{y_{j+1}} ^{y_{j}}= \\
=i \sum_{j \in \mathbb{J}} f\left(y_{j}\right)\left(\overline{u\left(y_{j}-\right)-u\left(y_{j}+\right)}\right)=\sum_{j \in \mathbb{J}} f\left(y_{j}\right) \overline{i\left(u\left(y_{j}+\right)-u\left(y_{j}-\right)\right)}=(G f, \Gamma u)_{\mathcal{H}}
\end{gathered}
$$

holds. Due to Propositions 1 and 2 the operators Γ and G are bounded. Hence the triplet $\{\mathcal{H}, G, \Gamma\}$ is the boundary triplet for the pair $\mathcal{L} \subset \mathcal{L}_{0}^{*}$.

Further, since $\operatorname{ker}(\mathcal{L})=\{0\}$ and applying Theorem 4 we get (ii) and (iii).
Recall [5], that

$$
P_{\operatorname{ran}\left(\mathcal{L}_{0}\right)} \mathcal{L}_{0}^{*} f=i f^{\prime}-i \sum_{k} \frac{1}{d_{k}}\left(f\left(y_{k+1}-0\right)-f\left(y_{k}+0\right)\right) \chi_{k}, f \in \operatorname{dom}\left(\mathcal{L}_{0}^{*}\right),
$$

where the functions $\left\{\frac{\chi_{k}}{\sqrt{d_{k}}}\right\}_{k \in \mathbb{J}}\left(\chi_{k}\right.$ is the characteristic function of the interval $\left[y_{k}, y_{k+1}\right]$, $\left.d_{k}=\left|y_{k}-y_{k+1}\right|\right)$ form an orthonormal basis of $\operatorname{ker}\left(\mathcal{L}_{0}^{*}\right)$ and $d_{k}=\left|y_{k}-y_{k+1}\right|, k \in \mathbb{J}$.

Proposition 7. Set

$$
\begin{gathered}
\mathcal{H}= \begin{cases}\mathbb{C}^{m}, & Y \text { consists of } m \text { points; } \quad \operatorname{dom}(\Gamma)=W_{2}^{1}(\mathbb{R}), \quad \Gamma u=\left\{i u\left(y_{j}\right), j \in \mathbb{J}\right\}, \\
\ell_{2}(\mathbb{J}), \quad Y \text { is infinite, }\end{cases} \\
\operatorname{dom}(G)=W_{2}^{1}(\mathbb{R} \backslash Y), \quad G f=\left\{\left(f\left(y_{j}+\right)-f\left(y_{j}-\right)\right), \quad j \in \mathbb{J}\right\},
\end{gathered}
$$

then
(i) $\{\mathcal{H}, \Gamma, G\}$ is a boundary triplet for the pair $\mathcal{L}_{0} \subset \mathcal{L}$;
(ii) the triplet $\Pi=\left\{\mathcal{H}, \Gamma, G P_{\operatorname{ran}\left(\mathcal{L}_{0}\right)} \mathcal{L}\right\}$ is a basic for A_{0}^{*}, where

$$
\begin{gathered}
G P_{\mathrm{ran}\left(\mathcal{L}_{0}\right)} \mathcal{L} f= \\
=\left\{i f^{\prime}\left(y_{j}+\right)-i f^{\prime}\left(y_{j}-\right)-i \frac{f\left(y_{j+1}-\right)-f\left(y_{j}+\right)}{y_{j+1}-y_{j}}+i \frac{f\left(y_{j}-\right)-f\left(y_{j-1}+\right)}{y_{j}-y_{j-1}}, j \in \mathbb{J}\right\},
\end{gathered}
$$

$f \in \operatorname{dom}\left(A_{0}^{*}\right) ;$
(iii) the mapping

$$
\begin{gathered}
\Theta \mapsto A_{0 \Theta}=A_{0}{ }^{*} \upharpoonright\left\{f \in \operatorname{dom}\left(A_{0}{ }^{*}\right):\left(\left\{i u\left(f_{j}\right), j \in \mathbb{J}\right\}\right.\right. \\
\left.\left.\left\{i f^{\prime}\left(y_{j}+\right)-i f^{\prime}\left(y_{j}-\right)-i \frac{f\left(y_{j+1}-\right)-f\left(y_{j}+\right)}{y_{j+1}-y_{j}}+i \frac{f\left(y_{j}-\right)-f\left(y_{j-1}+\right)}{y_{j}-y_{j-1}}, j \in \mathbb{J}\right\}\right) \in \Theta\right\}
\end{gathered}
$$

establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator A_{0} and all nonnegative selfadjoint linear relation Θ in \mathcal{H}.

Proposition 8. Set

$$
\mathcal{H}=\left\{\begin{array}{ll}
\mathbb{C}^{2 m}, & Y \text { consists of } m \quad \text { points; } \\
\ell_{2}(\mathbb{J}) \otimes \mathbb{C}^{2}, & Y \text { is infinite, }
\end{array} \quad \operatorname{dom}(\Gamma)=W_{2}^{1}(\mathbb{R} \backslash Y),\right.
$$

$\Gamma u=\left\{\left(i u\left(y_{j}-\right), i u\left(y_{j}+\right)\right), j \in \mathbb{J}\right\}, \operatorname{dom}(G)=W_{2}^{1}(\mathbb{R} \backslash Y), G f=\left\{\left(f\left(y_{j}-\right), f\left(y_{j}+\right)\right), j \in \mathbb{J}\right\}$.
Then
(i) $\{\mathcal{H}, \Gamma, G\}$ is a boundary triplet for pair $\mathcal{L}_{0} \subset \mathcal{L}_{0}^{*}$;
(ii) the triplet $\Pi=\left\{\mathcal{H}, \Gamma, G P_{\operatorname{ran}\left(\mathcal{L}_{0}\right)} \mathcal{L}_{0}^{*}\right\}$ is basic for H_{0}^{*}, where

$$
\begin{gathered}
G P_{\operatorname{ran}\left(\mathcal{L}_{0}\right)} \mathcal{L}_{0}^{*} f= \\
=\left\{\left(i f^{\prime}\left(y_{j}-\right)-i \frac{f\left(y_{j}-\right)-f\left(y_{j-1}+\right)}{y_{j}-y_{j-1}}, i f^{\prime}\left(y_{j}+\right)-i \frac{f\left(y_{j+1}-\right)-f\left(y_{j}+\right)}{y_{j+1}-y_{j}}\right), j \in \mathbb{J}\right\},
\end{gathered}
$$

$$
f \in \operatorname{dom}\left(H_{0}^{*}\right) ;
$$

(iii) the mapping

$$
\begin{gathered}
\Theta \mapsto H_{0 \Theta}=H_{0}{ }^{*} \upharpoonright\left\{f \in \operatorname{dom}\left(H_{0}{ }^{*}\right):\left\{\left(-i f\left(y_{j}-\right), i f\left(y_{j}+\right)\right), j \in \mathbb{J}\right\}\right. \\
\left.\left\{\left(i f^{\prime}\left(y_{j}-\right)-i \frac{f\left(y_{j}-\right)-f\left(y_{j-1}+\right)}{y_{j}-y_{j-1}}, i f^{\prime}\left(y_{j}+\right)-i \frac{f\left(y_{j+1}-\right)-f\left(y_{j}+\right)}{y_{j+1}-y_{j}}\right), j \in \mathbb{J}\right\} \in \Theta\right\}
\end{gathered}
$$

establishes a one-to-one correspondence between all nonnegative selfadjoint extensions of the operator H_{0} and all nonnegative selfadjoint linear relations Θ in \mathcal{H}.

Other boundary triplets for H_{0}^{*} have been constructed in [12] and in [13].

REFERENCES

1. Albeverio S., Gesztesy F., Hegh-Krohn R., Holden H., Solvable models in quantum mechanics. - Texts and Monographs in Physics. Springer-Verlag, New York.
2. Arlinskiĭ Yu.M. Positive spaces of boundary values and sectorial extensions of a nonnegative symmetric operator// Ukrain. Math. Journ. - 1988. - V.40, №1. - P. 8-14. (in Russian)
3. Arlinskiĭ Yu., Hassi S., Sebestyen Z., de Snoo H. On the class of extremal extensions of a nonnegative operators// Operator Theory: Advan. and Appl. - 2001. - V.127. - P. 41-81.
4. Arlinskiĭ Yu.M., Tsekanovskiĭ E.R. The von Neumann problem for nonnegative symmetric operators// Integral equation and operator theory. - 2005. - P. 315-356.
5. Arlinskiĭ Yu.M., Kovalev Yu.G. Operators in divergence form and their Friedrichs and Kreĭn extensions// Opuscula mathematica. - 2011. - V.31, №4. - P. 501-517.
6. Berezansky Yu.M., Expansions in eigenfunction of selfadjoint operators. - "Naukova Dumka", Kiev, 1965 (in Russian). English translation in Translations of Mathematical Monographs. Amer. Math. Soc. Providence, 1968, V.17.
7. Bruk V.M. On one class of boundary value problems with a spectral parameter in the boundary condition// Mat. Sbornik. - 1976. - V.100, №2. - P. 210-216. (in Russian)
8. Gohberg I.C., Kreĭn M.G., Introduction to the theory of linear nonselfadjoint operators. - M: Nauka, 1965 (in Russian). English translation in Translations of Mathematical Monographs, V.18, Amer. Math. Soc., Providence, R.I., 1969.
9. Gorbachuk M.L., Gorbachuk V.I., Boundary value problems for differential-operator equations. - K.: Naukova Dumka, 1984. (in Russian)
10. Kato T., Perturbation theory for linear operators. - Springer-Verlag, 1966.
11. Kochube A.N. On extensions of symmetric operators and symmetric binary relations// Math. Zametki. - 1975. - V.17, №1. - P. 41-48. (in Russian)
12. Kochubĕ̆ A.N. One dimensional point interactions// Ukr. Math. J. - 1989. - V.41, №10. - P. 90-95.
13. Kostenko A.S., Malamud M.M. 1-D Schrödinger operators with local point interactions on a discrete set// J. Differ. Equations. - 2010. - V.249, №2. - P. 253-304.
14. Kreĭn M.G. The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications, I// Mat. Sbornik. - 1947. - V.20, №3. - P. 431-495. (in Russian)
15. Lyantse V.E., Storozh O.G., Methods of the theory of unbounded operators. - K.: Naukova Dumka, 1983. (in Russian)
16. Malamud M.M. On some classes of Hermitian operators with gaps// Ukrainian Mat. J. - 1992. - V.44, №2. - P. 215-234. (in Russian)
17. Pipa H.M., Storozh O.G. Accretive perturbations of proper extensions for positively definite operator// Mat. Stud. - 2006. - V.25, №2. - P. 181-190. (in Ukrainian)

Department of Mathematical Analysis
East Ukrainian National University yury_kovalev@ukr.net
yury.kovalev.lugansk@gmail.com

