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In the paper the role of an initial object is played by a couple (L, Lg) of closed linear
relations in a Hilbert space H, such that Ly C L. Each closed linear relation L;(M;) such that
Lo C Ly C L (respectively L* C M; C L§) is said to be a proper extension of Ly(L*). In the
terms of abstract boundary operators i.e. bounded linear operator U(V) acting from L(M) to
G (G is an auxiliary Hilbert space) such that the null space of U (V') contains Lo (L*), criteria of
mutual adjointness for mentioned above relations Li and M; are established.

10. . Onusp, O. I. Cropoxk. Kpumepuu 63aumHoti CONPAHCEHOCTAU COOCTNGEHHDIT PACULUPE-
nutl aunetinoxr omuowenud // Mar. Cryaii. — 2013. — T.40, Nel. — C.71-78.

B paBore posb ucxomHoro oobekTa urpaer napa (L, L) 3aMKHYTBIX JMHEHHBIX OTHOIIE-
Huit B ruiasbepToBoM mpocTpancTBe H, mpudem Lo C L. 3aMKHyTOe JMHeiHOe OTHOIIEHHUE
Li(M;) rakoe, uro Ly C Ly C L (coorsercrsenno L* C M; C L§) HasbiBaercst coGCTBEH-
HBbIM pacimuperusiM orHommenus Lo(L*). B repMunax aGcTpaKTHBIX KPAEBBIX OLEPATOPOB, T.€.
JIMHEJHBIX OIPaHUYEHHBIX oreparopos Aeiicrsytonmux uz L(M) B G (G — BcromoraresbHoe
ruiib6EePTOBO IIPOCTPAHCTBO), MHOr000pa3us Hyseil KoTopbix cojgepxkar Lo(L*), ycraHoBieHb!
KPUTEpUH B3aUMHOI COIPSIZKEHHOCTHU yIIOMSHYTBIX BbIllle OTHOmeHui L, u M.

1. Introduction and basic notations. The theory of linear relations in a Hilbert space was
initiated by R. Arens ([1]) and has been developed by many mathematicians (see, for example
[2-8] and the references therein). The present paper (as the majority of the mentioned above
ones) is devoted to an application of the concept of a linear relation in the extension theory.
The contents of the paper are as follows. Section 2 is devoted to the definition of a boundary
pair. We also prove an abstract Lagrange formula in terms of boundary pairs there. Since
Section 4 deals with proper extensions, we describe general form of a proper extensions in
Section 3. In view of the results from Section 3, naturally arises the problem to establish
a criterion of mutual adjointness of two proper extensions of linear relations. We consider
this problem in Section 4.

In this paper we use the following notations:
(] -)x is the inner product in a Hilbert space X;
D(T), R(T), ker T are, respectively, the domain, range, and kernel of a (linear) operator T’
B(X,Y) is the set of linear bounded operators A: X — Y such that D(A) = X
A | E is the restriction of A to E;
1x is the identity of X;
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AE = {Azx: z € E};
@ and © are the symbols of the orthogonal sum and orthogonal complement, respectively;
if A;: X — Y, i € {1,...,n}, are linear operators then the notation A = A; @ ... @ A,
means that Az = (Ax, ..., A,z) for every z € X;
E is the closure of E; X?=X & X;
T* is the operator (relation) adjoint to an operator (relation) 7.

Let us recall that a linear manifold 7' C X ¢ X, where X is a Hilbert space, is called
a linear relation on X. The adjoint T is defined as follows

I"={:=(2,) e X V)= (y.y) €T (|2)x=(y|)x}

It is clear that T* = (JT)*, where J(y,v/) = (—iy/, iy).

The role of the initial object is played by a couple (L, Lg) of closed linear relations such
that Ly C L C H? where H is a fixed complex Hilbert space equipped with the inner product
1)

Put My = L*, M = Lj, HL = LO Ly, Hy; = M &M, and denote by PL, Py the orthogonal
projections L — Hy, M — H,y, respectively. Each closed linear relation Li(My) such that
Ly C Ly C L (respectively My C My C M) is said to be a proper extension of Lo(My). It is
easy to see that

Hy = JH,, (1)

. (0 —ily
J‘(uH 0 ) (2)

(see [9] for example). For the case of linear operators it was trivial because J is a unitary
operator ([10]).

where

2. Boundary pair. Abstract Lagrange formula.

Definition 1. Let G be an (auxiliary) Hilbert space and U € B(L,G). The pair (G,U) is
called a boundary pair for (L, Ly) if R(U) = G, kerU = Ly. In this case G and U are said
to be a boundary space and a total boundary operator, respectively.

Proposition 1. A boundary pair for (L, Ly) exists and is unique provided the following
implication holds: if (G,U),(G,U) are two boundary pairs for (L, Lo) then there exists
a unique bijection Ej, € B(G,G) such that U = ELU.

Proof. Observe that (Hy, Py) is a boundary pair for (L, Ly). The uniqueness follows from
the so called “Lemma on triple” [11] (see Remark 1). O

Remark 1. By the Lemma on triple we mean the following consequence of the Banach
inverse operator theorem.

Let X, X;, X5 be Banach spaces, A € B(X,X;), B € B(X,X3), R(A) = Xj,
ker A C ker B. Then there exists a unique C' € B(Xj, X») such that B = CA.

Remark 2. Suppose that G, and Gy are boundary spaces for L and M, respectively. Then
dim Gy = dim H;, = dim Hy; = dim G},. This follows from (1)-(2) and Proposition 1.
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Theorem 1. Let (G, U) and (G, V') be boundary pairs for (L, Ly) and (M, My), respecti-
vely. Then there exists a unique mapping E: G, — G satisfying the following requirements:

IS B(GL,GM), E_l S B(GM,GL) (3)

and
Vi =(y,y) e L,Vz2=(z,2/) e M

(W' 12) = (y|2) = (1J§| 2)u= = (BUG | VE)a, = (U | EVE)g,. (4)

Conversely, if (G, U) is a boundary pair for (L, Ly), G is a boundary space for (M, M)
(i.e. dim Gy, = dim H);) and an operator E satisfies conditions (3) then there exists a unique
V € B(M,G)y) such that (Gy, V') is a boundary pair for (M, My) and (4) holds.

Proof. In the case (Gp,U) = (Hy, PL), (G, V) = (Hyy, Py) condition (4) is fulfilled with

In fact, if y € Lo or z € My, then (iJj | z)y= = 0 = ((iJ | Hy)Prj | Pu?)p,, (let us
recall that JLy = M*, JL = Mg). Now assume that §j € Hy,2 € Hy. In view of (1) we
obtain A o A o A

In the general case, taking into account Proposition 2, we see that there exist uni-
que bijections E; € B(GL,H'L), Ey € B(GM,ﬁM) satisfying the equalities P;, = ELU,
Py = EyV. Thus (4) holds with E = E%,(iJ | H)Ey.

To obtain the converse statement, we reverse the previous steps. Indeed, suppose that
operators E, U (and therefore B, = P(U | Hy)™!) are given and E) is (the unique) solution
of the latter equation. It is clear that the operator V = EJT/[IPA’M (and only it) possesses all
the required properties. O

Formula (4) is called an abstract Lagrange formula.

Theorem 2. Let (G, U) and (G, V') be boundary pairs for (L, Ly) and (M, My), respecti-
vely, and let operator E satisfy the conditions (3). The following statements are equivalent:

i) for each y = (y,y') € L and z = (z,2') € M equality (4) holds;

ii) U(—iJ | Hy)V* = E°1;

iii) V*EU | Hy = iJ | Hy;

iv) V(iJ L H)U* = (B

v) UE*V | Hy = —iJ | Hy,.
Proof. a) Preliminary remarks. Since U,V are normally solvable operators, U* and V* are
normally solvable ones too (see [12]). Furthermore, R(U) = G, kerU = L. This yields
kerU* = {0}, R(U*) = Hj. Similar arguments show that ker V* = {0}, R(V*) = Hyy,.

Taking into account the Banach inverse operator theorem, we conclude that
(U*)_l S B(ﬁ[nGL)a (V*)_l € B(ﬁM,GM)

_b) ii) & iv). It follows from (1) that J | H, € B(Hy, Hy) is a bijection. Let us find
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For each u € fIL,ﬁ € ]:[M we have
((J L HL) | 0)pe = (Jiu | D)2 = (0] JO) g2 = (i | (J L HL)D)pro,

that is, (ji fIL) (J¢ HM)

In addition, for each, & € Hy, the equality (.J | HM)(J { HL)ﬁ = J? @ = 4 holds. In other
words, J | Hy, J | Hy are unitary operators and (J + HM) =J| Hp.

The equivalence i7) < iv) is proved.
¢)iii) < v). The proof of this equivalence is similar to the proof of the previous one.
d)i) < iii) Equality (4) holds for each ¢ € L, 2 € M if it holds for § € Hy, 2 € Hy.
But in this case the mentioned equality has the following form

(GJ L Hy)a| o)y, = (VE(U L Hy)a| o)y, .

Therefore, i) < iit).

e) i) < iii). Since J | Hy and J | Hy, are mutually adjoint and mutually inverse (uni-
tary) operators and (U | H;)™' € B(G, Hy) (it follows from the equalities R(U | Hy) = G,
ker(U | Hy) = {0} and the Banach inverse operator theorem), we obtain (taking into
account the Preliminary remarks)

U(—iJ | Hy)V* =E' < (U H)(—iJ | H)V = E' &

o (VY N =i VH)NU L H) ' =E« V'EU | Hy =iJ | Hy. 0

Corollary 1. Let Gy, Go be Hilbert spaces, U; € B(L,G;),i1 € {1,2}, G = G1®Gy, U = U1 &
Us,. Assume that (G,U) is a boundary pair for (L, Ly). Then

a) There exist unique U, € B(M,G,), Uy € B(M,G) such that (G,U), where G = Gy ®
G1, U = Uy & U, is a boundary pair for (M, My) and
Vje LNseM (iJj| 2 = (iJUG | U2)g = (Uj | —iJUz)g =

= (Ulg ‘ 02’§>G1 - (UQQ ’ 012)02, (5>
where J € B(G, é) is defined as follows Yhy € G1,Yhy € Gy J(hy, hy) = (ihy, —ihy),

ie.
(0 ilg,
() o
b) Let (G,U) = (Gy ® G1,U, @ Uy) be a boundary pair for (M, M,). The following
statements are equivalent:
i) for each y € L,%2 € M equality (5) holds;
i) U(J | Hy)U* = J*;
iii) U*JU | H, = J | Hy;
iv) U(J L HL)U* =J;
v) USJ*U | Hy = J | Hy.
The proof of Corollary 1 can be obtained from Theorems 1 and 2 by substituting
G = G,Gy = G, E =1iJ in the corresponding formulas.
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Remark 3. Since R(U*) = Hyy, the expression J | Hyy in equality i1) can be replaced by J,
therefore this equality is equivalent to the following system

UL JU; =0, U JU; = ilg,, UsyJU; = —ilg,, UsJUZ = 0. (7)
3. The general form of the proper extension of L.

Proposition 2. Let Gi,U;,U; (i € {1,2}) be as in Corollary 1 and L, “/ kerU,. Then
L} = ker U;.

Proof. The inclusion Ly C L; implies L7 C M. Further, L} = {2 € H?*: VY € L; = kerU;
(iJ9 | 2)i2 = 0}, consequently, (5) yields ker Uy C L. Furthermore, it follows from the first
of equalities (7) that U; JU; = 0, therefore

Lt = JL{ = J(ker Uy)* = JR(U7) = JR(U;) = ker Uy = ker U;. 0

Theorem 3. Assume that Ly C Ly = L; C L and G is a boundary space for (L, Ly). Then

a) there exists an orthogonal decomposition G = G1 ® G5 and operators

U, EB(L,Gl), i EB(M,GQ) (8)
such that
Ly =ker Uy, L] =ker V7, 9)
and, as a result,
ker Ul D) Lo, keer D) Mo. (10)

b) without loss of generality we may assume that

Proof. Let (G,U) be a boundary pair for (L, Lg). Put

Gy Uy ge L} ={(U L HL)j: § € L © Lo}.

Since U | H; is a homeomorphism H;, — Gy C G, G4 is a closed linear subspace of G. Put
G1 = G 6 Gy, U; = PBU, where P; is the orthogonal projection G — Gy, (i € {1,2}), and
denote by Uy, U, the operators uniquely determined by Uy, Us from (5).

To complete the proof, it is sufficient to substitute Vi = U; and apply Proposition 2. [J

4. Criteria of mutual adjointness. Taking into account Theorem 3, we see that the
following problem arises in a natural way.
Let

i) G = G1 ® G2 be a boundary space for (L, Ly) and operators Uy, V; satisfy conditions
(8), (10);
if)
Ly = ker Uy, My = ker V; (12)

(cf.(9)). The problem is to establish a criterion of mutual adjointness of Ly, and M;.
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Before solving the problem let us introduce the following notation

Xi1=L,6Ly, Xo=LOLy; (13)
E:MlgMo, Y’QIM@Ml
It is clear that
Hp=X1® Xy, Hy =Y ®Ys, (14)
LO@XllezkerUl, MO@leMlzkeer. (15)
Taking into account (1) and (14), we see that
Hy=JHy =JY18Y,) = JY, @ JY,. (16)
Lemma 1.
M} =Lo® JY; = Ly ® JR(V}). (17)

Proof. Applying (1) to the pair (M, M) (instead of (L, Ly)), we obtain M} = Lo@®.J[MEM,).
Taking into account (12), (13), we have Yo = M © M; = M & ker V; = R(VY). O

Lemma 2. The following statements are equivalent:
i) Ly D M{;
i) Uy JVy = 0;
iii) ker Uy D Lo ® JR(V;);
iv) X1 D JYs.

In each of the cases
LM =kerU, & [Lo® JR(VY)] = X & JYs. (18)
Proof. Taking into account (14)—(17) and the inclusion ker U; D Ly, we obtain

U, JVi =0« kerU; D JR(V;) < ker Uy, D JR(V;) < ker Uy D Ly @ JR(VY) <
S OM & L6LyD M 6 Lye XD JY,.

Therefore, conditions i)-iv) are equivalent. Suppose that these conditions hold. From (15)
and (17) equalities (18) are derived.

Corollary 2. The following equivalences hold
Ly =M ©kerlUy = Ly® JR(V)) & X| = JYa. (19)
Proof. The corollary immediately follows from (18). O

Lemma 3. Asgume that equalities (11) hold and Ulel* = 0. Put U = U, ® V,JP;,. Then
R(U) = G,kerU = LO D [Xl © JY&]
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Proof. Let us show that R(V;JP, | R(V;¥)) = G,. For this purpose note that R(V; | R(V;))
= R(V1) = Gy, ie. (Vh € G2)(3f € Go): VIV f = h.

Put H, >y =.J Vi f. Taking into account the inclusion R(V}) C Hyy and applying (1),
we obtain Uy = UlJVlf =0, V1JPLJV1 f= VlJJVIf ViV f =h.

Thus R(Vlij l ker Uy) = G5. Then using Lemma 4.5.2 from [13] we see that

R(U) = R(U,) & R(VIJP,) =G, &Gy =G.

Furthermore, ker U D Ly and (see Lemma 2) X; D j)fz Moreover, X1 & ng =XiN le.
Therefore, to complete the proof, it is sufficient to verify the equality

kerUlﬁkervlijﬂ[:IL:Xlﬂle. (20)

In order to prove (20) assume first that y € X7 N JY1 Evidently, y € ker U; N H; and
there exists z € Y such that y = Jz. Thus we have %JPLy = VlJPLJz = Viz = 0, therefore
y € ker VlJPL

Conversely, if y € ker Uy N ker VlJPL N HL then y € kerU; N HL = Xl, therefore
0= V1JPLy = VlJy In other words, Jy € kerVi N HM =Y, sequently y = JJy € JY1 ]

Corollary 3. Assume that dim H, < oo and equalities (11) hold. Then Ly = M; if and
only if U3 JVi* = 0.

Proof. Let U be the operator from Lemma 3. This operator maps the finite-dimensional
space Hp, onto a finite-dimensional space G. Moreover dim H, = dim G (see Remark 2)
therefore X7 © JYs = kerU | H;, = {0}. Now the proof follows from Lemma 2. O

Remark 4. In a general case the condition U, J V" = 0 is necessary but not sufficient for
the mutual adjointness of L; and M;.

Theorem 4. Let (G, A), (G, II), where G = G1 @ Gy, G = Gy @ Gy, be boundary pairs for
(L, Ly) and (M, My), respectively, E € B(G,G), E~' € B(G,G) and

Vg€ L, YieM (iJj| 2 = (EAy | 112) g = (Ay | E*T12)q.
Assume that A, € B(G,G,), By € B(G,Gs) and put
Ly =ker AJA = {jj € L : AjAj =0}, (21)

M, =ker Byl = {¢ € M : BIIz = 0}. (22)
Then

i) Ly D M; if and only if
A E7'B = 0; (23)

ii) Ly = My if and only if ker Ay = R(E~'B7).
Proof. Put U; = A;A, Vi = B{Il. Theorem 4 implies
Ur(—iJ | Hy)Vy = A/N(—iJ | Hy)II*Bf = A,E~'B;,

in other words,

—iUJV} = A{E7'B;. (24)
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i) This item follows from (24) and Lemma 2.
i) Applying Theorem 2 and Corollary 2 and taking into account (24) we obtain
Ly = M} < ker(Ay(A | Hy)) = JR(II*B;) < ker Ay = (A | H,)JR(II*B})
& ker Ay = R((A,, ) JTI* B}) < ker Ay = R(AJII*B;) <

& ker Ay = R(E-'B}) = E"'R(BY}).

(recall that A | H,,II | Hy and E are homeomorphisms) O

Corollary 4. Let, in addition to the conditions of Theorem 4, dim H; < oo and equali-
ties (11) hold.

Then relations (21) and (22) are mutually adjoint if and only if AjE~'B} = 0.

Proof. Use Corollary 3 and (24). O
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