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In the paper the role of an initial object is played by a couple (L,L0) of closed linear
relations in a Hilbert space H, such that L0 ⊂ L. Each closed linear relation L1(M1) such that
L0 ⊂ L1 ⊂ L (respectively L∗ ⊂ M1 ⊂ L∗

0) is said to be a proper extension of L0(L
∗). In the

terms of abstract boundary operators i.e. bounded linear operator U(V ) acting from L(M) to
G (G is an auxiliary Hilbert space) such that the null space of U(V ) contains L0(L

∗), criteria of
mutual adjointness for mentioned above relations L1 and M1 are established.

Ю. И. Олияр, О. Г. Сторож. Критерии взаимной сопряжености собственных расшире-
ний линейных отношений // Мат. Студiї. – 2013. – Т.40, №1. – C.71–78.

В работе роль исходного объекта играет пара (L,L0) замкнутых линейных отноше-
ний в гильбертовом пространстве H, причем L0 ⊂ L. Замкнутое линейное отношение
L1(M1) такое, что L0 ⊂ L1 ⊂ L (соответственно L∗ ⊂ M1 ⊂ L∗

0) называется собствен-
ным расширениям отношения L0(L

∗). В терминах абстрактных краевых операторов, т.е.
линейных ограниченных операторов действующих из L(M) в G (G — вспомогательное
гильбертово пространство), многообразия нулей которых содержат L0(L

∗), установлены
критерии взаимной сопряженности упомянутых выше отношений L1 и M1.

1. Introduction and basic notations. The theory of linear relations in a Hilbert space was
initiated by R. Arens ([1]) and has been developed by many mathematicians (see, for example
[2–8] and the references therein). The present paper (as the majority of the mentioned above
ones) is devoted to an application of the concept of a linear relation in the extension theory.
The contents of the paper are as follows. Section 2 is devoted to the definition of a boundary
pair. We also prove an abstract Lagrange formula in terms of boundary pairs there. Since
Section 4 deals with proper extensions, we describe general form of a proper extensions in
Section 3. In view of the results from Section 3, naturally arises the problem to establish
a criterion of mutual adjointness of two proper extensions of linear relations. We consider
this problem in Section 4.

In this paper we use the following notations:
(· | ·)X is the inner product in a Hilbert space X;
D(T ), R(T ), kerT are, respectively, the domain, range, and kernel of a (linear) operator T ;
B(X, Y ) is the set of linear bounded operators A : X → Y such that D(A) = X;
A ↓ E is the restriction of A to E;
1X is the identity of X;
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AE = {Ax : x ∈ E};
⊕ and 	 are the symbols of the orthogonal sum and orthogonal complement, respectively;
if Ai : X → Yi, i ∈ {1, . . . , n}, are linear operators then the notation A = A1 ⊕ ... ⊕ An

means that Ax = (A1x, ..., Anx) for every x ∈ X;
Ē is the closure of E; X2 = X ⊕X;

T ∗ is the operator (relation) adjoint to an operator (relation) T .
Let us recall that a linear manifold T ⊂ X ⊕ X, where X is a Hilbert space, is called

a linear relation on X. The adjoint T ∗ is defined as follows

T ∗ = {ẑ = (z, z′) ∈ X2 : ∀ŷ = (y, y′) ∈ T (y′ | z)X = (y | z′)X}.

It is clear that T ∗ = (ĴT )⊥, where Ĵ(y, y′) = (−iy′, iy).

The role of the initial object is played by a couple (L,L0) of closed linear relations such
that L0 ⊂ L ⊂ H2 where H is a fixed complex Hilbert space equipped with the inner product
(· | ·).

PutM0 = L∗,M = L∗0, ĤL = L	L0, ĤM = M	M0 and denote by P̂L, P̂M the orthogonal
projections L → ĤL, M → ĤM , respectively. Each closed linear relation L1(M1) such that
L0 ⊂ L1 ⊂ L (respectively M0 ⊂ M1 ⊂ M) is said to be a proper extension of L0(M0). It is
easy to see that

ĤM = ĴĤL, (1)

where

Ĵ =

(
0 −i1H

i1H 0

)
, (2)

(see [9] for example). For the case of linear operators it was trivial because Ĵ is a unitary
operator ([10]).

2. Boundary pair. Abstract Lagrange formula.

Definition 1. Let G be an (auxiliary) Hilbert space and U ∈ B(L,G). The pair (G,U) is
called a boundary pair for (L,L0) if R(U) = G, kerU = L0. In this case G and U are said
to be a boundary space and a total boundary operator, respectively.

Proposition 1. A boundary pair for (L,L0) exists and is unique provided the following
implication holds: if (G,U), (Ĝ, Û) are two boundary pairs for (L,L0) then there exists
a unique bijection EL ∈ B(G, Ĝ) such that Û = ELU.

Proof. Observe that (ĤL, P̂L) is a boundary pair for (L,L0). The uniqueness follows from
the so called “Lemma on triple” [11] (see Remark 1).

Remark 1. By the Lemma on triple we mean the following consequence of the Banach
inverse operator theorem.

Let X,X1, X2 be Banach spaces, A ∈ B(X,X1), B ∈ B(X,X2), R(A) = X1,
kerA ⊂ kerB. Then there exists a unique C ∈ B(X1, X2) such that B = CA.

Remark 2. Suppose that GL and GM are boundary spaces for L and M , respectively. Then
dimGL = dim ĤL = dim ĤM = dimGM . This follows from (1)–(2) and Proposition 1.
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Theorem 1. Let (GL, U) and (GM , V ) be boundary pairs for (L,L0) and (M,M0), respecti-
vely. Then there exists a unique mapping E : GL → GM satisfying the following requirements:

E ∈ B(GL, GM), E−1 ∈ B(GM , GL) (3)

and
∀ŷ = (y, y′) ∈ L,∀ẑ = (z, z′) ∈M

(y′ | z)− (y | z′) = (iĴ ŷ | ẑ)H2 = (EUŷ | V ẑ)GM
= (Uŷ | E∗V ẑ)GL

. (4)

Conversely, if (GL, U) is a boundary pair for (L,L0), GM is a boundary space for (M,M0)
(i.e. dimGM = dim ĤM) and an operator E satisfies conditions (3) then there exists a unique
V ∈ B(M,GM) such that (GM , V ) is a boundary pair for (M,M0) and (4) holds.

Proof. In the case (GL, U) = (ĤL, P̂L), (GM , V ) = (ĤM , P̂M) condition (4) is fulfilled with
E = iĴ ↓ ĤL.

In fact, if y ∈ L0 or z ∈ M0, then (iĴ ŷ | z)H2 = 0 = ((iĴ ↓ ĤL)P̂Lŷ | P̂M ẑ)ĤM
(let us

recall that ĴL0 = M⊥, ĴL = M⊥
0 ). Now assume that ŷ ∈ ĤL, ẑ ∈ ĤM . In view of (1) we

obtain
(iĴ ŷ | ẑ)H2 = (iĴP̂Lŷ | P̂M ẑ)H2 = ((iĴ ↓ ĤL)P̂Lŷ | P̂M ẑ)ĤM

.

In the general case, taking into account Proposition 2, we see that there exist uni-
que bijections EL ∈ B(GL, ĤL), EM ∈ B(GM , ĤM) satisfying the equalities P̂L = ELU,
P̂M = EMV. Thus (4) holds with E = E∗M(iĴ ↓ ĤL)EL.

To obtain the converse statement, we reverse the previous steps. Indeed, suppose that
operators E,U (and therefore EL = P̂ (U ↓ ĤL)−1) are given and EM is (the unique) solution
of the latter equation. It is clear that the operator V = E−1M P̂M (and only it) possesses all
the required properties.

Formula (4) is called an abstract Lagrange formula.

Theorem 2. Let (GL, U) and (GM , V ) be boundary pairs for (L,L0) and (M,M0), respecti-
vely, and let operator E satisfy the conditions (3). The following statements are equivalent:

i) for each ŷ = (y, y′) ∈ L and ẑ = (z, z′) ∈M equality (4) holds;

ii) U(−iĴ ↓ ĤM)V ∗ = E−1;

iii) V ∗EU ↓ ĤL = iĴ ↓ ĤL;

iv) V (iĴ ↓ ĤL)U∗ = (E−1)∗;

v) U∗E∗V ↓ ĤM = −iĴ ↓ ĤM .

Proof. a) Preliminary remarks. Since U, V are normally solvable operators, U∗ and V ∗ are
normally solvable ones too (see [12]). Furthermore, R(U) = GL, kerU = L0. This yields
kerU∗ = {0}, R(U∗) = ĤL. Similar arguments show that kerV ∗ = {0}, R(V ∗) = ĤM .
Taking into account the Banach inverse operator theorem, we conclude that

(U∗)−1 ∈ B(ĤL, GL), (V ∗)−1 ∈ B(ĤM , GM).

b) ii) ⇔ iv). It follows from (1) that Ĵ ↓ ĤL ∈ B(ĤL, ĤM) is a bijection. Let us find
(Ĵ ↓ ĤL)∗ ∈ B(ĤMĤL).
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For each û ∈ ĤL, v̂ ∈ ĤM we have

((Ĵ ↓ ĤL)û | v̂)H2 = (Ĵ û | v̂)H2 = (û | Ĵ v̂)H2 = (û | (Ĵ ↓ ĤL)v̂)H2 ,

that is, (Ĵ ↓ ĤL)∗ = (Ĵ ↓ ĤM).
In addition, for each, û ∈ ĤL the equality (Ĵ ↓ ĤM)(Ĵ ↓ ĤL)û = Ĵ2û = û holds. In other

words, Ĵ ↓ ĤL, Ĵ ↓ ĤM are unitary operators and (Ĵ ↓ ĤM)−1 = Ĵ ↓ ĤL.
The equivalence ii)⇔ iv) is proved.
c)iii)⇔ v). The proof of this equivalence is similar to the proof of the previous one.
d)i) ⇔ iii) Equality (4) holds for each ŷ ∈ L, ẑ ∈ M if it holds for ŷ ∈ ĤL, ẑ ∈ ĤM .

But in this case the mentioned equality has the following form

((iĴ ↓ ĤL)û | v̂)ĤM
= (V ∗E(U ↓ ĤL)û | v̂)ĤM

.

Therefore, i)⇔ iii).
e) ii)⇔ iii). Since Ĵ ↓ ĤM and Ĵ ↓ ĤL are mutually adjoint and mutually inverse (uni-

tary) operators and (U ↓ ĤL)−1 ∈ B(G, ĤL) (it follows from the equalities R(U ↓ ĤL) = G,
ker(U ↓ ĤL) = {0} and the Banach inverse operator theorem), we obtain (taking into
account the Preliminary remarks)

U(−iĴ ↓ ĤM)V ∗ = E−1 ⇔ (U ↓ ĤL)(−iĴ ↓ ĤM)V ∗ = E−1 ⇔

⇔ (V ∗)−1(−iĴ ↓ ĤL)(Û ↓ ĤL)−1 = E ⇔ V ∗EU ↓ ĤL = iĴ ↓ ĤL.

Corollary 1. Let G1, G2 be Hilbert spaces, Ui ∈ B(L,Gi), i ∈ {1, 2}, G = G1⊕G2, U = U1⊕
U2. Assume that (G,U) is a boundary pair for (L,L0). Then

a) There exist unique Ũ1 ∈ B(M,G2), Ũ2 ∈ B(M,G1) such that (G̃, Ũ), where G̃ = G2 ⊕
G1, Ũ = Ũ1 ⊕ Ũ2, is a boundary pair for (M,M0) and

∀ŷ ∈ L,∀ẑ ∈M (iĴ ŷ | ẑ)H2 = (iJUŷ | Ũ ẑ)G̃ = (Uŷ | −iJ∗Ũ ẑ)G =

= (U1ŷ | Ũ2ẑ)G1 − (U2ŷ | Ũ1ẑ)G2 , (5)

where J ∈ B(G, G̃) is defined as follows ∀h1 ∈ G1,∀h2 ∈ G2 J(h1, h2) = (ih2,−ih1),
i.e.

J =

(
0 i1G2

−iG1 0

)
. (6)

b) Let (G̃, Ũ) = (G2 ⊕ G1, Ũ1 ⊕ Ũ2) be a boundary pair for (M,M0). The following
statements are equivalent:

i) for each ŷ ∈ L, ẑ ∈M equality (5) holds;
ii) U(Ĵ ↓ ĤM)Ũ∗ = J∗;

iii) Ũ∗JU ↓ ĤL = Ĵ ↓ ĤL;

iv) Ũ(Ĵ ↓ ĤL)U∗ = J ;

v) U∗J∗Ũ ↓ ĤM = Ĵ ↓ ĤM .

The proof of Corollary 1 can be obtained from Theorems 1 and 2 by substituting
GL = G,GM = G̃, E = iJ in the corresponding formulas.
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Remark 3. Since R(Ũ∗) = ĤM , the expression Ĵ ↓ ĤM in equality ii) can be replaced by Ĵ ,
therefore this equality is equivalent to the following system

U1Ĵ Ũ
∗
1 = 0, U1Ĵ Ũ

∗
2 = i1G1 , U2Ĵ Ũ

∗
1 = −i1G2 , U2Ĵ Ũ

∗
2 = 0. (7)

3. The general form of the proper extension of L0.

Proposition 2. Let Gi, Ui, Ũi (i ∈ {1, 2}) be as in Corollary 1 and L1
def
= kerU1. Then

L∗1 = ker Ũ1.

Proof. The inclusion L0 ⊂ L1 implies L∗1 ⊂ M. Further, L∗1 = {ẑ ∈ H2 : ∀ŷ ∈ L1 = kerU1

(iĴ ŷ | ẑ)H2 = 0}, consequently, (5) yields ker Ũ1 ⊂ L∗1. Furthermore, it follows from the first
of equalities (7) that Ũ1ĴU

∗
1 = 0, therefore

L∗1 = ĴL⊥1 = Ĵ(kerU1)
⊥ = ĴR(U∗1 ) = ĴR(U∗1 ) = ker Ũ1 = ker Ũ1.

Theorem 3. Assume that L0 ⊂ L1 = L̄1 ⊂ L and G is a boundary space for (L,L0). Then

a) there exists an orthogonal decomposition G = G1 ⊕G2 and operators

U1 ∈ B(L,G1), V1 ∈ B(M,G2) (8)

such that
L1 = kerU1, L∗1 = kerV1, (9)

and, as a result,
kerU1 ⊃ L0, kerV1 ⊃M0. (10)

b) without loss of generality we may assume that

R(U1) = G1, R(V1) = G2. (11)

Proof. Let (G,U) be a boundary pair for (L,L0). Put

G2
def
= {Uŷ : ŷ ∈ L1} = {(U ↓ ĤL)ŷ : ŷ ∈ L1 	 L0}.

Since U ↓ ĤL is a homeomorphism ĤL → G2 ⊂ G, G2 is a closed linear subspace of G. Put
G1 = G 	 G2, Ui = PiU, where Pi is the orthogonal projection G → Gi, (i ∈ {1, 2}), and
denote by Ũ1, Ũ2 the operators uniquely determined by U1, U2 from (5).

To complete the proof, it is sufficient to substitute V1 = Ũ1 and apply Proposition 2.

4. Criteria of mutual adjointness. Taking into account Theorem 3, we see that the
following problem arises in a natural way.

Let

i) G = G1 ⊕ G2 be a boundary space for (L,L0) and operators U1, V1 satisfy conditions
(8), (10);

ii)
L1 = kerU1,M1 = kerV1 (12)

(cf.(9)). The problem is to establish a criterion of mutual adjointness of L1, and M1.
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Before solving the problem let us introduce the following notation{
X1 = L1 	 L0, X2 = L	 L1;

Y1 = M1 	M0, Y2 = M 	M1.
(13)

It is clear that
ĤL = X1 ⊕X2, ĤM = Y1 ⊕ Y2, (14)

L0 ⊕X1 = L1 = kerU1, M0 ⊕ Y1 = M1 = kerV1. (15)

Taking into account (1) and (14), we see that

ĤL = ĴĤM = Ĵ [Y1 ⊕ Y2] = ĴY1 ⊕ ĴY2. (16)

Lemma 1.
M∗

1 = L0 ⊕ ĴY2 = L0 ⊕ ĴR(V ∗1 ). (17)

Proof. Applying (1) to the pair (M,M1) (instead of (L,L0)), we obtainM∗
1 = L0⊕Ĵ [M	M1].

Taking into account (12), (13), we have Y2 = M 	M1 = M 	 kerV1 = R(V ∗1 ).

Lemma 2. The following statements are equivalent:

i) L1 ⊃M∗
1 ;

ii) U1ĴV
∗
1 = 0;

iii) kerU1 ⊃ L0 ⊕ ĴR(V ∗1 );

iv) X1 ⊃ ĴY2.

In each of the cases

L1 	M∗
1 = kerU1 	 [L0 ⊕ ĴR(V ∗1 )] = X 	 ĴY2. (18)

Proof. Taking into account (14)–(17) and the inclusion kerU1 ⊃ L0, we obtain

U1ĴV
∗
1 = 0⇔ kerU1 ⊃ ĴR(V ∗1 )⇔ kerU1 ⊃ ĴR(V ∗1 )⇔ kerU1 ⊃ L0 ⊕ ĴR(V ∗1 )⇔

⇔ L1 ⊃M∗
1 ⇔ L1 	 L0 ⊃M∗

1 	 L0 ⇔ X1 ⊃ ĴY2.

Therefore, conditions i)-iv) are equivalent. Suppose that these conditions hold. From (15)
and (17) equalities (18) are derived.

Corollary 2. The following equivalences hold

L1 = M∗
1 ⇔ kerU1 = L0 ⊕ ĴR(V ∗1 )⇔ X1 = ĴY2. (19)

Proof. The corollary immediately follows from (18).

Lemma 3. Assume that equalities (11) hold and U1ĴV
∗
1 = 0. Put Û = U1 ⊕ V1Ĵ P̂L. Then

R(Û) = G, ker Û = L0 ⊕ [X1 	 ĴY2].
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Proof. Let us show that R(V1Ĵ P̂L ↓ R(V ∗1 )) = G2. For this purpose note that R(V1 ↓ R(V ∗1 ))
= R(V1) = G2, i.e. (∀h ∈ G2)(∃f ∈ G2) : V1V

∗
1 f = h.

Put ĤL 3 y = ĴV ∗1 f . Taking into account the inclusion R(V ∗1 ) ⊂ ĤM and applying (1),
we obtain U1y = U1ĴV

∗
1 f = 0, V1Ĵ P̂LĴV

∗
1 f = V1Ĵ ĴV

∗
1 f = V1V

∗
1 f = h.

Thus R(V1Ĵ P̂L ↓ kerU1) = G2. Then using Lemma 4.5.2 from [13] we see that

R(Û) = R(U1)⊕R(V1Ĵ P̂L) = G1 ⊕G2 = G.

Furthermore, kerU ⊃ L0 and (see Lemma 2) X1 ⊃ ĴY2. Moreover, X1	 ĴY2 = X1∩ ĴY1.
Therefore, to complete the proof, it is sufficient to verify the equality

kerU1 ∩ kerV1Ĵ P̂L ∩ ĤL = X1 ∩ ĴY1. (20)

In order to prove (20) assume first that y ∈ X1 ∩ ĴY1. Evidently, y ∈ kerU1 ∩ ĤL and
there exists z ∈ Y1 such that y = Ĵz. Thus we have V1Ĵ P̂Ly = V1Ĵ P̂LĴz = V1z = 0, therefore
y ∈ kerV1Ĵ P̂L.

Conversely, if y ∈ kerU1 ∩ kerV1Ĵ P̂L ∩ ĤL then y ∈ kerU1 ∩ ĤL = X1, therefore
0 = V1Ĵ P̂Ly = V1Ĵy. In other words, Ĵy ∈ kerV1 ∩ ĤM = Y1, sequently y = Ĵ Ĵy ∈ ĴY1.

Corollary 3. Assume that dim ĤL < ∞ and equalities (11) hold. Then L1 = M∗
1 if and

only if U1ĴV
∗
1 = 0.

Proof. Let Û be the operator from Lemma 3. This operator maps the finite-dimensional
space ĤL onto a finite-dimensional space G. Moreover dim ĤL = dimG (see Remark 2)
therefore X1 	 ĴY2 = ker Û ↓ ĤL = {0}. Now the proof follows from Lemma 2.

Remark 4. In a general case the condition U1ĴV
∗
1 = 0 is necessary but not sufficient for

the mutual adjointness of L1 and M1.

Theorem 4. Let (G,Λ), (G̃,Π), where G = G1 ⊕ G2, G̃ = G2 ⊕ G1, be boundary pairs for
(L,L0) and (M,M0), respectively, E ∈ B(G, G̃), E−1 ∈ B(G̃, G) and

∀ŷ ∈ L, ∀ẑ ∈M (iĴ ŷ | ẑ)H2 = (EΛŷ | Πẑ)G̃ = (Λŷ | E∗Πẑ)G.

Assume that A1 ∈ B(G,G1), B1 ∈ B(G̃, G2) and put

L1 = kerA1Λ = {ŷ ∈ L̂ : A1Λŷ = 0}, (21)

M1 = kerB1Π = {ẑ ∈ M̂ : B1Πẑ = 0}. (22)

Then

i) L1 ⊃M∗
1 if and only if

A1E
−1B∗1 = 0; (23)

ii) L1 = M∗
1 if and only if kerA1 = R(E−1B∗1).

Proof. Put U1 = A1Λ, V1 = B1Π. Theorem 4 implies

U1(−iĴ ↓ ĤM)V ∗1 = A1Λ(−iĴ ↓ ĤM)Π∗B∗1 = A1E
−1B∗1 ,

in other words,
−iU1ĴV

∗
1 = A1E

−1B∗1 . (24)
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i) This item follows from (24) and Lemma 2.

ii) Applying Theorem 2 and Corollary 2 and taking into account (24) we obtain

L1 = M∗
1 ⇔ ker(A1(Λ ↓ ĤL)) = ĴR(Π∗B∗1)⇔ kerA1 = (Λ ↓ ĤL)ĴR(Π∗B∗1)⇔

⇔ kerA1 = R((Λ↓ĤL
)ĴΠ∗B∗1)⇔ kerA1 = R(ΛĴΠ∗B∗1)⇔

⇔ kerA1 = R(E−1B∗1) = E−1R(B∗1).

(recall that Λ ↓ ĤL,Π ↓ ĤM and E are homeomorphisms)

Corollary 4. Let, in addition to the conditions of Theorem 4, dim ĤL < ∞ and equali-
ties (11) hold.

Then relations (21) and (22) are mutually adjoint if and only if A1E
−1B∗1 = 0.

Proof. Use Corollary 3 and (24).
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