Yu. I. Oliyar, O. G. Storozh

CRITERIA OF MUTUAL ADJOINTNESS OF PROPER EXTENSIONS OF LINEAR RELATIONS

Yu. I. Oliyar, O. G. Storozh. Criteria of mutual adjointness of proper extensions of linear relations, Mat. Stud. 40 (2013), 71-78.

In the paper the role of an initial object is played by a couple (L, L_{0}) of closed linear relations in a Hilbert space H, such that $L_{0} \subset L$. Each closed linear relation $L_{1}\left(M_{1}\right)$ such that $L_{0} \subset L_{1} \subset L$ (respectively $L^{*} \subset M_{1} \subset L_{0}^{*}$) is said to be a proper extension of $L_{0}\left(L^{*}\right)$. In the terms of abstract boundary operators i.e. bounded linear operator $U(V)$ acting from $L(M)$ to $G\left(G\right.$ is an auxiliary Hilbert space) such that the null space of $U(V)$ contains $L_{0}\left(L^{*}\right)$, criteria of mutual adjointness for mentioned above relations L_{1} and M_{1} are established.
Ю. И. Олияр, О. Г. Сторож. Критерии взаимной сопряжености собственных расширений линейных отношений // Мат. Студії. - 2013. - Т.40, №1. - С.71-78.

В работе роль исходного объекта играет пара (L, L_{0}) замкнутых линейных отношений в гильбертовом пространстве H, причем $L_{0} \subset L$. Замкнутое линейное отношение $L_{1}\left(M_{1}\right)$ такое, что $L_{0} \subset L_{1} \subset L$ (соответственно $L^{*} \subset M_{1} \subset L_{0}^{*}$) называется собственным расширениям отношения $L_{0}\left(L^{*}\right)$. В терминах абстрактных краевых операторов, т.е. линейных ограниченных операторов действующих из $L(M)$ в $G(G-$ вспомогательное гильбертово пространство), многообразия нулей которых содержат $L_{0}\left(L^{*}\right)$, установлены критерии взаимной сопряженности упомянутых выше отношений L_{1} и M_{1}.

1. Introduction and basic notations. The theory of linear relations in a Hilbert space was initiated by R. Arens ([1]) and has been developed by many mathematicians (see, for example [2-8] and the references therein). The present paper (as the majority of the mentioned above ones) is devoted to an application of the concept of a linear relation in the extension theory. The contents of the paper are as follows. Section 2 is devoted to the definition of a boundary pair. We also prove an abstract Lagrange formula in terms of boundary pairs there. Since Section 4 deals with proper extensions, we describe general form of a proper extensions in Section 3. In view of the results from Section 3, naturally arises the problem to establish a criterion of mutual adjointness of two proper extensions of linear relations. We consider this problem in Section 4.

In this paper we use the following notations:
$(\cdot \mid \cdot)_{X}$ is the inner product in a Hilbert space X;
$D(T), R(T)$, ker T are, respectively, the domain, range, and kernel of a (linear) operator T; $B(X, Y)$ is the set of linear bounded operators $A: X \rightarrow Y$ such that $D(A)=X$;
$A \downarrow E$ is the restriction of A to E;
1_{X} is the identity of X;
2010 Mathematics Subject Classification: 47A06, 47B99.
Keywords: extension; adjoint; Hilbert space.
$A E=\{A x: x \in E\} ;$
\oplus and \ominus are the symbols of the orthogonal sum and orthogonal complement, respectively;
if $A_{i}: X \rightarrow Y_{i}, i \in\{1, \ldots, n\}$, are linear operators then the notation $A=A_{1} \oplus \ldots \oplus A_{n}$ means that $A x=\left(A_{1} x, \ldots, A_{n} x\right)$ for every $x \in X$;
\bar{E} is the closure of $E ; \quad X^{2}=X \oplus X$;
T^{*} is the operator (relation) adjoint to an operator (relation) T.
Let us recall that a linear manifold $T \subset X \oplus X$, where X is a Hilbert space, is called a linear relation on X. The adjoint T^{*} is defined as follows

$$
T^{*}=\left\{\hat{z}=\left(z, z^{\prime}\right) \in X^{2}: \forall \hat{y}=\left(y, y^{\prime}\right) \in T \quad\left(y^{\prime} \mid z\right)_{X}=\left(y \mid z^{\prime}\right)_{X}\right\}
$$

It is clear that $T^{*}=(\hat{J} T)^{\perp}$, where $\hat{J}\left(y, y^{\prime}\right)=\left(-i y^{\prime}, i y\right)$.
The role of the initial object is played by a couple (L, L_{0}) of closed linear relations such that $L_{0} \subset L \subset H^{2}$ where H is a fixed complex Hilbert space equipped with the inner product ($\cdot \mid \cdot$.

Put $M_{0}=L^{*}, M=L_{0}^{*}, \hat{H}_{L}=L \ominus L_{0}, \hat{H}_{M}=M \ominus M_{0}$ and denote by \hat{P}_{L}, \hat{P}_{M} the orthogonal projections $L \rightarrow \hat{H}_{L}, M \rightarrow \hat{H}_{M}$, respectively. Each closed linear relation $L_{1}\left(M_{1}\right)$ such that $L_{0} \subset L_{1} \subset L$ (respectively $\left.M_{0} \subset M_{1} \subset M\right)$ is said to be a proper extension of $L_{0}\left(M_{0}\right)$. It is easy to see that

$$
\begin{equation*}
\hat{H}_{M}=\hat{J} \hat{H}_{L}, \tag{1}
\end{equation*}
$$

where

$$
\hat{J}=\left(\begin{array}{cc}
0 & -i 1_{H} \tag{2}\\
i 1_{H} & 0
\end{array}\right)
$$

(see [9] for example). For the case of linear operators it was trivial because \hat{J} is a unitary operator ([10]).

2. Boundary pair. Abstract Lagrange formula.

Definition 1. Let G be an (auxiliary) Hilbert space and $U \in B(L, G)$. The pair (G, U) is called a boundary pair for $\left(L, L_{0}\right)$ if $R(U)=G$, $\operatorname{ker} U=L_{0}$. In this case G and U are said to be a boundary space and a total boundary operator, respectively.

Proposition 1. A boundary pair for (L, L_{0}) exists and is unique provided the following implication holds: if $(G, U),(\hat{G}, \hat{U})$ are two boundary pairs for $\left(L, L_{0}\right)$ then there exists a unique bijection $E_{L} \in B(G, \hat{G})$ such that $\hat{U}=E_{L} U$.

Proof. Observe that $\left(\hat{H}_{L}, \hat{P}_{L}\right)$ is a boundary pair for $\left(L, L_{0}\right)$. The uniqueness follows from the so called "Lemma on triple" [11] (see Remark 1).

Remark 1. By the Lemma on triple we mean the following consequence of the Banach inverse operator theorem.

Let X, X_{1}, X_{2} be Banach spaces, $A \in B\left(X, X_{1}\right), B \in B\left(X, X_{2}\right), R(A)=X_{1}$, ker $A \subset \operatorname{ker} B$. Then there exists a unique $C \in B\left(X_{1}, X_{2}\right)$ such that $B=C A$.

Remark 2. Suppose that G_{L} and G_{M} are boundary spaces for L and M, respectively. Then $\operatorname{dim} G_{L}=\operatorname{dim} \hat{H}_{L}=\operatorname{dim} \hat{H}_{M}=\operatorname{dim} G_{M}$. This follows from (1)-(2) and Proposition 1.

Theorem 1. Let $\left(G_{L}, U\right)$ and $\left(G_{M}, V\right)$ be boundary pairs for $\left(L, L_{0}\right)$ and $\left(M, M_{0}\right)$, respectively. Then there exists a unique mapping $E: G_{L} \rightarrow G_{M}$ satisfying the following requirements:

$$
\begin{equation*}
E \in B\left(G_{L}, G_{M}\right), \quad E^{-1} \in B\left(G_{M}, G_{L}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{gather*}
\forall \hat{y}=\left(y, y^{\prime}\right) \in L, \forall \hat{z}=\left(z, z^{\prime}\right) \in M \\
\left(y^{\prime} \mid z\right)-\left(y \mid z^{\prime}\right)=(i \hat{J} \hat{y} \mid \hat{z})_{H^{2}}=(E U \hat{y} \mid V \hat{z})_{G_{M}}=\left(U \hat{y} \mid E^{*} V \hat{z}\right)_{G_{L}} \tag{4}
\end{gather*}
$$

Conversely, if $\left(G_{L}, U\right)$ is a boundary pair for $\left(L, L_{0}\right), G_{M}$ is a boundary space for $\left(M, M_{0}\right)$ (i.e. $\operatorname{dim} G_{M}=\operatorname{dim} \hat{H}_{M}$) and an operator E satisfies conditions (3) then there exists a unique $V \in B\left(M, G_{M}\right)$ such that $\left(G_{M}, V\right)$ is a boundary pair for $\left(M, M_{0}\right)$ and (4) holds.

Proof. In the case $\left(G_{L}, U\right)=\left(\hat{H}_{L}, \hat{P}_{L}\right),\left(G_{M}, V\right)=\left(\hat{H}_{M}, \hat{P}_{M}\right)$ condition (4) is fulfilled with $E=i \hat{J} \downarrow \hat{H}_{L}$.

In fact, if $y \in L_{0}$ or $z \in M_{0}$, then $(i \hat{J} \hat{y} \mid z)_{H^{2}}=0=\left(\left(i \hat{J} \downarrow \hat{H}_{L}\right) \hat{P}_{L} \hat{y} \mid \hat{P}_{M} \hat{z}\right)_{\hat{H}_{M}}$ (let us recall that $\hat{J} L_{0}=M^{\perp}, \hat{J} L=M_{0}^{\perp}$. Now assume that $\hat{y} \in \hat{H}_{L}, \hat{z} \in \hat{H}_{M}$. In view of (1) we obtain

$$
(i \hat{J} \hat{y} \mid \hat{z})_{H^{2}}=\left(i \hat{J} \hat{P}_{L} \hat{y} \mid \hat{P}_{M} \hat{z}\right)_{H^{2}}=\left(\left(i \hat{J} \downarrow \hat{H}_{L}\right) \hat{P}_{L} \hat{y} \mid \hat{P}_{M} \hat{z}\right)_{\hat{H}_{M}}
$$

In the general case, taking into account Proposition 2, we see that there exist unique bijections $E_{L} \in B\left(G_{L}, \hat{H}_{L}\right), E_{M} \in B\left(G_{M}, \hat{H}_{M}\right)$ satisfying the equalities $\hat{P}_{L}=E_{L} U$, $\hat{P}_{M}=E_{M} V$. Thus (4) holds with $E=E_{M}^{*}\left(i \hat{J} \downarrow \hat{H}_{L}\right) E_{L}$.

To obtain the converse statement, we reverse the previous steps. Indeed, suppose that operators E, U (and therefore $\left.E_{L}=\hat{P}\left(U \downarrow \hat{H}_{L}\right)^{-1}\right)$ are given and E_{M} is (the unique) solution of the latter equation. It is clear that the operator $V=E_{M}^{-1} \hat{P}_{M}$ (and only it) possesses all the required properties.

Formula (4) is called an abstract Lagrange formula.
Theorem 2. Let $\left(G_{L}, U\right)$ and $\left(G_{M}, V\right)$ be boundary pairs for $\left(L, L_{0}\right)$ and (M, M_{0}), respectively, and let operator E satisfy the conditions (3). The following statements are equivalent:
i) for each $\hat{y}=\left(y, y^{\prime}\right) \in L$ and $\hat{z}=\left(z, z^{\prime}\right) \in M$ equality (4) holds;
ii) $U\left(-i \hat{J} \downarrow \hat{H}_{M}\right) V^{*}=E^{-1}$;
iii) $V^{*} E U \downarrow \hat{H}_{L}=i \hat{J} \downarrow \hat{H}_{L}$;
iv) $V\left(i \hat{J} \downarrow \hat{H}_{L}\right) U^{*}=\left(E^{-1}\right)^{*}$;
v) $U^{*} E^{*} V \downarrow \hat{H}_{M}=-i \hat{J} \downarrow \hat{H}_{M}$.

Proof. a) Preliminary remarks. Since U, V are normally solvable operators, U^{*} and V^{*} are normally solvable ones too (see [12]). Furthermore, $R(U)=G_{L}$, $\operatorname{ker} U=L_{0}$. This yields $\operatorname{ker} U^{*}=\{0\}, R\left(U^{*}\right)=\hat{H}_{L}$. Similar arguments show that ker $V^{*}=\{0\}, R\left(V^{*}\right)=\hat{H}_{M}$. Taking into account the Banach inverse operator theorem, we conclude that

$$
\left(U^{*}\right)^{-1} \in B\left(\hat{H}_{L}, G_{L}\right), \quad\left(V^{*}\right)^{-1} \in B\left(\hat{H}_{M}, G_{M}\right)
$$

b) $i i) \Leftrightarrow i v$). It follows from (1) that $\hat{J} \downarrow \hat{H}_{L} \in B\left(\hat{H}_{L}, \hat{H}_{M}\right)$ is a bijection. Let us find $\left(\hat{J} \downarrow \hat{H}_{L}\right)^{*} \in B\left(\hat{H}_{M} \hat{H}_{L}\right)$.

For each $\hat{u} \in \hat{H}_{L}, \hat{v} \in \hat{H}_{M}$ we have

$$
\left(\left(\hat{J} \downarrow \hat{H}_{L}\right) \hat{u} \mid \hat{v}\right)_{H^{2}}=(\hat{J} \hat{u} \mid \hat{v})_{H^{2}}=(\hat{u} \mid \hat{J} \hat{v})_{H^{2}}=\left(\hat{u} \mid\left(\hat{J} \downarrow \hat{H}_{L}\right) \hat{v}\right)_{H^{2}}
$$

that is, $\left(\hat{J} \downarrow \hat{H}_{L}\right)^{*}=\left(\hat{J} \downarrow \hat{H}_{M}\right)$.
In addition, for each, $\hat{u} \in \hat{H}_{L}$ the equality $\left(\hat{J} \downarrow \hat{H}_{M}\right)\left(\hat{J} \downarrow \hat{H}_{L}\right) \hat{u}=\hat{J}^{2} \hat{u}=\hat{u}$ holds. In other words, $\hat{J} \downarrow \hat{H}_{L}, \hat{J} \downarrow \hat{H}_{M}$ are unitary operators and $\left(\hat{J} \downarrow \hat{H}_{M}\right)^{-1}=\hat{J} \downarrow \hat{H}_{L}$.

The equivalence $i i) \Leftrightarrow i v$) is proved.
c) $i i i) \Leftrightarrow v$). The proof of this equivalence is similar to the proof of the previous one.
d) $i) \Leftrightarrow i i i)$ Equality (4) holds for each $\hat{y} \in L, \hat{z} \in M$ if it holds for $\hat{y} \in \hat{H}_{L}, \hat{z} \in \hat{H}_{M}$. But in this case the mentioned equality has the following form

$$
\left(\left(i \hat{J} \downarrow \hat{H}_{L}\right) \hat{u} \mid \hat{v}\right)_{\hat{H}_{M}}=\left(V^{*} E\left(U \downarrow \hat{H}_{L}\right) \hat{u} \mid \hat{v}\right)_{\hat{H}_{M}} .
$$

Therefore, $i) \Leftrightarrow$ iii).
e) $i i) \Leftrightarrow i i i$). Since $\hat{J} \downarrow \hat{H}_{M}$ and $\hat{J} \downarrow \hat{H}_{L}$ are mutually adjoint and mutually inverse (unitary) operators and $\left(U \downarrow \hat{H}_{L}\right)^{-1} \in B\left(G, \hat{H}_{L}\right)$ (it follows from the equalities $R\left(U \downarrow \hat{H}_{L}\right)=G$, $\operatorname{ker}\left(U \downarrow \hat{H}_{L}\right)=\{0\}$ and the Banach inverse operator theorem), we obtain (taking into account the Preliminary remarks)

$$
\begin{aligned}
& U\left(-i \hat{J} \downarrow \hat{H}_{M}\right) V^{*}=E^{-1} \Leftrightarrow\left(U \downarrow \hat{H}_{L}\right)\left(-i \hat{J} \downarrow \hat{H}_{M}\right) V^{*}=E^{-1} \Leftrightarrow \\
& \Leftrightarrow\left(V^{*}\right)^{-1}\left(-i \hat{J} \downarrow \hat{H}_{L}\right)\left(\hat{U} \downarrow \hat{H}_{L}\right)^{-1}=E \Leftrightarrow V^{*} E U \downarrow \hat{H}_{L}=i \hat{J} \downarrow \hat{H}_{L} .
\end{aligned}
$$

Corollary 1. Let G_{1}, G_{2} be Hilbert spaces, $U_{i} \in B\left(L, G_{i}\right), i \in\{1,2\}, G=G_{1} \oplus G_{2}, U=U_{1} \oplus$ U_{2}. Assume that (G, U) is a boundary pair for $\left(L, L_{0}\right)$. Then
a) There exist unique $\tilde{U}_{1} \in B\left(M, G_{2}\right), \tilde{U}_{2} \in B\left(M, G_{1}\right)$ such that (\tilde{G}, \tilde{U}), where $\tilde{G}=G_{2} \oplus$ $G_{1}, \tilde{U}=\tilde{U}_{1} \oplus \tilde{U}_{2}$, is a boundary pair for $\left(M, M_{0}\right)$ and

$$
\begin{align*}
\forall \hat{y} \in L, \forall \hat{z} \in M & (i \hat{J} \hat{y} \mid \hat{z})_{H^{2}}=(i J U \hat{y} \mid \tilde{U} \hat{z})_{\tilde{G}}=\left(U \hat{y} \mid-i J^{*} \tilde{U} \hat{z}\right)_{G}= \\
& =\left(U_{1} \hat{y} \mid \tilde{U}_{2} \hat{z}\right)_{G_{1}}-\left(U_{2} \hat{y} \mid \tilde{U}_{1} \hat{z}\right)_{G_{2}} \tag{5}
\end{align*}
$$

where $J \in B(G, \tilde{G})$ is defined as follows $\forall h_{1} \in G_{1}, \forall h_{2} \in G_{2} J\left(h_{1}, h_{2}\right)=\left(i h_{2},-i h_{1}\right)$, i.e.

$$
J=\left(\begin{array}{cc}
0 & i 1_{G_{2}} \tag{6}\\
-i_{G_{1}} & 0
\end{array}\right) .
$$

b) Let $(\tilde{G}, \tilde{U})=\left(G_{2} \oplus G_{1}, \tilde{U}_{1} \oplus \tilde{U}_{2}\right)$ be a boundary pair for (M, M_{0}). The following statements are equivalent:
i) for each $\hat{y} \in L, \hat{z} \in M$ equality (5) holds;
ii) $U\left(\hat{J} \downarrow \hat{H}_{M}\right) \tilde{U}^{*}=J^{*}$;
iii) $\tilde{U}^{*} J U \downarrow \hat{H}_{L}=\hat{J} \downarrow \hat{H}_{L}$;
iv) $\tilde{U}\left(\hat{J} \downarrow \hat{H}_{L}\right) U^{*}=J$;
v) $U^{*} J^{*} \tilde{U} \downarrow \hat{H}_{M}=\hat{J} \downarrow \hat{H}_{M}$.

The proof of Corollary 1 can be obtained from Theorems 1 and 2 by substituting $G_{L}=G, G_{M}=\tilde{G}, E=i J$ in the corresponding formulas.

Remark 3. Since $R\left(\tilde{U}^{*}\right)=\hat{H}_{M}$, the expression $\hat{J} \downarrow \hat{H}_{M}$ in equality $\left.i i\right)$ can be replaced by \hat{J}, therefore this equality is equivalent to the following system

$$
\begin{equation*}
U_{1} \hat{J} \tilde{U}_{1}^{*}=0, U_{1} \hat{J} \tilde{U}_{2}^{*}=i 1_{G_{1}}, U_{2} \hat{J} \tilde{U}_{1}^{*}=-i 1_{G_{2}}, U_{2} \hat{J} \tilde{U}_{2}^{*}=0 . \tag{7}
\end{equation*}
$$

3. The general form of the proper extension of L_{0}.

Proposition 2. Let $G_{i}, U_{i}, \tilde{U}_{i}(i \in\{1,2\})$ be as in Corollary 1 and $L_{1} \stackrel{\text { def }}{=} \operatorname{ker} U_{1}$. Then $L_{1}^{*}=\operatorname{ker} \tilde{U}_{1}$.

Proof. The inclusion $L_{0} \subset L_{1}$ implies $L_{1}^{*} \subset M$. Further, $L_{1}^{*}=\left\{\hat{z} \in H^{2}: \forall \hat{y} \in L_{1}=\operatorname{ker} U_{1}\right.$ $\left.(i \hat{J} \hat{y} \mid \hat{z})_{H^{2}}=0\right\}$, consequently, (5) yields $\operatorname{ker} \tilde{U}_{1} \subset L_{1}^{*}$. Furthermore, it follows from the first of equalities (7) that $\tilde{U}_{1} \hat{J} U_{1}^{*}=0$, therefore

$$
L_{1}^{*}=\hat{J} L_{1}^{\perp}=\hat{J}\left(\operatorname{ker} U_{1}\right)^{\perp}=\hat{J} \overline{R\left(U_{1}^{*}\right)}=\overline{\hat{J} R\left(U_{1}^{*}\right)}=\overline{\operatorname{ker} \tilde{U}_{1}}=\operatorname{ker} \tilde{U}_{1} .
$$

Theorem 3. Assume that $L_{0} \subset L_{1}=\bar{L}_{1} \subset L$ and G is a boundary space for $\left(L, L_{0}\right)$. Then
a) there exists an orthogonal decomposition $G=G_{1} \oplus G_{2}$ and operators

$$
\begin{equation*}
U_{1} \in B\left(L, G_{1}\right), V_{1} \in B\left(M, G_{2}\right) \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
L_{1}=\operatorname{ker} U_{1}, L_{1}^{*}=\operatorname{ker} V_{1}, \tag{9}
\end{equation*}
$$

and, as a result,

$$
\begin{equation*}
\operatorname{ker} U_{1} \supset L_{0}, \operatorname{ker} V_{1} \supset M_{0} \tag{10}
\end{equation*}
$$

b) without loss of generality we may assume that

$$
\begin{equation*}
R\left(U_{1}\right)=G_{1}, \quad R\left(V_{1}\right)=G_{2} \tag{11}
\end{equation*}
$$

Proof. Let (G, U) be a boundary pair for $\left(L, L_{0}\right)$. Put

$$
G_{2} \stackrel{\text { def }}{=}\left\{U \hat{y}: \hat{y} \in L_{1}\right\}=\left\{\left(U \downarrow \hat{H}_{L}\right) \hat{y}: \hat{y} \in L_{1} \ominus L_{0}\right\} .
$$

Since $U \downarrow \hat{H}_{L}$ is a homeomorphism $\hat{H}_{L} \rightarrow G_{2} \subset G, G_{2}$ is a closed linear subspace of G. Put $G_{1}=G \ominus G_{2}, U_{i}=P_{i} U$, where P_{i} is the orthogonal projection $G \rightarrow G_{i},(i \in\{1,2\})$, and denote by $\tilde{U}_{1}, \tilde{U}_{2}$ the operators uniquely determined by U_{1}, U_{2} from (5).

To complete the proof, it is sufficient to substitute $V_{1}=\tilde{U}_{1}$ and apply Proposition 2 .
4. Criteria of mutual adjointness. Taking into account Theorem 3, we see that the following problem arises in a natural way.

Let
i) $G=G_{1} \oplus G_{2}$ be a boundary space for $\left(L, L_{0}\right)$ and operators U_{1}, V_{1} satisfy conditions (8), (10);
ii)

$$
\begin{equation*}
L_{1}=\operatorname{ker} U_{1}, M_{1}=\operatorname{ker} V_{1} \tag{12}
\end{equation*}
$$

(cf.(9)). The problem is to establish a criterion of mutual adjointness of L_{1}, and M_{1}.

Before solving the problem let us introduce the following notation

$$
\begin{cases}X_{1}=L_{1} \ominus L_{0}, & X_{2}=L \ominus L_{1} \tag{13}\\ Y_{1}=M_{1} \ominus M_{0}, & Y_{2}=M \ominus M_{1}\end{cases}
$$

It is clear that

$$
\begin{gather*}
\hat{H}_{L}=X_{1} \oplus X_{2}, \hat{H}_{M}=Y_{1} \oplus Y_{2}, \tag{14}\\
L_{0} \oplus X_{1}=L_{1}=\operatorname{ker} U_{1}, M_{0} \oplus Y_{1}=M_{1}=\operatorname{ker} V_{1} . \tag{15}
\end{gather*}
$$

Taking into account (1) and (14), we see that

$$
\begin{equation*}
\hat{H}_{L}=\hat{J} \hat{H}_{M}=\hat{J}\left[Y_{1} \oplus Y_{2}\right]=\hat{J} Y_{1} \oplus \hat{J} Y_{2} \tag{16}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
M_{1}^{*}=L_{0} \oplus \hat{J} Y_{2}=L_{0} \oplus \hat{J} \overline{R\left(V_{1}^{*}\right)} \tag{17}
\end{equation*}
$$

Proof. Applying (1) to the pair $\left(M, M_{1}\right)$ (instead of $\left(L, L_{0}\right)$), we obtain $M_{1}^{*}=L_{0} \oplus \hat{J}\left[M \ominus M_{1}\right]$.
Taking into account (12), (13), we have $Y_{2}=M \ominus M_{1}=M \ominus \operatorname{ker} V_{1}=\overline{R\left(V_{1}^{*}\right)}$.
Lemma 2. The following statements are equivalent:
i) $L_{1} \supset M_{1}^{*}$;
ii) $U_{1} \hat{J} V_{1}^{*}=0$;
iii) $\operatorname{ker} U_{1} \supset L_{0} \oplus \hat{J} \overline{R\left(V_{1}^{*}\right)}$;
iv) $X_{1} \supset \hat{J} Y_{2}$.

In each of the cases

$$
\begin{equation*}
L_{1} \ominus M_{1}^{*}=\operatorname{ker} U_{1} \ominus\left[L_{0} \oplus \hat{J} \overline{R\left(V_{1}^{*}\right)}\right]=X \ominus \hat{J} Y_{2} \tag{18}
\end{equation*}
$$

Proof. Taking into account (14)-(17) and the inclusion ker $U_{1} \supset L_{0}$, we obtain

$$
\begin{gathered}
U_{1} \hat{J} V_{1}^{*}=0 \Leftrightarrow \operatorname{ker} U_{1} \supset \hat{J} R\left(V_{1}^{*}\right) \Leftrightarrow \operatorname{ker} U_{1} \supset \hat{J} \overline{R\left(V_{1}^{*}\right)} \Leftrightarrow \operatorname{ker} U_{1} \supset L_{0} \oplus \hat{J} \overline{R\left(V_{1}^{*}\right)} \Leftrightarrow \\
\Leftrightarrow L_{1} \supset M_{1}^{*} \Leftrightarrow L_{1} \ominus L_{0} \supset M_{1}^{*} \ominus L_{0} \Leftrightarrow X_{1} \supset \hat{J} Y_{2} .
\end{gathered}
$$

Therefore, conditions i)-iv) are equivalent. Suppose that these conditions hold. From (15) and (17) equalities (18) are derived.

Corollary 2. The following equivalences hold

$$
\begin{equation*}
L_{1}=M_{1}^{*} \Leftrightarrow \operatorname{ker} U_{1}=L_{0} \oplus \hat{J} \overline{R\left(V_{1}^{*}\right)} \Leftrightarrow X_{1}=\hat{J} Y_{2} . \tag{19}
\end{equation*}
$$

Proof. The corollary immediately follows from (18).
Lemma 3. Assume that equalities (11) hold and $U_{1} \hat{J} V_{1}^{*}=0$. Put $\hat{U}=U_{1} \oplus V_{1} \hat{J} \hat{P}_{L}$. Then $R(\hat{U})=G$, $\operatorname{ker} \hat{U}=L_{0} \oplus\left[X_{1} \ominus \hat{J} Y_{2}\right]$.

Proof. Let us show that $R\left(V_{1} \hat{J} \hat{P}_{L} \downarrow R\left(V_{1}^{*}\right)\right)=G_{2}$. For this purpose note that $R\left(V_{1} \downarrow R\left(V_{1}^{*}\right)\right)$ $=R\left(V_{1}\right)=G_{2}$, i.e. $\left(\forall h \in G_{2}\right)\left(\exists f \in G_{2}\right): V_{1} V_{1}^{*} f=h$.

Put $\hat{H}_{L} \ni y=\hat{J} V_{1}^{*} f$. Taking into account the inclusion $R\left(V_{1}^{*}\right) \subset \hat{H}_{M}$ and applying (1), we obtain $U_{1} y=U_{1} \hat{J} V_{1}^{*} f=0, V_{1} \hat{J} \hat{P}_{L} \hat{J} V_{1}^{*} f=V_{1} \hat{J} \hat{J} V_{1}^{*} f=V_{1} V_{1}^{*} f=h$.

Thus $R\left(V_{1} \hat{J} \hat{P}_{L} \downarrow \operatorname{ker} U_{1}\right)=G_{2}$. Then using Lemma 4.5.2 from [13] we see that

$$
R(\hat{U})=R\left(U_{1}\right) \oplus R\left(V_{1} \hat{J} \hat{P}_{L}\right)=G_{1} \oplus G_{2}=G
$$

Furthermore, ker $U \supset L_{0}$ and (see Lemma 2) $X_{1} \supset \hat{J} Y_{2}$. Moreover, $X_{1} \ominus \hat{J} Y_{2}=X_{1} \cap \hat{J} Y_{1}$. Therefore, to complete the proof, it is sufficient to verify the equality

$$
\begin{equation*}
\operatorname{ker} U_{1} \cap \operatorname{ker} V_{1} \hat{J} \hat{P}_{L} \cap \hat{H}_{L}=X_{1} \cap \hat{J} Y_{1} . \tag{20}
\end{equation*}
$$

In order to prove (20) assume first that $y \in X_{1} \cap \hat{J} Y_{1}$. Evidently, $y \in \operatorname{ker} U_{1} \cap \hat{H}_{L}$ and there exists $z \in Y_{1}$ such that $y=\hat{J} z$. Thus we have $V_{1} \hat{J} \hat{P}_{L} y=V_{1} \hat{J} \hat{P}_{L} \hat{J} z=V_{1} z=0$, therefore $y \in \operatorname{ker} V_{1} \hat{J} \hat{P}_{L}$.

Conversely, if $y \in \operatorname{ker} U_{1} \cap \operatorname{ker} V_{1} \hat{J} \hat{P}_{L} \cap \hat{H}_{L}$ then $y \in \operatorname{ker} U_{1} \cap \hat{H}_{L}=X_{1}$, therefore $0=V_{1} \hat{J} \hat{P}_{L} y=V_{1} \hat{J} y$. In other words, $\hat{J} y \in \operatorname{ker} V_{1} \cap \hat{H}_{M}=Y_{1}$, sequently $y=\hat{J} \hat{J} y \in \hat{J} Y_{1}$.

Corollary 3. Assume that $\operatorname{dim} \hat{H}_{L}<\infty$ and equalities (11) hold. Then $L_{1}=M_{1}^{*}$ if and only if $U_{1} \hat{J} V_{1}^{*}=0$.

Proof. Let \hat{U} be the operator from Lemma 3. This operator maps the finite-dimensional space \hat{H}_{L} onto a finite-dimensional space G. Moreover $\operatorname{dim} \hat{H}_{L}=\operatorname{dim} G$ (see Remark 2) therefore $X_{1} \ominus \hat{J} Y_{2}=\operatorname{ker} \hat{U} \downarrow \hat{H}_{L}=\{0\}$. Now the proof follows from Lemma 2.

Remark 4. In a general case the condition $U_{1} \hat{J} V_{1}^{*}=0$ is necessary but not sufficient for the mutual adjointness of L_{1} and M_{1}.

Theorem 4. Let $(G, \Lambda),(\tilde{G}, \Pi)$, where $G=G_{1} \oplus G_{2}, \tilde{G}=G_{2} \oplus G_{1}$, be boundary pairs for $\left(L, L_{0}\right)$ and $\left(M, M_{0}\right)$, respectively, $E \in B(G, \tilde{G}), E^{-1} \in B(\tilde{G}, G)$ and

$$
\forall \hat{y} \in L, \forall \hat{z} \in M(i \hat{J} \hat{y} \mid \hat{z})_{H^{2}}=(E \Lambda \hat{y} \mid \Pi \hat{z})_{\tilde{G}}=\left(\Lambda \hat{y} \mid E^{*} \Pi \hat{z}\right)_{G} .
$$

Assume that $A_{1} \in B\left(G, G_{1}\right), B_{1} \in B\left(\tilde{G}, G_{2}\right)$ and put

$$
\begin{gather*}
L_{1}=\operatorname{ker} A_{1} \Lambda=\left\{\hat{y} \in \hat{L}: A_{1} \Lambda \hat{y}=0\right\} \tag{21}\\
M_{1}=\operatorname{ker} B_{1} \Pi=\left\{\hat{z} \in \hat{M}: B_{1} \Pi \hat{z}=0\right\} \tag{22}
\end{gather*}
$$

Then
i) $L_{1} \supset M_{1}^{*}$ if and only if

$$
\begin{equation*}
A_{1} E^{-1} B_{1}^{*}=0 \tag{23}
\end{equation*}
$$

ii) $L_{1}=M_{1}^{*}$ if and only if ker $A_{1}=\overline{R\left(E^{-1} B_{1}^{*}\right)}$.

Proof. Put $U_{1}=A_{1} \Lambda, V_{1}=B_{1} \Pi$. Theorem 4 implies

$$
U_{1}\left(-i \hat{J} \downarrow \hat{H}_{M}\right) V_{1}^{*}=A_{1} \Lambda\left(-i \hat{J} \downarrow \hat{H}_{M}\right) \Pi^{*} B_{1}^{*}=A_{1} E^{-1} B_{1}^{*}
$$

in other words,

$$
\begin{equation*}
-i U_{1} \hat{J} V_{1}^{*}=A_{1} E^{-1} B_{1}^{*} . \tag{24}
\end{equation*}
$$

i) This item follows from (24) and Lemma 2.
ii) Applying Theorem 2 and Corollary 2 and taking into account (24) we obtain

$$
\begin{gathered}
L_{1}=M_{1}^{*} \Leftrightarrow \operatorname{ker}\left(A_{1}\left(\Lambda \downarrow \hat{H}_{L}\right)\right)=\hat{J} \overline{R\left(\Pi^{*} B_{1}^{*}\right)} \Leftrightarrow \operatorname{ker} A_{1}=\left(\Lambda \downarrow \hat{H}_{L}\right) \hat{J} \overline{R\left(\Pi^{*} B_{1}^{*}\right)} \Leftrightarrow \\
\Leftrightarrow \operatorname{ker} A_{1}=\overline{R\left(\left(\Lambda_{\downarrow \hat{H}_{L}}\right) \hat{J} \Pi^{*} B_{1}^{*}\right)} \Leftrightarrow \operatorname{ker} A_{1}=\overline{R\left(\Lambda \hat{J} \Pi^{*} B_{1}^{*}\right)} \Leftrightarrow \\
\Leftrightarrow \operatorname{ker} A_{1}=\overline{R\left(E^{-1} B_{1}^{*}\right)}=E^{-1} \overline{R\left(B_{1}^{*}\right)} .
\end{gathered}
$$

(recall that $\Lambda \downarrow \hat{H}_{L}, \Pi \downarrow \hat{H}_{M}$ and E are homeomorphisms)
Corollary 4. Let, in addition to the conditions of Theorem 4, $\operatorname{dim} \hat{H}_{L}<\infty$ and equalities (11) hold.

Then relations (21) and (22) are mutually adjoint if and only if $A_{1} E^{-1} B_{1}^{*}=0$.
Proof. Use Corollary 3 and (24).

REFERENCES

1. R. Arens, Operational calculus of linear relations, Pacific J. Math., 11 (1961), 9-23.
2. E.A. Coddington, Self-adjoint subspace extensions of nondensely defined symmetric operators, Advances in Math., 14 (1974), 309-332.
3. A. Dijksma, H.V. de Snoo, Self-adjoint extensions of symmetric subspaces, Pacific J. Math., 54 (1974), №1, 71-100.
4. A.N. Kochubei, On the extensions of nondensely defined symmetric operator, Siber. Math. J., 18 (1977), №2, 314-320. (in Russian)
5. A.V. Kuzhel, S.A. Kuzhel, Regular extensions of hermitian operators. - VSP, Utrech, 1988.
6. V.A. Derkach, S. Hassi, M.M. Malamud, H.S.V. de Snoo, Generalized resolvents and admissibility, Methods of Functional Anal. and Topology, 6 (2000), №3, 24-55.
7. Yu.M. Arlinski, S. Hassi, Z. Sebestyen, H.S.V. de Snoo, On the clas of extremal extensions of a nonegative operators, Oper. Theory Adv. Appl., 127 (2001), 41-81.
8. V.M. Bruk, On linear relations generated by differential expression and a Nevanlinna operator function, J. of Math Physics, Analysis, Geometry, 7 (2011), №2, 114-140.
9. O.G. Storozh, The correlation between two pairs of linear relations and dissipative extensions of some nondensely defined symmetric operators, Carpathian Math. Publications, 1 (2009), №2, 207-213. (in Ukrainian)
10. V.E. Lyantse, On some relations among closed operators, Rep. Academy of Science USSR, 204 (1972), №3, 431-495. (in Russian)
11. A.N. Kolmogorov, C.V. Fomin, Elements of the theory of functions and functional analysis. - Nauka, Moscow, 1976. (in Russian)
12. T. Kato, Perturbation theory for linear operators. - Mir, Moscow, 1972. (in Russian)
13. V.E. Lyantse, O.G. Storozh, Methods of the theory of unbounded operators. - Naukova Dumka, Kyiv, 1983. (in Russian)

Department of Mathematical and Functional Analysis
Lviv Ivan Franko National University
aruy14@ukr.net
storog@ukr.net

