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We prove analogues of the classical Wiman inequality for entire Dirichlet series f(z) =

20 ape”n with arbitrary positive exponents (\,,) such that sup{\,: n > 0} = +oo.

A. O. Kypunsgk, 1. E. Osuap, O. B. Ckackus. Hepasencmea muna Bumana din yeavx pados
Jupuzae ¢ npoussosvrvimu nokazamessmu // Mar. Crynil. — 2013. — T.40, Nel. — C.108-112.

Hast nensix psipos dupuxae f(z) = Zn o A €57 C TIOJIOZKUTE IBHBIME TIoKazaTes aMu (A, )
YZIOBJIETBOPSIIOIIEMHU YCIO0BHIO Sup{ A, : . > 0} = 400 10JIyYeHbl aHAJIOTH KJIACCHUECKOIO Hepa-
BencrBa Bumana.

It is well known ([1, 2, 3]) that for every nonconstant entire function f(z) = 3.7 a, 2"

and every e > 0 there exists an exceptional set F = E(f,¢) of finite logarithmic measure,
ie. [, & r 5 < +oo, such that the inequality (Wiman’s inequality)

My(r) < pug(r)(In g (r)) 1+
holds for all r € [1,400) \ E, where M(r) = max{|f(2)|: |2| = r}, pr(r) = max{|a,|r":
n > 0}. Some analogues of Wiman’s inequality for entire Dirichlet series of the form

+oo
= ZFnez’\", z € C, (1)
n=0
where 0 = A\g < A\, T 400 (1 < n T +400), were obtained in [4, 5|. In particular, in the paper
by M. M. Sheremeta ([4]) we find the following statement: if
(3A > 0)(3p € [1/2;1))(3D > 0): |n(t) — At?| < D (t > ty), (2)

where n(t) = >, -, 1 is the counting function of the sequence (A,) then for every entire
Dirichlet series of form (1) there exists a set E C [0;4+00) of finite Lebesque measure on R
such that for all x € [0;400) \ E one has

M(z, ) < p(e, F)(In (e, F)) 027, (3)

where
M(x, F) =sup{|F(z +iy)|: y € R}, p(z, F)=max{|F,|e**: n > 0}.
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If A\, =n(n>0),then A =D =p=1in (2) and (3) implies Wiman’s inequality. In
particular, Theorem 2 (|5]) yields that for every increasing to +oc sequence (\,,) satisfying (2)
there exists an entire Dirichlet series of form (1) for which

—]\/f((;”é?)) (Inp(z, F)) NS
as x — 400, i.e. € > 0 in (3) cannot be replaced with € = 0.

Let D be the class of all absolutely convergent Dirichlet series in C of form (1) with

a sequence of the exponents ()\,) such that A, >0 (n > 0) and

sup{\,: n >0} = 400,
i.e. the sequence of exponents of a function ' € D need not be monotone and has arbitrarily
many cluster points (in particular, can be everywhere dense). It worth be noted that some
asymptotic properties of functions F' € D were investigated in the papers [6]-[10]. In this
paper we consider analogues of Wiman’s inequality for the class D.

For a function F' € D of form (1) denote by (u,,) the sequence (—In |F},|),>o arranged by
decreasing.

Let L be the class of positive continuous functions increasing to 400 on [0; +00) and L
the class of functions ® € L such that ¢(2t) = O(p(t)) (t — +00), where ¢ is the inverse
function to ®.

By In-meas (F) = fEm[L%O) dInr denote the logarithmic measure of a set £ C R.

Theorem 1. Let F € D, &, € Ly, ®y(z) Y Linp(x, F). If

400
(Ja > 0): / t72(ny (1))t < 400, ny(t) = Z 1, to>0, (4)

to Hn <t

then there exists a set E C R such that In-meas(E) < 400 and the relation
M(z, F) = o{p(z, F) In"/° u(z, F)) (5)
holds as x — 400 (v ¢ E).
In order to prove Theorem 1 we need the following lemma.

Lemma 1 ([10]). Let F' € D such that ®; € Ly, and v(t) be a nonnegative function on
[0, 4+00) for which v(t) > 0 for t > t, and f0+oo v(t)dt < +o0. If Inn = o(ln|a,|) (n — +o0),
then there exists a function ¢;(t) 1T 400 (t — +4o00) such that for all n > 0 and x > 0
(x ¢ E,In —meas(E) < +00) one has

ci(t)

e < e Fyesp { -~ (1 =0 (4t

where p1, = —Inla,|, v = v(z, F) = max{n: |a,|e"* = p(x, F)} is the central index of
series (1).

Proof of Theorem 1. With no loss of generality we may and do assume that \g = 0 =
po < pp = —Inla,| /N 400 (I < n — +00). It is easy to see that condition (4) implies
(n1(t))* = o(t) (t — +o0) (in particular n® < u, as n > ny), and thus

+0o e t

S < oo, / t2N(H)dt < +oo, N(t) Y / w Yy (w)*du, ty > 0.

to

n=1 to
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By Lemma 1 with the function v(t) = 16t72(ny(t))* (t > to), v(t) = 0 (t € [0;1y)), as
n = 0 we obtain for all x > 0 outside of some exceptional set E; of finite logarithmic measure
Hvoeq(t 41))
) 22 [ A
to t(p(t)
Hence, using the inequality > 2¢(p,) (# > 2¢), v = v(z —0, F) (inequality (10) from [10]),
we get the following inequalities

e (t)(na(48))”
Inu(x, F) > x /3}@/4 —tgo(t)

dt.

0t > (3 (3p0,))"caly). mwﬁgqﬁﬁmg (©)

which hold for all x € [z1,+00 \ Ey, where 1 > zy. Let o(z) =) Zﬂn>3“,,|an|€m"- Then
Lemma 1 with the function v(t) = 16t 72N (t) (t > to), v(t) =0 (¢ € [0;t0)), implies that

o(x)/plx, F) < Y exp (max{y(y): y = 3 }) (7)

#n>3#u
as © — oo outside some exceptional set Fy of finite logarithmic measure, where ¥ (y) =
—zcs( ) fj, e - ]\;(é’;) 2Iny, and ¢y is the function ¢; from Lemma 1 associated with
the function v(t) = 16t2N(¢).

Since ¢’ (y) = —xcs(p) i g £ pdt+ = 2 decreases on [3y,,, +00), for all y > 3, and for all
large enough v using the monotomclty of the function ¢/p(t) and the inequality z > 2o (1)
(x > xp), v =v(x — 0, F), we obtain

dt + <

V'(y) <Y'Bu) = —$03(Mv)/ 2(t) 3ty

1 v N (4¢) 2 1 N(4u,) 2
<= v)Hy dt < - v < 0.
< geslmn / R Sau, — 27" calp) f - 3apy

S N (4¢) 2

(\]

v

Therefore, the function ¢ (y) decreases on [3u,, +00) for v > 1y and thus
20y
2% 3/111 —t
max{w<y): Yy = 3”1/} = 1/}(3/%/) < _xC?)(MV)mN(ZLMV)/
v Iz

t3
n /J/V —_ ]6c ILLV /"LV n MV7

as v — +o00. Hence, the relation N(t)/Int — 400 (t = 400) (the function N(t) is logari-
thmically convex) implies max{¢(y): y > 3u,} < —7c3(p)N(4py) as v > vy for some
11 > 1p. Therefore, from (7) passing z — +o0o0 we deduce

dt+

v

o(x)/p(z, F) = o(exp { = 0.05 - c3(u, )N (44,) }) (8)
outside a set £yUFEs of finite logarithmic measure. Applying relations (8) and (6) we complete
the proof of Theorem 1. 0

The following assertion shows that relation (5) under condition (4) in general can not be
improved.

Theorem 2. For every a > 0 there exists a function F' € D such that condition (4) and the
relation e
(Ve > 0): / £2(ny (1)) dt = +o0 ()
to

hold and
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F(z)
(. F)(u pu(w, F)) /o=

(Vee(0;1/a)): ; — +00

as r — +oo.

Proof of Theorem 2. Let A\g = 0, ng = 0, and )\, = e, ny, = [%(ekln_z(k‘ +1)/*]+1€N
(k > 1). Consider first an entire Dirichlet series
+oo
f(z)= Z are®™,  ap = exp{—XA;In A\ }.
k=1
Taking into account that s, «f (Inap—1 —Inay) /(A —Xeo1) = k+ 25 T +00 (1 < k1 +00),
by [11, p.19] we obtain

p(z, f) =exp{=AIn Ay + 2} (2 € [, 5041]).

We note now that s — s, = 1 and
k

e e
<1 < k - <k<gzg-—
6_1_n,u(:v,f)_€_1e, v e—17— =7 e—1

for x € [54, sex11]. Thus
(In pu(z, f))V/*
Ing pu(, f) I3/ (e, f)

for « € [s4, sx11], where dy > 0 is some constant, Iny ¢ “l Ing_1t (k>2), Inyt =Int. We
set

ne +12>dy

(10)

A = A+ —In(3/2) (1<s<ny, k>1).
ng
Then Ay < AP < AP < A+ In(3/2) (1 < s < ny — 1), therefore
S € 1 S 1 S € S
AP S exploan (v = A} > S explan = M) 5 (1< s <m k> 1),

We put a,(gs) = (A,(f) + 5,(68))% /2 and consider the Dirichlet series of the form

+oo ngk
F(z) = Z (akez’\’“ + Z a,(:)ez’\’(:)>.
k=1 s=1
It is easy to verify that F' € D and
p(r, F)[3 < o exple?} < (e, F)/2, pla. F) = p(e. f) (11)
for x € [»y; s11], since agcs) € (5£S)ak; A,(f)ak). Indeed, for x € [y s,11] we have
s s s s 1 s s 1 717
a’l(c e < Al(q)akex)\](c) =5 W eXP{xkz(g) + st 1 (Mg — A/g)>} < 5 are™ = ,u(xZ );
and on the other hand

s s 1 s
a,(:)e“'(v) > 6,535)ake””Ai(c) =3 exp{x)\,g) + s.( A\ — )\,(:))} > — . ape

W

3
In addition, for 1 < s <nj; and z > 0 we have

B s) S /3\* 1/3\=
a?e“i < A,(c)<§> ape™™ < §<§> e
and thus

nk
$) aa(® 1 3\* .
akeIAk + szla,(c)e A< (1 + §nk(§> )ake Ak;

which easily yields that F' € D.
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Let ny(t) be the counting function of the sequence {p;} = {ux} U {,u,(f)}, where py, «f
—Inay = kek, Y “ a\"). Direct calculations verify that conditions (4) and (9) are
satisfied. Indeed, Nz(:) = (140(1))ur as k — 400 (1 < s <ny), thus for all g = a+¢, € > 0,
we get

4pk )¢ 9 q 1 k a q
/ (n1(2)) gt > (n1(2k)) > (Z(ns+1)) > ()t L o (k — +00),
245 t 4,uk 4uk —1 4[Lk

hence condition (9) holds. Similarly, putting by = (ux + pk—1)/2 as k — +0o we obtain
k

e (0) ) UL « - (dFoll)
/bk - dtSdu—:—dﬁ(;(nsﬂLl)) Sdﬁ(’f(nHl)) TRk 1)

where d > 0 is some constant, hence condition (4) holds.
Using conditions (10) and (11) we complete the proof of Theorem 2

dop(, F)(In p(z, F))"/*
31lng pu(x, F) hﬂ?/CY w(z, F)

F(z) > (ng + Dpla, F) /3 >
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