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We prove analogues of the classical Wiman inequality for entire Dirichlet series f(z) =∑+∞
n=0 ane

zλn with arbitrary positive exponents (λn) such that sup{λn : n ≥ 0} = +∞.

А. О. Куриляк, И. Е. Овчар, О. Б. Скаскив. Неравенства типа Вимана для целых рядов
Дирихле с произвольными показателями // Мат. Студiї. – 2013. – Т.40, №1. – C.108–112.

Для целых рядов Дирихле f(z) =
∑+∞
n=0 ane

zλn с положительными показателями (λn)
удовлетворяющеми условию sup{λn : n ≥ 0} = +∞ получены аналоги классического нера-
венства Вимана.

It is well known ([1, 2, 3]) that for every nonconstant entire function f(z) =
∑+∞

n=0 anz
n

and every ε > 0 there exists an exceptional set E = E(f, ε) of finite logarithmic measure,
i.e.
∫
E
dr
r
< +∞, such that the inequality (Wiman’s inequality)

Mf (r) ≤ µf (r)(lnµf (r))
1/2+ε

holds for all r ∈ [1,+∞) \ E, where Mf (r) = max{|f(z)| : |z| = r}, µf (r) = max{|an|rn :
n ≥ 0}. Some analogues of Wiman’s inequality for entire Dirichlet series of the form

F (z) =
+∞∑
n=0

Fne
zλn , z ∈ C, (1)

where 0 = λ0 < λn ↑ +∞ (1 ≤ n ↑ +∞), were obtained in [4, 5]. In particular, in the paper
by M. M. Sheremeta ([4]) we find the following statement: if

(∃∆ > 0)(∃ρ ∈ [1/2; 1])(∃D > 0) : |n(t)−∆tρ| ≤ D (t ≥ t0), (2)

where n(t) =
∑

λn≤t 1 is the counting function of the sequence (λn) then for every entire
Dirichlet series of form (1) there exists a set E ⊂ [0; +∞) of finite Lebesgue measure on R
such that for all x ∈ [0; +∞) \ E one has

M(x, F ) ≤ µ(x, F )
(

lnµ(x, F )
)(2ρ−1)/2+ε

, (3)

where
M(x, F ) = sup{|F (x+ iy)| : y ∈ R}, µ(x, F ) = max{|Fn|exλn : n ≥ 0}.
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If λn ≡ n (n ≥ 0), then ∆ = D = ρ = 1 in (2) and (3) implies Wiman’s inequality. In
particular, Theorem 2 ([5]) yields that for every increasing to +∞ sequence (λn) satisfying (2)
there exists an entire Dirichlet series of form (1) for which

M(x, F )

µ(x, F )

(
lnµ(x, F )

)−(2ρ−1)/2 → +∞

as x→ +∞, i.e. ε > 0 in (3) cannot be replaced with ε = 0.
Let D be the class of all absolutely convergent Dirichlet series in C of form (1) with

a sequence of the exponents (λn) such that λn ≥ 0 (n ≥ 0) and
sup{λn : n ≥ 0} = +∞,

i.e. the sequence of exponents of a function F ∈ D need not be monotone and has arbitrarily
many cluster points (in particular, can be everywhere dense). It worth be noted that some
asymptotic properties of functions F ∈ D were investigated in the papers [6]–[10]. In this
paper we consider analogues of Wiman’s inequality for the class D.

For a function F ∈ D of form (1) denote by (µn) the sequence (− ln |Fn|)n≥0 arranged by
decreasing.

Let L be the class of positive continuous functions increasing to +∞ on [0; +∞) and L1

the class of functions Φ ∈ L such that ϕ(2t) = O(ϕ(t)) (t → +∞), where ϕ is the inverse
function to Φ.

By ln -meas (E) =
∫
E∩[1,+∞)

d ln r denote the logarithmic measure of a set E ⊂ R.

Theorem 1. Let F ∈ D, Φ1 ∈ L1, Φ1(x)
def
= 1

x
lnµ(x, F ). If

(∃α > 0) :

∫ +∞

t0

t−2(n1(t))
αdt < +∞, n1(t)

def
=
∑
µn≤t

1, t0 > 0, (4)

then there exists a set E ⊂ R such that ln -meas(E) < +∞ and the relation

M(x, F ) = o(µ(x, F ) ln1/α µ(x, F )) (5)

holds as x→ +∞ (x /∈ E).

In order to prove Theorem 1 we need the following lemma.

Lemma 1 ([10]). Let F ∈ D such that Φ1 ∈ L1, and v(t) be a nonnegative function on
[0,+∞) for which v(t) > 0 for t > t0 and

∫ +∞
0

v(t)dt < +∞. If lnn = o(ln |an|) (n→ +∞),
then there exists a function c1(t) ↑ +∞ (t → +∞) such that for all n ≥ 0 and x > 0
(x /∈ E, ln−meas(E) < +∞) one has

|an|exλn ≤ µ(x, F ) exp
{
− x

∫ µn

µν

(µn − t)
c1(t)

ϕ(t)
v(4t)dt

}
,

where µn = − ln |an|, ν = ν(x, F ) = max{n : |an|exλn = µ(x, F )} is the central index of
series (1).

Proof of Theorem 1. With no loss of generality we may and do assume that λ0 = 0 =
µ0 ≤ µn = − ln |an| ↗ +∞ (1 ≤ n → +∞). It is easy to see that condition (4) implies
(n1(t))

α = o(t) (t→ +∞) (in particular nα ≤ µn as n ≥ n0), and thus
+∞∑
n=1

µ−2/αn < +∞,
∫ ∞
t0

t−2N(t)dt < +∞, N(t)
def
=

∫ t

t0

u−1(n1(u))αdu, t0 > 0.
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By Lemma 1 with the function v(t) = 16t−2(n1(t))
α (t ≥ t0), v(t) = 0 (t ∈ [0; t0)), as

n = 0 we obtain for all x > 0 outside of some exceptional set E1 of finite logarithmic measure

lnµ(x, F ) ≥ x

∫ µν

t0

c1(t)(n1(4t))
α

tϕ(t)
dt.

Hence, using the inequality x ≥ 1
2
ϕ(µν) (x ≥ x0), ν = ν(x−0, F ) (inequality (10) from [10]),

we get the following inequalities

lnµ(x, F ) ≥ x

∫ µν

3µν/4

c1(t)(n1(4t))
α

tϕ(t)
dt ≥ (n1(3µν))

αc2(µν), c2(t)
def
=

1

2
c1

(
3

4
t

)
ln

4

3
(6)

which hold for all x ∈ [x1,+∞ \ E1, where x1 ≥ x0. Let σ(x)
def
=
∑

µn>3µν
|an|exλn . Then

Lemma 1 with the function v(t) = 16t−2N(t) (t ≥ t0), v(t) = 0 (t ∈ [0; t0)), implies that

σ(x)/µ(x, F ) ≤
∑

µn>3µν

µ−2/αn exp (max{ψ(y) : y ≥ 3µν}) , (7)

as x → +∞ outside some exceptional set E2 of finite logarithmic measure, where ψ(y) =

−xc3(µν)
∫ y
µν

y−t
t2
· N(4t)
ϕ(t)

dt + 2
α

ln y, and c3 is the function c1 from Lemma 1 associated with
the function v(t) = 16t−2N(t).

Since ψ′(y) = −xc3(µν)
∫ y
µν

N(4t)
t2ϕ(t)

dt+ 2
αy

decreases on [3µν ,+∞), for all y ≥ 3µν and for all
large enough ν using the monotonicity of the function t/ϕ(t) and the inequality x ≥ 1

2
ϕ(µν)

(x ≥ x0), ν = ν(x− 0, F ), we obtain

ψ′(y) ≤ ψ′(3µν) = −xc3(µν)
∫ 3µν

µν

N(4t)

t2ϕ(t)
dt+

2

3αµν
≤

≤ 1

2
c3(µν)µν

∫ 3µν

µν

N(4t)

t3
dt+

2

3αµν
≤ − 1

27
c3(µν)

N(4µν)

µν
+

2

3αµν
< 0.

Therefore, the function ψ(y) decreases on [3µν ,+∞) for ν ≥ ν0 and thus

max{ψ(y) : y ≥ 3µν} = ψ(3µν) ≤ −xc3(µν)
µν

ϕ(µν)
N(4µν)

∫ 2µν

µν

3µν − t
t3

dt+

+
2

α
ln(3µν) ≤ −

1

16
c3(µν)N(4µν) +

2

α
ln 3µν ,

as ν → +∞. Hence, the relation N(t)/ ln t → +∞ (t → +∞) (the function N(t) is logari-
thmically convex) implies max{ψ(y) : y ≥ 3µν} ≤ − 1

17
c3(µν)N(4µν) as ν ≥ ν1 for some

ν1 ≥ ν0. Therefore, from (7) passing x→ +∞ we deduce

σ(x)/µ(x, F ) = o
(

exp
{
− 0.05 · c3(µν)N(4µν)

})
(8)

outside a set E1∪E2 of finite logarithmic measure. Applying relations (8) and (6) we complete
the proof of Theorem 1.

The following assertion shows that relation (5) under condition (4) in general can not be
improved.

Theorem 2. For every α > 0 there exists a function F ∈ D such that condition (4) and the
relation

(∀ε > 0) :

∫ +∞

t0

t−2(n1(t))
α+εdt = +∞ (9)

hold and
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(
∀ ε ∈ (0; 1/α)

)
:

F (x)

µ(x, F )(lnµ(x, F ))1/α−ε
→ +∞

as x→ +∞.

Proof of Theorem 2. Let λ0 = 0, n0 = 0, and λk = ek, nk =
[
1
k
(ekln−2(k + 1))1/α

]
+ 1 ∈ N

(k ≥ 1). Consider first an entire Dirichlet series

f(z) =
+∞∑
k=1

ake
zλk , ak = exp{−λk lnλk}.

Taking into account that κk
def
= (ln ak−1− ln ak)/(λk−λk−1) = k+ 1

e−1 ↑ +∞ (1 ≤ k ↑ +∞),
by [11, p.19] we obtain

µ(x, f) = exp{−λk lnλk + xλk} (x ∈ [κk,κk+1]).

We note now that κk+1 − κk = 1 and
ek

e− 1
≤ lnµ(x, f) ≤ e

e− 1
ek, x− e

e− 1
≤ k ≤ x− 1

e− 1
for x ∈ [κk,κk+1]. Thus

nk + 1 ≥ d0
(lnµ(x, f))1/α

ln2 µ(x, f) ln
2/α
3 µ(x, f)

, (10)

for x ∈ [κk,κk+1], where d0 > 0 is some constant, lnk t
def
= ln lnk−1 t (k ≥ 2), ln1 t = ln t. We

set
λ
(s)
k = λk +

s

nk
ln(3/2) (1 ≤ s ≤ nk, k ≥ 1).

Then λk < λ
(s)
k < λ

(s+1)
k < λk + ln(3/2) (1 ≤ s ≤ nk − 1), therefore

∆
(s)
k

def
=

1

2
exp{κk+1(λk − λ(s)k )} > 1

3
exp{κk(λk − λ(s)k )} def= δ

(s)
k (1 ≤ s ≤ nk, k ≥ 1).

We put a(s)k = (∆
(s)
k + δ

(s)
k )ak/2 and consider the Dirichlet series of the form

F (z) =
+∞∑
k=1

(
ake

zλk +

nk∑
s=1

a
(s)
k ezλ

(s)
k

)
.

It is easy to verify that F ∈ D and

µ(x, F )/3 ≤ a
(s)
k exp{xλ(s)k } ≤ µ(x, F )/2, µ(x, F ) = µ(x, f) (11)

for x ∈ [κk;κk+1], since a
(s)
k ∈ (δ

(s)
k ak; ∆

(s)
k ak). Indeed, for x ∈ [κk;κk+1] we have

a
(s)
k exλ

(s)
k ≤ ∆

(s)
k ake

xλ
(s)
k =

1

2
· ak exp{xλ(s)k + κk+1(λk − λ(s)k )} ≤ 1

2
· akexλk =

µ(x, F )

2
,

and on the other hand

a
(s)
k exλ

(s)
k ≥ δ

(s)
k ake

xλ
(s)
k =

1

3
· ak exp{xλ(s)k + κk(λk − λ(s)k )} ≥ 1

3
· akexλk =

µ(x, F )

3
.

In addition, for 1 ≤ s ≤ nk and x > 0 we have

a
(s)
k exλ

(s)
k ≤ ∆

(s)
k

(3

2

)x
ake

xλk ≤ 1

2

(3

2

)x
ake

xλk

and thus

ake
xλk +

nk∑
s=1

a
(s)
k exλ

(s)
k ≤

(
1 +

1

2
nk

(3

2

)x)
ake

xλk ,

which easily yields that F ∈ D.



112 A. O. KURYLIAK, I. Ye. OVCHAR, O. B. SKASKIV

Let n1(t) be the counting function of the sequence {µ∗k} = {µk} ∪ {µ(s)
k }, where µk

def
=

− ln ak = kek, µ
(s)
k

def
= − ln a

(s)
k . Direct calculations verify that conditions (4) and (9) are

satisfied. Indeed, µ(s)
k = (1 + o(1))µk as k → +∞ (1 ≤ s ≤ nk), thus for all q = α+ ε, ε > 0,

we get∫ 4µk

2µk

(n1(t))
q

t2
dt ≥ (n1(2µk))

q

4µk
≥ 1

4µk

( k∑
s=1

(ns + 1)

)q
≥ (nk)

q

4µk
→ +∞ (k → +∞),

hence condition (9) holds. Similarly, putting bk = (µk + µk−1)/2 as k → +∞ we obtain∫ bk+1

bk

(n1(t))
α

t2
dt ≤ d

(n1(bk+1))
α

µk
= d

1

µk

( k∑
s=1

(ns + 1)

)α
≤ d

1

µk

(
k(nk + 1)

)α
=

(d+ o(1))

k ln2(k + 1)
,

where d > 0 is some constant, hence condition (4) holds.
Using conditions (10) and (11) we complete the proof of Theorem 2

F (x) ≥ (nk + 1)µ(x, F )/3 ≥ d0µ(x, F )(lnµ(x, F ))1/α

3 ln2 µ(x, F ) ln
2/α
3 µ(x, F )

.
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