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Let F be a field, A be a vector space over F , GL(F,A) be the group of all automorphisms
of the vector space A. If B ≤ A then denote by CoreG(B) the largest G-invariant subspace
of B. A subspace B is called almost G-invariant if dimF (B/CoreG(B)) is finite. In this paper
we described the case where every subspace of A is almost G-invariant.

А. В. Садовниченко. Бесконечномерные линейные группы со специальным множеством
G-инвариантных подпространств // Мат. Студiї. – 2013. – Т.40, №1. – C.11–15.

Пусть F — поле, A — векторное пространство над F , GL(F,A) — группа всех авто-
морфизмов векторного пространства A. Если B ≤ A, тогда обозначим через CoreG(B)
наибольшее G-инвариантное подпространство B. Подпространство B называется почти
G-инвариантным, если dimF (B/CoreG(B)) конечна. В этой работе описан случай, когда
каждое подпространство пространства A является почти G-инвариантным.

1. Introduction. Let F be a field, A a vector space over F and GL(F,A) a group of all
F -automorphisms of A. If G is a subgroup of GL(F,A) then, as usual, a subspace B of A
is called G-invariant if bx ∈ B for every b ∈ B and every x ∈ G. If A has finite dimension
then the group G is called finite dimensional. The theory of finite dimensional linear groups
is one of the most developed group-theoretical branches (see, for example, the book [8]).
However, in the case where A has infinite dimension over F , the situation becomes totally
different. This case is much more complicated and its consideration requires some additional
restrictions. Imposing classical finiteness conditions is one of the most efficient and natural
approaches here. The study of infinite dimensional linear groups satisfying some finiteness
conditions proved to be very promising. Many valuable results have been obtained in this
way (see, for example, the surveys [4, 7]).

Recently another approach in studying of infinite dimensional groups appeared. This
approach is based on the notion of invariance of action of a group G. We have the following
simple fact: if every subspace of A is G-invariant then G must be abelian. Consequently, the
study of infinite dimensional linear groups having very big family of G-invariant subspaces
could be fruitful. This has been shown in the papers [1, 2, 5, 6]. In the present paper this
approach continues to be implemented.

If B is a subspace of A then the sum of arbitrary family of G-invariant subspaces of B
is a G-invariant subspace. It follows that B has the largest G-invariant subspace CoreG(B),
which is called the G-core of B. We observe that the G-core of B can be zero.
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A subspace B is called almost G-invariant, if dimF (B/CoreG(B)) is finite.
In the present paper we consider linear groups G for which every subspace of A is almost

G-invariant.

2. Preliminary results. Let R be a ring and A be an R-module. Denote by SocR(A) the
submodule generated by all simple R-submodules of A (if A has simple R-submodules). If
A does not include simple R-submodules then put SocR(A) = 〈0〉.

We begin our study with the case of a non-periodic group G.

Lemma 1. Let G be a subgroup of GL(F,A) and suppose that every subspace of A is almost
G-invariant. If g is an element ofG having infinite order then A is periodic as an F 〈g〉-module.

Proof. Suppose that the result is false. Then there exists an element a ∈ A such that
AnnF 〈g〉(a) = 〈0〉. It follows that

aF 〈g〉 ∼= F 〈g〉 =
⊕
n∈Z

Fgn.

Put x = 〈g2〉 and D = aF 〈x〉. Then A = D ⊕ Dg. We remark that dimF (D) is infinite.
Put C = Core〈g〉(D). Then dimF (D/C) is finite, which implies that dimF (C) is infinite. In
particular C 6= {0}. If d is an arbitrary non-zero element of C then dg ∈ C. On the other
hand, since d ∈ D, dg ∈ Dg, that is dg ∈ D ∩ Dg = {0}. Then d = (dg)g−1 = 0, and we
obtain a contradiction. This contradiction shows that A is a periodic F 〈g〉-module.

Corollary 1. Let G be a subgroup of GL(F,A) and suppose that every subspace of A is
almost G-invariant. If g is an arbitrary element of G then aF 〈g〉 has finite F -dimension for
every element a ∈ A.

Proof. Indeed, if g has infinite order then Lemma 1 shows that A is periodic as an F 〈g〉-
module. Then AnnF 〈g〉(a) 6=< 0 > for every element a ∈ A. We have

aF 〈g〉 ∼= F 〈g〉/Ann
F 〈g〉

(a).

We recall that F -dimension of F 〈g〉/I is finite for each non-zero ideal I of F 〈g〉. Hence
dimF (aF 〈g〉) is finite.

If g has finite order k then aF 〈g〉 ≤ aF+agF+ag2F+. . .+agk−1F and again dimF (aF 〈g〉)
is finite.

Lemma 2. Let G be a subgroup of GL(F,A) and suppose that every subspace of A is
almost G-invariant. Let g be an arbitrary element of G. If C is a subspace of A such that
C ∩ SocF 〈g〉(A) = {0} then dimF (C) is finite.

Proof. Put E = Core〈g〉(C), then dimF (C/E) is finite. Suppose that E 6= {0} and choose
in E a non-zero element a. Since E is 〈g〉-invariant, aF 〈g〉 ≤ E. By Corollary 1 dimF (aF 〈g〉)
is finite. Then aF 〈g〉 includes a minimal F 〈g〉-submodule. It follows that

aF 〈g〉 ∩ Soc
F 〈g〉

(A) 6= 〈0〉.

However
〈0〉 6= aF 〈g〉 ∩ Soc

F 〈g〉
(A) ≤ E ∩ Soc

F 〈g〉
(A) ≤ C ∩ Soc

F 〈g〉
(A),

and we obtain a contradiction with the choice of C. This contradiction shows that E = 〈0〉,
so that dimF (C) is finite.
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Lemma 3. Let G be a subgroup of GL(F,A) and suppose that every subspace of A is almost
G-invariant. Let g be an arbitrary element of G. Then A includes an F 〈g〉-submodule C
satisfying the following conditions:

(i) dimF (A/C) is finite;

(ii) every subspace of C is 〈g〉-invariant.

Proof. If 0 6= a ∈ A then Corollary 1 shows that dimF (aF 〈g〉) is finite. Then aF 〈g〉 includes
a minimal F 〈g〉-submodule M . An inclusion M ≤ SocF 〈g〉(A) yields that SocF 〈g〉(A) 6= 〈0〉.
Put S = SocF 〈g〉(A). We have A = S⊕D for some F -subspace D of A. Using now Lemma 2
we obtain that dimF (D) is finite. In turn out, it follows that S has finite codimension.

For F 〈g〉-submodule S we have a direct decomposition S =
⊕

λ∈ΛAλ, where Aλ is
a simple F 〈g〉-submodule for every λ ∈ Λ. Put M = {λ ∈ Λ | dimF (Aλ) > 1} and
B =

⊕
λ∈M Aλ. Since every subspace of A is almost G-invariant, it is likewise almost 〈g〉-

invariant. An application of Lemma 2.1 of paper [5] shows that dimF (B) is finite.
Put ∆ = Λ \ M . Since dimF (Aλ) = 1 for each λ ∈ ∆, Aλ = aλF for some elements

aλ ∈ Aλ, λ ∈ ∆. It follows that aλg = αλaλ for some elements αλ ∈ F , λ ∈ ∆. With the
help of arguments from the proof of Proposition 2.2 of paper [5], we obtain that there exists
a subset Γ ⊆ ∆ such that αλ = αµ = α for all λ, µ ∈ Γ, and a subset ∆\Γ is finite. It follows
that a subspace C =

⊕
λ∈Γ Aλ has finite codimension. If a ∈ C, then a =

∑
1≤j≤n βλ(j)aλ(j),

where βλ(j) ∈ F , λ(j) ∈ Γ , 1 ≤ j ≤ n. We have

ag =
∑

1≤j≤n

(βλ(j)aλ(j))g =
∑

1≤j≤n

βλ(j)(aλ(j)g) =
∑

1≤j≤n

βλ(j)(αaλ(j)) =
∑

1≤j≤n

αβλ(j)aλ(j) =

= α
∑

1≤j≤n

βλ(j)aλ(j) = αa.

This equation shows that every subspace of C is 〈g〉-invariant.

3. Proof of the main results.

Theorem 1. Let G be a subgroup of GL(F,A). Suppose that every subspace of A is almost
G-invariant. Then A includes an FG-submodule C satisfying the following conditions:

(i) dimF (A/C) is finite;

(ii) every subspace of C is G-invariant.

Proof. If every subspace of A is G-invariant then all is proved. Suppose now that there are
elements a1 ∈ A and g1 ∈ G such that a1g1 /∈ a1F . Put d1 = a1(g1 − 1). It readily follows
that dimF (a1F + d1F ) = 2. By Lemma 3, A includes an F 〈g1〉-submodule D1 such that
dimF (A/D1) is finite and every subspace of D1 is 〈g1〉-invariant. If d1 /∈ D1, we put E1 = D1.
If d1 ∈ D1 then we may find a complement E1 to d1F in D1, D1 = d1F⊕E1 say, and d1 /∈ E1.
In both cases, E1 is an F 〈g1〉-submodule such that every subspace of E1 is 〈g1〉-invariant,
dimF (A/E1) is finite and (a1F + d1F )∩E1 = {0}. Put L1 = CoreG(E1). By our hypothesis,
L1 is an FG-submodule of A such that dimF (A/L1) is finite and every subspace of L1 is
〈g1〉-invariant.

If ag ∈ aF for every elements g ∈ G and a ∈ L1 then it suffices to define C = L1.
Therefore, we suppose that there are elements g2 ∈ G and a2 ∈ L1 such that a2(g2 − 1) =
d2 /∈ a2F . It readily follows that dimF (a2F + d2F ) = 2. Using the above arguments, we
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construct an FG-submodule L2 of L1 such that dimF (A/L2) is finite, (a2F +d2F )∩L2 = {0}
and every subspace of L2 is 〈g2〉-invariant. By the choice of L1, every subspace of L2 is also
〈g1〉-invariant.

We continue proceeding in this way. If every subspace of L2 is G-invariant then it suffices
to define C = L2. Otherwise, we iterate the same process. Here there appear the following
two possibilities:

(1) this process will finish after finitely many steps;
and
(2) this process is infinite.
In the first case we obtain an FG-submodule C such that dimF (A/C) is finite and every

subspace of C is G-invariant.
Consider the second case. Then we can choose in A an infinite subset of elements

{an | n ∈ N} and in a group G an infinite subset {gn | n ∈ N} of elements such that
the following conditions hold:

(a) anF + dnF = anF ⊕ dnF , where dn = an(gn − 1), n ∈ N;
(b) (anF ⊕ dnF ) ∩ (

⊕
1≤k≤n−1(akF ⊕ dkF )) = {0}, n ∈ N;

(c) angk ∈ anF , dngk ∈ dnF whenever k < n, n, k ∈ N.
Put B =

⊕
j∈N ajF , D =

⊕
j∈N djF . Then B ∩ D = 〈0〉. Let Z = CoreG(B). Then

dimF (B/Z) is finite, in particular, Z is non-zero. The inclusion Z ⊆ B implies that
Z ∩D = 〈0〉. Let a be a non-zero element of Z. Then

a = α1ak(1) + α2ak(2) + . . .+ αtak(t)

for some positive integers k(1) < k(2) < . . . < k(t), and non-zero elements α1, α2, . . . , αt ∈ F .
We have now

a(gk(1) − 1) = (α1ak(1) + α2ak(2) + . . .+ αtak(t))(gk(1) − 1) =

= α1ak(1)(gk(1) − 1) + α2ak(2)(gk(1) − 1) + . . .+ αtak(t)(gk(1) − 1).

By (c) if j > 1, then ak(j)gk(1) = vjak(j) for some vj ∈ F , so that ak(j)(gk(1) − 1) = vjak(j) −
ak(j) = (vj − 1)ak(j) and αjak(j)(gk(1) − 1) = αj(vj − 1)ak(j), 2 ≤ j ≤ t. Thus

a(gk(1) − 1) = α1dk(1) + α2(v2 − 1)ak(2) + . . .+ αt(vt − 1)ak(t).

Since α1 6= 0, α1dk(1) is a non-zero element of D. On the other hand, α2(v2 − 1)ak(2) + . . .+
αt(vt − 1)ak(t) ∈ B, so that

α1dk(1) + α2(v2 − 1)ak(2) + . . .+ αt(vt − 1)ak(t) /∈ B ≥ Z.

Hence is the case (2) we obtain a contradiction, which proves the result.

Theorem 2. Let G be a subgroup of GL(F,A). Suppose that every subspace of A is almost
G-invariant.

(i) if char(F ) = 0 then G includes a normal abelian torsion-free subgroup Z such that G/Z
is isomorphic to subgroup of L×V , where V is a subgroup of multiplicative group of F
and L is a subgroup of GLn(F ) for some positive integer n.

(ii) if char(F ) = p is a prime then G includes a normal abelian elementary p-subgroup Z
such that G/Z is isomorphic to a subgroup of L×V , where V is a subgroup of a multi-
plicative group of F , and L is a subgroup of GLn(F ) for some positive integer n.
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Proof. Theorem 1 shows that A includes an FG-submodule C such that dimF (A/C) is
finite and every subspace of C is G-invariant. Put K = CG(C). By Lemma 3.4 of paper [5]
V = G/K is isomorphic to a subgroup of a multiplicative group of a field F . Put now
T = CG(A/C). Since A/C has finite dimension, say n, L = G/T is isomorphic to a subgroup
of finite dimensional linear group GLn(F ). Finally, let Z = T ∩K, then Z stabilizes the series
of {0} ≤ C ≤ A. By a classical result due to Kaluznin (see, for example, [3, Theorem 1.C.1
and Proposition 1.C.3]) Z is either an elementary abelian p-subgroup if char(F ) = p > 0,
or a torsion-free abelian subgroup if char(F ) = 0. Finally, by Remak’s Theorem, we obtain
a new embedding of G/Z in the direct product G/K ×G/T = V × L.
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