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The purpose of this paper is to consider some generalizations of the class of functions having
zero integrals over balls of a fixed radius. We obtain an analog of John’s uniqueness theorem
for weighted spherical means on sphere.

И. М. Савостьянова, Вит. В. Волчков. О теореме Йона и ее обобщениях // Мат. Студiї. –
2013. – Т.40, №1. – C.16–22.

Цель данной статьи состоит в том, чтобы рассмотреть некоторые обобщения клас-
са функций, имеющих нулевые интегралы по шарам фиксированного радиуса. Получено
аналог теоремы единственности Йона для взвешенных сферических средних на сфере.

1. Introduction. Let Rn be the real Euclidean space of dimension n ≥ 2 with the Euclidean
norm | · |, and let BR = {x ∈ Rn : |x| < R}, R > 0. The classical theorem of John (see [1],
[2, Ch. 6]) asserts that if a function f ∈ C∞(BR) is such that its integral over each sphere
of fixed radius r contained in BR is zero and f = 0 in Br, then f = 0 in BR. An analogous
statement holds also for the class of functions with zero mean over balls. It was shown in
[3], [4] that the smoothness of the function f in the condition of the above theorem cannot
be weakened (see also [1], [2], where the cases n = 2 and 3 were considered).

The results in [3] essentially sharpen and generalize the theorem of John in various
directions. For example, the relationship between the order of smoothness of functions of
the given class and the set of nonzero coefficients in their Fourier expansions with respect to
spherical harmonics was discussed in [3]. A further development of tools offered in [3] made
it possible to obtain similar results on symmetric spaces (see [5]).

Uniqueness theorems for the indicated classes of functions play a key role in the solution
of a number of problems related to spherical means. We enumerate the most remarkable
results obtained by means of their use (see [4]): the final version of the local two-radii
theorem, the solution of the support problem for certain function classes, new two-radii
theorems in the theory of harmonic functions, the extreme variants of the Pompeiu problem,
uniqueness theorems for multiple lacunary trigonometric series, and others. These results
were the concluding stages in the series of investigations started by John, Delsarte more half
a century ago, and continued by Zalcman, Berenstein and others (see the monographs [3],
[5] with extensive bibliographies).

In this paper we obtain an analog of John’s uniqueness theorem for weighted spherical
means on two-dimensional sphere. A similar result on an Euclidean space was established

2010 Mathematics Subject Classification: 26B15, 44A15, 49Q15, 53C35, 53C65.
Keywords: spherical means; spherical cap; Legendre functions.

c© I. M. Savostyanova, Vit. V. Volchkov, 2013



ON A THEOREM OF JOHN AND ITS GENERALIZATIONS 17

before by V. V. Volchkov in [6]. However, the methods in [6] use the vector structure of Rn and
do not work for spaces with nonzero curvature. Also we note that the case under consideration
cannot be investigated by means of the general theory of transmutation operators (see [5])
which is a powerful tool for study of convolution equations with radial distributions on
various homogeneous spaces.

2. Statement of the main result. Let S2 be the standard unit sphere in R3 with the
inner metric d and area measure dξ, BR = {ξ ∈ S2 : d(o, ξ) < R} be the open geodesic ball
(spherical cap) of radius R with center at the point o = (0, 0, 1) ∈ S2. In what follows we
consider that r be a fixed number belonging to the interval (0; π) and r < R. Denote by Br

the closure of Br, Sr = {ξ ∈ S2 : d(o, ξ) = r}.
Let SO(3) be the group of rotations in R3. As usual we denote by N, Z, and Z+ the

sets of positive integers, integers, and non-negative integers numbers, respectively. For fixed
M ∈ Z+ we put

Ur,M(BR) =
{
f ∈ C(BR) :

∫
Sr

f(τξ)(ξ1 + iξ2)
Mdl(ξ) = 0 ∀τ ∈ SO(3) : τBr ⊂ BR

}
,

where ξ1, ξ2, ξ3 are the Cartesian coordinates of a point ξ ∈ S2 and dl(ξ) is the length element
on S2. For s ∈ Z+ ∪ {∞} we define U s

r,M(BR) = Ur,M(BR) ∩ Cs(BR).
For M = 0 the class Ur,M(BR) coincides with the class of functions f ∈ C(BR) satisfying

in BR−r the equation f ∗ σr = 0, where σr is the delta function concentrated on Sr, and “∗”
designates the convolution on a sphere. This case and its analogues for various homogeneous
spaces were investigated by many authors (see [5, part 3]). If M > 0 then the equation∫

Sr

f(τξ)(ξ1 + iξ2)
Mdl(ξ) = 0

is not reduced to the convolution equation with a radial distribution that makes impossible
application of the general theory from [5].

The main result of the present paper is

Theorem 1. Let f ∈ U∞r,M(BR) and f = 0 in Br. Then f = 0 in BR.

The proof of Theorem 1 is based on methods of harmonic analysis and integral equations,
and also uses some important results from the theory of special functions. We note that
Theorem 1 becomes invalid for the class U s

r,M(BR), s ∈ Z+. In addition, the radius of the
zero set of function f cannot be decreased in general.

3. Auxiliary statements. Let ξ = (ξ1, ξ2, ξ3) ∈ S2, ϕ, θ be the spherical coordinates of
a point ξ (0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π and ξ1 = sin θ sinϕ, ξ2 = sin θ cosϕ, ξ3 = cos θ). We
associate with each function f ∈ C(BR) the Fourier series

f(ξ) ∼
∞∑

k=−∞

fk(θ)e
ikϕ, θ ∈ (0, R), (1)

where

fk(θ) =
1

2π

∫ 2π

0

f o(ϕ, θ)e−ikϕdϕ, f o(ϕ, θ) = f(sin θ sinϕ, sin θ cosϕ, cos θ).
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Lemma 1. Let f ∈ U s
r,M(BR). Then fk(θ)eikϕ ∈ U s

r,M(BR) for any k ∈ Z.

Proof. For brevity we set fk(ξ) = fk(θ)e
ikϕ. Denote by gα the rotation of R3 through the

angle α in the plane (x1, x2). It follows from (1) that

fk(θ) =
1

2π

∫ 2π

0

f(gαξ)e
ikαdα. (2)

In particular, fk ∈ Cs(BR). Next, let τ ∈ SO(3) and τBr ⊂ BR. According to (2) one has∫
Sr

fk(τξ)(ξ1 + iξ2)
Mdl(ξ) =

1

2π

∫ 2π

0

∫
Sr

f(gατξ)(ξ1 + iξ2)
Mdl(ξ)eikαdα.

Hence, taking into account that gατBr ⊂ BR for any α ∈ [0, 2π] we obtain the desired
assertion.

Lemma 2. Let s ∈ N and assume that f ∈ U s
r,M(BR). Then

cosϕ
∂f o

∂θ
− sinϕ ctg θ

∂f o

∂ϕ
∈ U s−1

r,M (BR).

Proof. Let τ ∈ SO(3) and τBr ⊂ BR. Denote by at the rotation of R3 through the angle
(−t) in the plane (x2, x3). If |t| is sufficiently small then∫

τSr

F (atξ)PM(τ−1ξ)dl(ξ) = 0, (3)

where F (x) = f(x/|x|), PM(ξ) = (ξ1+iξ2)
M . Differentiating (3) with respect to t and putting

t = 0 one finds∫
τSr

h(ξ)PM(τ−1ξ)dl(ξ) = 0, where h(ξ) = ξ3
∂F

∂x2
(ξ)− ξ2

∂F

∂x3
(ξ).

This finishes the proof since

ho(ϕ, θ) = cosϕ
∂f o

∂θ
− sinϕ ctg θ

∂f o

∂ϕ
.

Lemma 3. Let s ∈ N and u(θ)eikϕ ∈ U s
r,M(BR) for some k ∈ Z. Then the functions

(u′(θ)− k ctg θu(θ))ei(k+1)ϕ and (u′(θ) + k ctg θu(θ))ei(k−1)ϕ belong to U s−1
r,M (BR).

Proof. Setting f(ξ) = u(θ)eikϕ we find

2

(
cosϕ

∂f o

∂θ
− sinϕ ctg θ

∂f o

∂ϕ

)
= (u′(θ)− k ctg θu(θ))ei(k+1)ϕ + (u′(θ) + k ctg θu(θ))ei(k−1)ϕ.

Now Lemma 3 follows from Lemmas 1 and 2.
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For the further references we present now some properties of the Legendre functions P µ
ν

(see [7, Ch. 3, §3, i.3.4, formula (6)]). If ν = l ∈ Z+, µ = m ∈ Z then (see [8, Ch. 3, §3, i.9,
formula (11)])

Pm
l (x) =

(
1 + x

1− x

)m
2 ∑

max(m,0)≤j≤l

(−1)j(l + j)!

(l − j)!(j −m)!j!

(
1− x

2

)j
. (4)

As usual the sum in (4) is equal to zero if the set of indexes of summation is empty.
Legendre functions are closely related to the Gegenbauer polynomials Cp

l (x) and the
Chebyshev polynomials Tl(x) (see [8, Ch. 9, §4, i.8, formulas (6′), (11′)]). We note the follo-
wing differentiation formulas

d

dx

(
C1
l (x)(1− x2)

1
2

)
= −(l + 1)Tl+1(x)(1− x2)−

1
2 , (5)

d

dx

(
C

n
2
l (x)(1− x2)

n−1
2

)
=

(l + 1)(n+ l − 1)

2− n
C

n−2
2

l+1 (x)(1− x2)
n−3
2 , n ∈ {3, 4, . . .}. (6)

These relations follows from [8, Ch. 9, §3, i.2, formulas (4), (5) and §4, i.8, formula (11′)].
Assume that numbers θ1, θ2 and θ1 + θ2 belong to the interval [0; π). The multiplication

formula

1

2π

∫ 2π

0

eikϕPl(cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ)dϕ = P k
l (cos θ1)P

−k
l (cos θ2), (7)

holds, where Pl = P 0
l (see [8, Ch. 2, §4, i.3, formula (2)]). Relation (7) can be written in the

form
1

π

∫ θ1+θ2

|θ1−θ2|
Pl(cos θ)Tk

(
cos θ1 cos θ2 − cos θ

sin θ1 sin θ2

)
×

× sin θdθ√
(cos θ − cos(θ1 + θ2))(cos(θ1 − θ2)− cos θ)

= P k
l (cos θ1)P

−k
l (cos θ2) (8)

(see [8, Ch. 3, §4, i.3, formula (7)]).
Next, for brevity we set

a = a(θ, t, r) =
cos θ − cos r cos t

sin r sin t
, b = b(θ, t, r) = (cos θ − cos(r + t))(cos(t− r)− cos θ).

Lemma 4. Let 0 < r < R < π, k ∈ N. Assume that Φ ∈ Ck+1[0, R], Φ = 0 on [0, r] and∫ t+r

|t−r|
Φ(θ) sin θTk(a)b−

1
2dθ = 0 (9)

for 0 < t < R− r. Then Φ = 0 on [0, R].

Proof. First of all we note that

1− a2 =
b

(sin r sin t)2
, (10)

db

dθ
= 2 sin θ(cos θ − cos r cos t). (11)
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Define the functions Xm,n (m ∈ Z+, n ∈ {2, 3, . . .}) by the equality

Xm,n(θ) =

{
sin θTm(a)b−

1
2 , n = 2;

sin θC
n−2
2

m (a)b
n−3
2 , n ≥ 3.

Relations (10), (11) and (5), (6) give the following differentiation formulas

d

dθ

(
Xm−1,4(θ)

sin θ

)
= m sin r sin tXm,2(θ), (12)

d

dθ

(
Xm−1,n+2(θ)

sin θ

)
=
m(m+ n− 2)

n− 2
sin r sin tXm,n(θ), n ≥ 3. (13)

Integrate (9) by parts k times with use (12) and (13). As a result we have∫ t+r

|t−r|
(DkΦ)(θ) sin θbk−

1
2dθ = 0, 0 < t < R− r, (14)

where D = 1
sin θ

d
dθ
. To study equation (14) first we consider the case where R ≤ 2r. Then

0 < t < R− r ≤ r and |t− r| = r− t < r. Since Φ = 0 on [0, r], from this and (14) it follows
that ∫ t+r

r

(DkΦ)(θ) sin θbk−
1
2dθ = 0, 0 < t < R− r. (15)

We rewrite (15) in the form∫ cos r

cos t

h1(x) ((x− cos t)(cos(t− 2r)− x))k−
1
2 dx = 0, r ≤ t < R, (16)

where h1(x) =
(
DkΦ

)
(arccosx). It follows from (16) that∫ t

r

h2(x)

(
sin

x+ t

2
sin

t− x− 2r

2
(cos(t− r)− cos(x− r))

)k− 1
2

dx = 0, r ≤ t < R,

where h2(x) = h1(cosx) sinx. Hence∫ 1

t

h3(x)(x− t)k−
1
2 g1(x, t)dx = 0, cos(R− r) < t ≤ 1, (17)

where

h3(x) =
h2(r + arccosx)√

1− x2
, g1(x, t) =

(
t+
√

1− x2 sin 2r − x cos 2r
)k− 1

2
.

Let cos(R− r) < y ≤ 1. We multiply (17) by (t− y)k−
1
2 and integrate with respect to t from

y to 1. Changing the order of integration, we obtain∫ 1

y

h3(x)

∫ x

y

((x− t)(t− y))k−
1
2 g1(x, t)dtdx = 0, cos(R− r) < y ≤ 1.

The substitution (x− y)z = x+ y − 2t in the inner integral yields∫ 1

y

h3(x)(x− y)2kg2(x, y)dx = 0, cos(R− r) < y ≤ 1, (18)
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where

g2(x, y) =

∫ 1

−1
(1− z2)k−

1
2 g1

(
x,
x+ y − (x− y)z

2

)
dz.

Differentiating 2k + 1 times with respect to y, in (18), we have

h3(y)−
∫ 1

y

h3(x)K(x, y)dx = 0, cos(R− r) < y ≤ 1,

where

K(x, y) =

∂2k+1

∂y2k+1

(
(x− y)2kg2(x, y)

)
(2k)!g2(y, y)

.

Thus, the function h3 is a solution of the homogeneous integral Volterra equation of the
second kind with the bounded kernel K(x, y). This means that h3 = 0 on (cos(R − r), 1).
Bearing in mind that Φ = 0 on [0, r] we complete the proof in the case R ≤ 2r.

Next, suppose that the statement of Lemma 4 is valid for a radius R ≤ mr, where m ≥ 2
is a fixed positive integer. We prove it for R ∈ (mr, (m + 1)r]. By the induction hypothesis
Φ = 0 on [0,mr]. As t+r < mr for t < (m−1)r, and |t−r| < (m−1)r for (m−1)r < t < R−r
from (14) equation (15) again follows. As above we conclude that Φ = 0 on [0, R].

4. Proof of Theorem 1. First of all we establish the following statement.

Lemma 5. Let f(ξ) = u(θ) ∈ U∞r,M(BR) and f = 0 in Br. Then f = 0 in BR.

Proof. Without loss of generality we may and do assume that R ≤ π. Let 0 < ε < R − r.
We consider a function wε satisfying the following conditions: 1) wε ∈ C∞[0, π]; 2) wε = 1
on [0, R− ε] and wε = 0 on [R− ε/2, π]. For θ ∈ [0, π] we set Φ(θ) = u(θ)wε(θ), where u = 0
on [R, π]. Then Φ ∈ C∞[0, π] and

Φ(θ) =
∞∑
l=0

αlPl(cos θ), (19)

where
αl =

2l + 1

2

∫ π

0

Φ(θ)Pl(cos θ) sin θdθ

(see [8, Ch. 3, §6, i.4, fomulas (21), (22)]). In addition, αl = O(l−c) as l → +∞ for any
fixed c > 0. In what follows we use the map at (defined in the proof of Lemma 2), where
0 < t < R− r − ε. By the hypothesis we have∫

Sr

F (atξ)(ξ1 + iξ2)
Mdl(ξ) = 0, (20)

where F (ξ) = Φ(arccos ξ3). Expansion (19) shows that

F (atξ) =
∞∑
l=0

αlPl(ξ3 cos t− ξ2 sin t).

Therefore (20) can be written in the form
∞∑
l=0

αl

∫ 2π

0

Pl(cos r cos t− sin r sin t cosϕ)e−iMϕdϕ = 0.
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Hence by formula (7) we obtain

∞∑
l=0

αlP
−M
l (cos r)PM

l (cos t) = 0. (21)

Since Tk(−x) = (−1)kTk(x), from (21), (8) and (9) we have the equation∫ t+r

|t−r|
Φ(θ) sin θTM(a(θ, t, r))(b(θ, t, r))

−1
2 dθ = 0, 0 < t < R− r − ε.

From this and Lemma 4 we derive that Φ = 0 on [0, R − ε]. In view of arbitrariness of
ε ∈ (0, R− r), f = 0 in BR.

We proceed to the proof of Theorem 1. It follows from the hypothesis, Lemma 1 and
formula (2) that fk ∈ U∞r,M(BR) and fk = 0 in Br for any k ∈ Z.

We prove by induction on k that fk = 0 in BR. If k = 0 then the statement follows from
Lemma 5. Assume that the statement is valid for some k ∈ Z and establish it for k + 1 and
k − 1. Using Lemma 3 we infer that

(sin θ)−k−1
d

dθ

(
(sin θ)k+1fk+1(θ)

)
eikϕ ∈ U∞r,M(BR),

(sin θ)k−1
d

dθ

(
(sin θ)1−kfk−1(θ)

)
eikϕ ∈ U∞r,M(BR).

Hence, keeping in mind that fk+1 and fk−1 are equal to zero in Br we conclude that these
functions are vanishing on BR. Thus, fk = 0 in BR for all k and f = 0 in BR.
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