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The purpose of this paper is to consider some generalizations of the class of functions having
zero integrals over balls of a fixed radius. We obtain an analog of John’s uniqueness theorem
for weighted spherical means on sphere.
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Hesp maHHO# CTATBU COCTOUT B TOM, YTOOBI PACCMOTPETH HEKOTODPBIE ODOOIEHUS KJIac-
ca (yHKIMA, IMEONUX HyJIeBble HHTErPAJIBI 110 MapaM (GUKCHPOBAHHOTO pajuyca. [lorydeno
AHAJIOT TeOPEMBI eMHCTBeHHOCTH VIOoHA J1JIsT B3BEIIEHHBIX C(hepraecKuX cpeHuX Ha cdepe.

1. Introduction. Let R™ be the real Euclidean space of dimension n > 2 with the Euclidean
norm | - |, and let Br = {x € R": |z| < R}, R > 0. The classical theorem of John (see [1],
[2, Ch. 6]) asserts that if a function f € C°(Bg) is such that its integral over each sphere
of fixed radius r contained in By is zero and f = 0 in B,, then f = 0 in Bz. An analogous
statement holds also for the class of functions with zero mean over balls. It was shown in
[3], [4] that the smoothness of the function f in the condition of the above theorem cannot
be weakened (see also [1], [2], where the cases n = 2 and 3 were considered).

The results in [3| essentially sharpen and generalize the theorem of John in various
directions. For example, the relationship between the order of smoothness of functions of
the given class and the set of nonzero coefficients in their Fourier expansions with respect to
spherical harmonics was discussed in [3]. A further development of tools offered in [3] made
it possible to obtain similar results on symmetric spaces (see [5]).

Uniqueness theorems for the indicated classes of functions play a key role in the solution
of a number of problems related to spherical means. We enumerate the most remarkable
results obtained by means of their use (see [4]): the final version of the local two-radii
theorem, the solution of the support problem for certain function classes, new two-radii
theorems in the theory of harmonic functions, the extreme variants of the Pompeiu problem,
uniqueness theorems for multiple lacunary trigonometric series, and others. These results
were the concluding stages in the series of investigations started by John, Delsarte more half
a century ago, and continued by Zalcman, Berenstein and others (see the monographs [3],
[5] with extensive bibliographies).

In this paper we obtain an analog of John’s uniqueness theorem for weighted spherical
means on two-dimensional sphere. A similar result on an Euclidean space was established
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before by V. V. Volchkov in [6]. However, the methods in [6] use the vector structure of R™ and
do not work for spaces with nonzero curvature. Also we note that the case under consideration
cannot be investigated by means of the general theory of transmutation operators (see [5])
which is a powerful tool for study of convolution equations with radial distributions on
various homogeneous spaces.

2. Statement of the main result. Let S? be the standard unit sphere in R? with the
inner metric d and area measure d¢, Br = {{ € S§?: d(0,£) < R} be the open geodesic ball
(spherical cap) of radius R with center at the point o = (0,0,1) € S?. In what follows we
consider that  be a fixed number belonging to the interval (0;7) and r < R. Denote by B,
the closure of B,, S, = {£ € S*: d(0,§) =r}.

Let SO(3) be the group of rotations in R3. As usual we denote by N, Z, and Z, the
sets of positive integers, integers, and non-negative integers numbers, respectively. For fixed

M € Z, we put
Uyi(Br) = { fecmn: [ feeE+ i&)Mdl(€) = 0 Vr € SO(3): 7B, C BR},

where &, &, &3 are the Cartesian coordinates of a point ¢ € S? and dI(€) is the length element
on §*. For s € Z; U {oo} we define U?,/(Bgr) = Uyn(Br) N C*(Bg).

For M = 0 the class U, »/(Bgr) coincides with the class of functions f € C(Bpg) satisfying
in Br_, the equation f *x o, = 0, where o, is the delta function concentrated on S,., and “%”
designates the convolution on a sphere. This case and its analogues for various homogeneous
spaces were investigated by many authors (see [5, part 3]). If M > 0 then the equation

. f(r&) (& +i&)Mdi(€) =0

is not reduced to the convolution equation with a radial distribution that makes impossible
application of the general theory from [5].
The main result of the present paper is

Theorem 1. Let f € U2q,(Bg) and f =0 in B,. Then f =0 in Bg.

The proof of Theorem 1 is based on methods of harmonic analysis and integral equations,
and also uses some important results from the theory of special functions. We note that
Theorem 1 becomes invalid for the class U} ,,(Br), s € Z,. In addition, the radius of the
zero set of function f cannot be decreased in general.

3. Auxiliary statements. Let £ = (£,&,&3) € S%, ¢, 6 be the spherical coordinates of
apoint £ (0 < ¢ <27, 0<0 <7 and & = sinfsing, & = sinfcosp, & = cosh). We
associate with each function f € C(Bpg) the Fourier series

f(g) ~ Z fk(9>eik@7 0 € (07 R)v (1>
k=—00
where
fr(0) = S " (o, 0)e *2dp,  f°(p,0) = f(sinfsin p,sin b cos @, cos 0).
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Lemma 1. Let f € U, /(Bg). Then fi(0)e™* € Us,(Bg) for any k € Z.

Proof. For brevity we set f*(£) = fi(0)e*¢. Denote by g, the rotation of R? through the
angle «v in the plane (xq,x3). It follows from (1) that

PO =5 [ flanetda. ©)

In particular, f* € C*(Bg). Next, let 7 € SO(3) and 7B, C Bg. According to (2) one has

FHre) (& + 16 )Mdl(g)—i/%/ F(gam&) (& + i&)Mdl(€)e™da
5. Y Ton )y Jg T NIeTS ST :

Hence, taking into account that g,7B, C By for any a € [0,27] we obtain the desired
assertion. O

Lemma 2. Let s € N and assume that f € U;,,(Br). Then

or —sin @ ct 06]""
a0 LA

Ccos € Ufj/}(BR).

Proof. Let 7 € SO(3) and 7B, C Bg. Denote by a; the rotation of R® through the angle
(—t) in the plane (xq,x3). If |¢| is sufficiently small then

/ _ Fla)Pulr ' ai(e) =0 3)

where F(z) = f(z/|z]), Pm(€) = (&1 +i&)M. Differentiating (3) with respect to ¢ and putting
t = 0 one finds

[ HOPuGOdE) = 0. where h(e) = &5(€) - &)
7Sy 2 T3

This finishes the proof since

of —sinpct 08]”"
0 LA

h®(¢,0) = cos o
Lemma 3. Let s € N and u(0)e*™ € U,/ (Bg) for some k € Z. Then the functions
(u'(0) — k ctg Ou(0))e’ ™2 and (u/'(0) + k ctg Ou(0))e'* 1% belong to USy/ (Br).
Proof. Setting f(£) = u(#)e™** we find

) fo ' ) fo
2 | cos —sinpctgf
( 7700 70

) = (u'(0) — kctg QU(Q))ei(k+1)s@ + (u/(0) + kctg QU(Q))ei(k—l)g

Now Lemma 3 follows from Lemmas 1 and 2. O]
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For the further references we present now some properties of the Legendre functions P*
(see |7, Ch. 3, §3, 1.3.4, formula (6)]). If v =1 € Z,, p = m € Z then (see [8, Ch. 3, §3, 1.9,

formula (11)])
PP(e) = (ii)m > (1;x)j. (W

s U= DG = m)lj!

As usual the sum in (4) is equal to zero if the set of indexes of summation is empty.
Legendre functions are closely related to the Gegenbauer polynomials C(x) and the
Chebyshev polynomials Tj(z) (see [8, Ch. 9, §4, 1.8, formulas (6), (11")]). We note the follo-

wing differentiation formulas

% (CH@)(1 = 2%)}) = =@+ DT (2)(1 = 233, (5)
% (i —a7) = (L+ 1)2(7:[ Ve @)1=, ne{34..} (©)

These relations follows from [8, Ch. 9, §3, 1.2, formulas (4), (5) and §4, 1.8, formula (11")].
Assume that numbers 61,60y and 6; 4 65 belong to the interval [0; 7). The multiplication

formula
1 21

o ¢'*? P)(cos 01 cos B3 — sin 0 sin 6, cos p)d = P (cos 61) P, " (cos 6y), (7)
T Jo

holds, where P, = P (see [8, Ch. 2, §4, 1.3, formula (2)]). Relation (7) can be written in the

form -
1 o2 _
_/ Py(cos )T, (cos 0, cos Oy — cos 9) 8
\

T J |0, —0s] sin #; sin 6,
" sin 0df
\/(cos 0 — cos(0; + 05))(cos(0; — 05) — cos )

(see [8, Ch. 3, §4, 1.3, formula (7)]).
Next, for brevity we set

= PF(cos01) P % (cos 05) (8)

0= a(f,tr) = cosf — cosrcost

snrsnt b=0b(0,t,r) = (cosf — cos(r + t))(cos(t — r) — cos ).

Lemma 4. Let 0 <r < R < 7, k € N. Assume that ® € C**1[0, R], ® = 0 on [0, 7] and

/ v ®(6) sin 0T}, (a)b~2df = 0 (9)
|

t—r|
for0 <t < R—r. Then ® =0 on [0, R].
Proof. First of all we note that

b
l-ad*= —-—— 1
¢ (sinrsint)?’ (10)
db
yri 2sin f(cosf — cosrcost). (11)



20 I. M. SAVOSTYANOVA, VIT. V. VOLCHKOV

Define the functions X,,,, (m € Z,, n € {2,3,...}) by the equality

xm,n(‘g) =

sin 07, (a)b~ 2, n=2;
n-2’
sinf0C? (a)b™z, n > 3.

Relations (10), (11) and (5), (6) give the following differentiation formulas
d m—14(0 o
20 <%2()> = msinrsintX,, »(6), (12)
d m—1.n+2(0 -2) .
0 (% slln?( )> = m(mn—i-_n ) sinrsintX,,,(6), n > 3. (13)
Integrate (9) by parts k times with use (12) and (13). As a result we have
t+r
/ (D*®)(0) sin 6" 2dd =0, 0<t<R—r, (14)
jt—r]

where D = ﬁd%. To study equation (14) first we consider the case where R < 2r. Then

O<t<R—r<rand|t—r|=r—t<r. Since ® =0 on [0,r], from this and (14) it follows
that

t+r
/ (D*®)(0) sin 6" 2d6 =0, 0<t<R—r. (15)

We rewrite (15) in the form

/COST hy(x) ((x — cost)(cos(t — 2r) — :L‘))k_% dr =0, r<t<R, (16)

ost

where hy(z) = (D*®) (arccos z). It follows from (16) that

1
2

! t t—x—2 i
/ ho(z) (sin x;— sin x2 7n(cos(t —r) — cos(r — r))> de =0, r<t<R,

where hy(x) = hy(cosx)sinz. Hence
1
/ hs(z)(z — t)k_%gl(x, t)de =0, cos(R—r)<t<l1, (17)
¢

where

h b3
hs(z) = 2(7’\;%38@7 gl(:v,t):<t+\/1—:1:28in2r—33(3082r> °.

Let cos(R—1) < y < 1. We multiply (17) by (¢t —y)*"2 and integrate with respect to ¢ from
y to 1. Changing the order of integration, we obtain

/ () / (z — )t — )} (e, t)dtde = 0, cos(R—1) <y < 1.

The substitution (x — y)z = z + y — 2t in the inner integral yields

/ hy(x)(z — y)* go(x,y)dr =0, cos(R—r1) <y < 1, (18)
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where

2
1
Differentiating 2k + 1 times with respect to y, in (18), we have

go(w,y) = /_l (1— 2% 2g (x Try- (oo y>z> dz.

hs(y) — / hs(x)K(z,y)de =0, cos(R—r)<y<1,

where hir
g (= y)* ga(2,y))

(2k)1g2(y, )
Thus, the function hjz is a solution of the homogeneous integral Volterra equation of the
second kind with the bounded kernel K(z,y). This means that h3 = 0 on (cos(R — r), 1).
Bearing in mind that ® = 0 on [0, r] we complete the proof in the case R < 2r.

Next, suppose that the statement of Lemma 4 is valid for a radius R < mr, where m > 2
is a fixed positive integer. We prove it for R € (mr, (m + 1)r|. By the induction hypothesis
® =0on [0,mr]. Ast+r <mrfort < (m—1)r,and [t—7| < (m—1)r for (m—1)r <t < R—r
from (14) equation (15) again follows. As above we conclude that ® = 0 on [0, R]. O

IC(x,y) =

4. Proof of Theorem 1. First of all we establish the following statement.
Lemma 5. Let f(§) = u(f) € U25,(Bg) and f =0 in B,. Then f =0 in Bg.

Proof. Without loss of generality we may and do assume that R < 7. Let 0 < e < R —r.
We consider a function w. satisfying the following conditions: 1) w. € C*[0,7]; 2) w. = 1
on [0, R—¢] and w. = 0 on [R—¢/2,x]. For 6 € [0, 7] we set ®(0) = u(d)w.(#), where u =0
on [R,7]. Then ® € C*°[0, 7] and

®(0) = >  aP(cosh), (19)

where ol 1 [
Q= T+ ®(0)P,(cos 0) sin Odo
0
(see [8, Ch. 3, §6, 1.4, fomulas (21), (22)]). In addition, oy = O(I™¢) as | — +oo for any
fixed ¢ > 0. In what follows we use the map a; (defined in the proof of Lemma 2), where

0 <t < R—r —e. By the hypothesis we have

/ Fladd) (6 + i) Mdi(€) = 0, (20)

r

where F(§) = ®(arccos3). Expansion (19) shows that

F(ai€) =Y ouP(&cost — &sint).

=0

Therefore (20) can be written in the form

e 27
Zal/ P,(cosrcost — sinrsint cos gO)e_iM(pd(p =0.
1=0 0
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Hence by formula (7) we obtain
ZalPl_M(cos r)PM(cost) = 0. (21)
1=0
Since Ty(—x) = (—=1)kTx(z), from (21), (8) and (9) we have the equation

t+r 1
/ () sin 0Ty (a(6,,1))(b(6,£,7)) Fdf =0, 0<t< R—r—c.
|

t—r|

From this and Lemma 4 we derive that ® = 0 on [0, R — ¢]. In view of arbitrariness of

e€(0,R—r), f=0in Bx. O

We proceed to the proof of Theorem 1. It follows from the hypothesis, Lemma 1 and
formula (2) that f* € U25,(Bg) and f* =0 in B, for any k € Z.

We prove by induction on k that f* = 0 in Bg. If k = 0 then the statement follows from
Lemma 5. Assume that the statement is valid for some k € Z and establish it for £ + 1 and
k — 1. Using Lemma 3 we infer that

(sin 0>k1di9 ((sin €)' fiy1(0)) €™ € U5 (Br),

(sin e)kl% ((sin 9)17’{]0]6,1(9)) eik‘P € :’OM(BR>

Hence, keeping in mind that f**! and f*~! are equal to zero in B, we conclude that these
functions are vanishing on Bg. Thus, f¥ = 0 in By for all k and f = 0 in Bp.
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