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In this paper we give differential equations characterizing timelike and spacelike curves
lying on hyperbolic sphere H and Lorentzian sphere S7 in the Minkowski space-time Ejf.
Furthermore, we give the integral characterizations of these curves in Ef.

M. Omngep, T. Kaxpaman, I. I. ¥Yriopay. Jluddepenyuarvhoe ypagnerus u unmezpasvoHble
TAPAKMEPU3AUUL BPEMEHHONO00OHBLT U NPOCMPAHCTNEEHHO NOJOOHBIT KPUBHIT 8 NPOCTMPAHCEE
Munkoeckozo Ef // Mar. Crymnii. — 2013. — T.40, Nel. — C.30-37.

B pabote momyennst guddepennmaababie ypaBHEHNsI, OMUCHIBAIONINE BPEMEHHOIIOM00HbIE 1
IIPOCTPAHCTBEHHO MO06HBIe KPHUBBIe, JleKalble Ha THIepbosmaeckoii cdepe HY u cdepe Jlo-
penna S; B npocrpanctse Munkosckoro Ef. Kpome Toro, mostydenbl HHTerpaibHUs OMUCAHUS
3THX KPUBBIX B Ef.

1. Introduction. In the local differential geometry, the special curves i.e., the curves whose
curvatures satisfy some relations or differential equations play an important role. One of
the well-known of these special curve is spherical curve which is the curve lying fully on
a sphere in the space. The problem of finding a differential equation for the spherical curves
was thought by many mathematicians so far. E. Kreyzig ([4]) found a differential equation
characterizing the spherical curves in the Euclidean 3-space E®. Y. C. Wong (|13, [14]) gave
differential equations and integral characterizations of spherical curves in £3. S. Breuer and
D. Gottlieb (|1]) studied spherical curves and gave explicit characterizations of spherical
curves. E. Kreyszig and A. Pendl ([5]) studied spherical curves and their analogue in affine
differential geometry. Characterizations of timelike and spacelike spherical curves in the
Minkowski 3-space E? have been given in the ref. [6]-[9], [11].

V. Dannon (|2]) showed that spherical curves in E* can be given by Frenet analogue
equations and then he gave an integral characterization for spherical curves in E*. Similar
characterizations of timelike and spacelike spherical curves lying on Lorentzian sphere have
been given by M. Kazaz, H. H. Ugurlu and A. Ozdemir ([3]) in the E*. They have found
differential equation systems characterizing the spherical curves in E}. They have also showed
that finding an integral characterization for a Lorentzian spherical E{-timelike or spacelike
curves is identical to finding it for E?-timelike and spacelike curves. M. Sezer ([12]) has
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studied differential equations and integral characterizations of spherical curves in E* by
using the differential equation system given by Dannon.

In this study, first we obtain differential equation system characterizing spacelike spherical
curve with timelike second binormal Ty. Then by using the method given in [12], we find
differential equations of spherical curves lying on hyperbolic sphere Hj. Later we give the
corresponding characterizations of curves lying on the Lorentzian sphere S} in the Minkowski
space-time E}. We also give integral characterizations of these curves.

2. Preliminaries. The Minkowski space-time Ej is an Euclidean space E* provided with
the standard flat metric given by (,) = —da3 + dz3 + dzj + dag, where (21, 22, x3,24) is the
rectangular coordinate system in E} ([15]).

Since this metric is an indefinite metric, an arbitrary vector v € E} can have one of
three causal characters: it can be spacelike if (v,v) > 0 or v = 0, timelike if (v,v) < 0
and null (lightlike) if (v,v) = 0 and v # 0. Similarly, an arbitrary curve a = «a(s) in E} is
locally spacelike, timelike or null (lightlike), if all of its velocity vectors o/(s) are respectively
spacelike, timelike or null. A timelike or spacelike curve «(s) is said to be parameterized by
arc length function s, if (o/(s),a/(s)) = F1 ([10]). Also, recall that the norm of a vector v is
given by ||[v|| = v/|{v, v)|. Therefore, v is a unit vector if (v, v) = +1. Next, vectors v, w in E}
are said to be orthogonal if (v, w) = 0. The velocity of the curve a(s) is given by ||a/(s)]|.

The hyperbolic sphere and the Lorentzian sphere with center m = (my, mg, ms, my) € E}
and radius r € R in the space-time E} are the hyper quadrics given by

ng {CI/: (a17a’27a’37a4) S Eil|<a—m7a_m> — _,,,,2}7 (1>
S?:{CL:(al,ag,ag,a4)eEﬂ<a_m’a_m>:r2}7 @)

respectively (|3]).

Let us denote the moving Frenet frame along the curve «(s) which is parameterized by arc
length function s in the space Ef by {1y, Ty, Ty, Ty }. Then Ty, Ty, T3 and T} are the tangent,
the principal normal, the first binormal and the second binormal vector fields, respectively.
Then for the curve «(s) the following Frenet equations are given in [15].

If T} is timelike and the others are spacelike, then the Frenet formulae has the form

T/ 0 k 0 0]][n
T2/ k?l 0 k?g 0 Tg
T 0 —ky 0 ks| |T5]°
T 0 0 —ks 0] |T}

where ]{31 = <T1/, T2> s ]{32 = <T2/, T3> s ]{?3 = <Té, T4>
If T; is timelike and the others are spacelike, then the Frenet equations are given by

T 0 k 0 07[7
TQ/ ]{31 0 ]{?2 0 T2
T 0 ke 0 k3| |T5]"
T 0 0 —ks O] |7}

where ]{31 = — <T1/,T2> s k?Q = <T2,,T3> 71{33 = <Té, T4> .
If T3 is timelike and the others are spacelike, then
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T] 0 kv 0 0 T

TQI o —kfl 0 ]{32 0 TQ
il |0 ke 0 k| T3]
T, 0 0 ks 0] |Ty

where ]{Zl = <T1/,T2> s ]{ZQ = — <T2,, T3> ,]{?3 = <Té, T4>
Finally, if T}, is timelike and the others are spacelike, then

7] [0 k0 0][nL

T =k 0 k0| |T
T 10—k 0 kg| |Tn|°
T 0 0 ks 0] |Ty

where k?l = <T1/, T2> s kg = <T2,, T3> s k3 = — <Té, T4>

If the curve «(s) is timelike we get (T7,T1) = —1, (T;,T;) =1, (i € {2,3,4}).

If the curve «(s) is spacelike then (77, T) = 1. In this case, one of the vectors Ty, T3 or Ty
is timelike.

3. Differential equations and integral characterizations of spacelike curves lying
on hyperbolic sphere HJ. In this section, we give differential equations and integral
characterizations of spacelike curves lying on the hyperbolic sphere HJ in the Minkowski
space-time E{. First, we give the following proposition characterizing the spacelike spherical
curves with timelike vector T and lying on hyperbolic sphere Hg in Ej.

Proposition 1. Let a(s): I C R — E} be a unit speed regular spacelike curve with smooth
curvature functions ki (s), k2(s), ks(s). Then the following conditions are equivalent.

i) a(s) lies on a HY sphere.
i) k1(s) # 0 and there are two C*-functions f(s) and g(s) such that

d d d
P obof, Lo hopt by, =y, 3

_:k2fa ds

ds
where p = 1/k;.

Proof. Assume that «a(s) lies on a hyperbolic sphere Hi with a radius a and a center .
Let the center zy be chosen as origin. Then we can write (a, ) = —a?. For the position
vector of the curve we have a = Z?Zl fiT:, where f; = f;(s) are the functions of arc length
parameter s and defined by f; = (o, T;); (1 <7 < 3), fs = — (o, Ty); and T; = T;(s) are the
Frenet vectors of the curve. Differentiating equality (o, o) = —a? with respect to s and by
using Frenet formulae, we obtain f; = (a,7T7) = 0. Differentiating again gives k; # 0 and
fo = (a, T3) = —p. Then we have p' = —ks f3 and writing f3 = —f we obtain p’ = ks f.
Similarly, differentiating the equality f3 = (v, T3) and using the obtained results we have
f' = —kop + ksg, where g = f;. Differentiating g = fy = — (o, Ty) gives ¢’ = ks f, and finally

we write p of g
P 9
ds 2f7 ds 2p + K39, ds 3f
Conversely, assume that (3) holds. Then using (3) and Frenet formulae we have 4 (a—
S fiT) = 0. Thus, o — 3, fiT; = constant = x and it is obtained that |la — zo|* =
f2+ [} — f? and & |la — 2o° = 0. Therefore, [a — o|” = constant = a?, i.e. o lies on the

hyperbolic sphere H§ of radius a about . O
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Theorem 1. Let a(s): I C R — E} be a unit speed regular spacelike curve with non-zero
smooth curvature functions ki(s), ka2(s), k3(s) and let ko and ks be of a fixed sign. Then, the
condition for the spacelike curve a(s) be a Hj-spherical curve is that p(s) = 1/k(s), k2(s)
and k3 (s) satisfy one of the following differential equations which are equivalent.

Nodf[1d (14 k ks d
i) s [k_d <k2 d§> + ﬁp} [ & =0.
ii) &[22 (%6 +0p)] - 2% =0, where £(s) = [} ka(u)du.

dg¢
m‘)h?( +)2—(@>2—2—K2 here ko/ks = h — [*ko(u)du and K i
az TP dg P = , where 2/ 3 = (5): 5(5) - fo 2(“) U an 15

constant.
iv) & [d% (2—2%) + Z—ip} - z—3d—p =0, where 0(s) = [ ks(u)du.

Proof. Let us consider the system of linear differential equations in (3). According to (3), we
can write

k‘lw

3

0P kot 1Y = hapf +kagf, 9% = kafo,
and thus we obtain the following differential equation f% ot p gflg = 0, which gives
fPtp’ =g =0C% (4)
where C' is an arbitrary constant. From Proposition 1 we have o = —pT5 — fT5 + g7, and

then (o, ) = f2+p?—g*. Using (4) it is obtained that («, ) is constant. Then the spacelike
curve a(s) lies on hyperbolic sphere H3 with radius C'. Eliminating f, g and their derivatives
from system (3), we find the following linear differential equation of third order in p

d[1d[1dp\ ke | hsdp
R e (e I P ) 5
ds {kg ds (1@ ds) * ksp] kods (5)

which represents the differential equation characterizing all spacelike curves lying on Hg of

radius C.
By using the transformation &(s) = [ ka(u)du, (s € I) from (5) we obtain the following

equation
d kg d2 kg dp
———=0. 6
ds[ <d52+p)] ks d€ ©)

On the other hand, substituting ko/ks = h(£) in equation (6), we obtain Bernoulli’s
equation with the unknown function h(§) and from this equation we get the nonlinear di-

fferential equation
d2p > [dp
h? —p*=K? 7
(d@ ”) (d&) T g

where K is arbitrary constant, h = ko / ks and (s fo ko (u
Also, changing the variable as 6(s fo k3(u du from the equatlon (5) we have
d d k’g dp k’Q k,’g dp B
a0 Lze <k2 d9> - kgp} dd ®)

Each of equations (6), (7) and (8) is equivalent to equation (5). O
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Theorem 2. Let a(s): I C R — E} be a unit speed regular spacelike curve with smooth
non-zero curvature functions ki (s), ka(s), k3(s). Then a(s) is a H3-spherical curve if and only
if p, ko and ks satisfy the integral relation

k ? k ?
02+ (Kl +/k—2psinh9d9> — <K2 —/k—QpcosthH) = (7,
3 3

where K1, Ko, C are arbitrary constants. Moreover, a spacelike curve satisfying this condition
lies on a hyperbolic sphere H3 of radius C' in E}.

Proof. Consider the second and third equations of (3). Eliminating g and its derivatives from
these equations, we have

d dks

= (k) + T2k Q

_J eV 3 —
K s 3 ksl Fs s ds

If we change variables in the above equation as 6(s) = [; ks(u)du which is assumed
non-degenerate, we get

d* f d (kap
") - (=) 10
= ( s ) (10)
Following the same way for f, we have
k — —— —kijg = —k3k 11
3d32 ds ds 39 3020, (11)

and making use of the transformation 6(s) = [ ks(u)du, it follows that

d*g kzl)
g = 12
2 9T T (12)

Using the method of variation of parameters, the general solutions of linear differential
equations (10) and (12) with constant coefficients are obtained as

£(0) = (Kl + [ £2psinh 66 ) sinh 6 + (KQ k2 ) cosh 9d9> cosh 6;

(13)
g(0) = (K3 — [ %2pcosh0d) sinh 6 + <K4 + [k psmhede) cosh 6,

respectively, where K, Ky, K3 and K, are arbitrary constants, and 6(s fo ks(u)du. Wri-
ting (13) into second or third equation of (3), it is seen that K3 = KZ,K4 = Kl. Thus
we obtain the functions f and g¢ satisfying the second and the third equation of (3), si-
multaneously as

f(0) = <K1 + [ 2 psinh 9d9> sinh + ( Ky — fg—gpcosh 0do ) cosh 6;

14
9(0) = (K + f%psinh@d@) coshf + (K5 — f’;—ipcoshﬁde sinh 0, "

where K7 and K, are arbitrary constants and 6(s fo ks(u
Substitution (14) into the first equation of (3) we have

do _ ke Kl—i—/@psinh&l@ sinh 6 + Kg—/@pcosh&l@ cosh@| . (15)
dg ks ks ks
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Then the triple (14) and (15) is equivalent to system (3). Furthermore, it is observed that
when arbitrary constants K; and K, are eliminated from (15), equation (8) and therefore
equation (5) are obtained.

On the other hand, it follows from (14) that the expression — f? + ¢g* can be written in

the form
2, 2 ky . ? ko 2
-ty =K+ k—gpsmh@d@ — | Ka — k—3pcosh0d0 . (16)
Substituting (16) into (4), we obtain the relation
k 2 k 2
p*+ (K1 —l—/k—zpsinthH) - <K2 —/k—zpcosthH) = (7, (17)

which satisfies the differential equation (5) characterizing H3-spherical spacelike curves.
The converse is also true. If (17) is satisfied for a spacelike curve, it is easily seen that
(17) satisfied the equation (5) which characterizes the Hj-spherical spacelike curves. For
this purpose, arbitrary constants K7, Ky and C' are eliminated from (17) and the differential
equation corresponding to (17) is established. Thus, we can say that integral relation (17) is
the implicit solution of differential equations (5) or (8) such that 6(s) = [ ks(u)du. O

4. Differential equations and integral characterizations of timelike and spacelike
curves lying on Lorentzian sphere S;. In this section, we give differential equations and
integral characterizations of timelike and spacelike curves lying on Lorentzian sphere S? in

the Minkowski space-time E. For this purpose, we use the following proposition given by
M. Kazaz, H. H. Ugurlu and A. Ozdemir ([3]).

Proposition 2 (|3]). Let a(s) be a unit speed regular curve with Frenet frame {T}, Ty, T3, Ty}
and smooth non-zero curvature functions ki (s), ka(s), k3(s). Then the following assertions are
equivalent.
i) a(s) lies on a S3 sphere.
ii) ki(s) # 0 and there are two C*-functions f(s) and g(s) such that
%g = kgf, Z—J; = —kzp + kgg, % = —kgf, lf&(S) is timelike,
% =kof, % = kop + ksg, % = —ksf, if d(s) is spacelike with timelike T5,
% = kaof, g—’; = kop + k3g, % = ks f, if d(s) is spacelike with timelike Tj,
where p = 1/k;.

Then differential equations and integral characterizations of the S$-spherical curves in £}
are given as follows. Proofs of the following theorems can be given by a similar way of the
proofs of Theorem 1 and Theorem 2.

Theorem 3. Let a(s) be a unit speed regular curve with smooth non-zero curvature func-
tions ky(s), ka(s), k3(s). Then, the condition for the curve a(s) to be a S}-spherical curve
is that p(s) = 1/ki(s), ko(s) and ks(s) satisfy one of the differential equations which are
equivalent.

Case 1. a(s) is a timelike curve.

i) ¢ |Ld(Ldp ko kadp _
D) [k3 ds <k2 ds) + k:3p:| thas =0
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+
3
2 2
iii) A2 (d—e —l—p) _ (ge) — p?* = K2, where ky/ks = h(¢) and &(s) = [ ky(u)du.
iv) % :% k_sd_g> + @p} + zg ;lg =0, where (s fo ks(u
s a spacelike curve with timelike principal normal T.
o d 14 d k ks d
i) 4|t (;—2—;’) —Bp| + e —
i) f o <%§ —p } + ﬁ—z%g =0, where {(s) = [ ka(u)du.
2 2 s

iii) —h? ‘;? - p) (‘;’g) + p* = K*, where ky/ks = h(§) and £(s) = [, ko(u)du.
iv) & :% (’Z—Z%g) — Z—ip] + 2335 =0, where 0(s) = [ ks(u
is a spacelike curve with timelike first binormal Tj.
o d[1d d k ksdp _

D) &[5 (é—’é o] b =

ii) d% k—z <% — p)} — 2—32—’2 =0, where &(s) = [ ko(u)du.

2 2

iii) h? (% - p) - (j—g) + 02 = K2, where ky/ks = h(€) and &(s) = [ ka(u)du.
iv) & [d% (2—3%) — ’;—ip] — Z—z% =0, where 0(s) = [ ks(u)du.
Theorem 4. Let a(s) be a unit speed regular curve with smooth non-zero curvature func-
tions ky(s), ko(s), k3(s). Then a(s) is a spherical curve lying on S} if and only if p, ko and k3

satisfy the following integral relation.
Case 1. a(s) is a timelike curve.

2 k2 . 2 k2 2 2
+ | Ky — | —psinfdf | + | Ky— | —pcosfdf | = C*~.
kg k?’

Case 2. «afs) is a spacelike curve with timelike principal normal Ts.

ks ? ko ?
—p* + (K1 + / ’ psm@d@) + (Kg + ? pcost@) = (2
3 3

Case 3. a(s) is a spacelike curve with timelike first binormal Tj.

k 2 k ?
—p? — (Kl—/k—Q,osinhede) + <K2+/k—2pcosh9dg) =2
3 3

where Ky, Ko, C are arbitrary constants. Moreover, a curve satisfying this condition lies on
a Lorentzian sphere S} of radius C.

5. Conclusion. Differential equations characterizing space curves play an important role in
the curve theory. In this paper, some differential equations characterizing Lorentzian spheri-
cal and hyperbolic spherical curves are given in the Minkowski space-time E;. According to
the casual characters of the curves and their Frenet vectors, different conditions are found for
timelike and spacelike curves to be spherical curves in E}. Furthermore, integral characteri-
zations of timelike and spacelike spherical curves are given in Ef.
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