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M. Önder, T. Kahraman, H. H. Uǧurlu
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In this paper we give differential equations characterizing timelike and spacelike curves
lying on hyperbolic sphere H3

0 and Lorentzian sphere S3
1 in the Minkowski space-time E4

1 .
Furthermore, we give the integral characterizations of these curves in E4

1 .

М. Ондер, Т. Кахраман, Г. Г. Угюрлу. Дифференциальные уравнения и интегральные
характеризации временноподобных и пространственно подобных кривых в пространсве
Минковского E4

1 // Мат. Студiї. – 2013. – Т.40, №1. – C.30–37.
В работе получены дифференциальные уравнения, описывающие временноподобные и

пространственно подобные кривые, лежащые на гиперболической сфере H3
0 и сфере Ло-

ренца S3
1 в пространстве Минковского E4

1 . Кроме того, получены интегральния описания
этих кривых в E4

1 .

1. Introduction. In the local differential geometry, the special curves i.e., the curves whose
curvatures satisfy some relations or differential equations play an important role. One of
the well-known of these special curve is spherical curve which is the curve lying fully on
a sphere in the space. The problem of finding a differential equation for the spherical curves
was thought by many mathematicians so far. E. Kreyzig ([4]) found a differential equation
characterizing the spherical curves in the Euclidean 3-space E3. Y. C. Wong ([13], [14]) gave
differential equations and integral characterizations of spherical curves in E3. S. Breuer and
D. Gottlieb ([1]) studied spherical curves and gave explicit characterizations of spherical
curves. E. Kreyszig and A. Pendl ([5]) studied spherical curves and their analogue in affine
differential geometry. Characterizations of timelike and spacelike spherical curves in the
Minkowski 3-space E3

1 have been given in the ref. [6]–[9], [11].
V. Dannon ([2]) showed that spherical curves in E4 can be given by Frenet analogue

equations and then he gave an integral characterization for spherical curves in E4. Similar
characterizations of timelike and spacelike spherical curves lying on Lorentzian sphere have
been given by M. Kazaz, H. H. Uǧurlu and A. Özdemir ([3]) in the E4

1 . They have found
differential equation systems characterizing the spherical curves in E4

1 . They have also showed
that finding an integral characterization for a Lorentzian spherical E4

1 -timelike or spacelike
curves is identical to finding it for E3

1 -timelike and spacelike curves. M. Sezer ([12]) has
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studied differential equations and integral characterizations of spherical curves in E4 by
using the differential equation system given by Dannon.

In this study, first we obtain differential equation system characterizing spacelike spherical
curve with timelike second binormal T4. Then by using the method given in [12], we find
differential equations of spherical curves lying on hyperbolic sphere H3

0 . Later we give the
corresponding characterizations of curves lying on the Lorentzian sphere S3

1 in the Minkowski
space-time E4

1 . We also give integral characterizations of these curves.

2. Preliminaries. The Minkowski space-time E4
1 is an Euclidean space E4 provided with

the standard flat metric given by 〈,〉 = −dx21 + dx22 + dx23 + dx24, where (x1, x2, x3, x4) is the
rectangular coordinate system in E4

1 ([15]).
Since this metric is an indefinite metric, an arbitrary vector v ∈ E4

1 can have one of
three causal characters: it can be spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0
and null (lightlike) if 〈v, v〉 = 0 and v 6= 0. Similarly, an arbitrary curve α = α(s) in E4

1 is
locally spacelike, timelike or null (lightlike), if all of its velocity vectors α′(s) are respectively
spacelike, timelike or null. A timelike or spacelike curve α(s) is said to be parameterized by
arc length function s, if 〈α′(s), α′(s)〉 = ∓1 ([10]). Also, recall that the norm of a vector v is
given by ‖v‖ =

√
|〈v, v〉|. Therefore, v is a unit vector if 〈v, v〉 = ±1. Next, vectors v, w in E4

1

are said to be orthogonal if 〈v, w〉 = 0. The velocity of the curve α(s) is given by ‖α′(s)‖.
The hyperbolic sphere and the Lorentzian sphere with center m = (m1,m2,m3,m4) ∈ E4

1

and radius r ∈ R+ in the space-time E4
1 are the hyper quadrics given by

H3
0 =

{
a = (a1, a2, a3, a4) ∈ E4

1

∣∣〈a−m, a−m〉 = −r2} , (1)
S3
1 =

{
a = (a1, a2, a3, a4) ∈ E4

1

∣∣〈a−m, a−m〉 = r2
}
, (2)

respectively ([3]).
Let us denote the moving Frenet frame along the curve α(s) which is parameterized by arc

length function s in the space E4
1 by {T1, T2, T3, T4}. Then T1, T2, T3 and T4 are the tangent,

the principal normal, the first binormal and the second binormal vector fields, respectively.
Then for the curve α(s) the following Frenet equations are given in [15].

If T1 is timelike and the others are spacelike, then the Frenet formulae has the form
T ′
1

T ′
2

T ′
3

T ′
4

 =


0 k1 0 0
k1 0 k2 0
0 −k2 0 k3
0 0 −k3 0



T1
T2
T3
T4

 ,
where k1 = 〈T ′

1, T2〉 , k2 = 〈T ′
2, T3〉 , k3 = 〈T ′

3, T4〉.
If T2 is timelike and the others are spacelike, then the Frenet equations are given by

T ′
1

T ′
2

T ′
3

T ′
4

 =


0 k1 0 0
k1 0 k2 0
0 k2 0 k3
0 0 −k3 0



T1
T2
T3
T4

 ,
where k1 = −〈T ′

1, T2〉 , k2 = 〈T ′
2, T3〉 , k3 = 〈T ′

3, T4〉 .
If T3 is timelike and the others are spacelike, then
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
T ′
1

T ′
2

T ′
3

T ′
4

 =


0 k1 0 0
−k1 0 k2 0
0 k2 0 k3
0 0 k3 0



T1
T2
T3
T4

 ,
where k1 = 〈T ′

1, T2〉 , k2 = −〈T ′
2, T3〉 , k3 = 〈T ′

3, T4〉.
Finally, if T4 is timelike and the others are spacelike, then

T ′
1

T ′
2

T ′
3

T ′
4

 =


0 k1 0 0
−k1 0 k2 0
0 −k2 0 k3
0 0 k3 0



T1
T2
T3
T4

 ,
where k1 = 〈T ′

1, T2〉 , k2 = 〈T ′
2, T3〉 , k3 = −〈T ′

3, T4〉.
If the curve α(s) is timelike we get 〈T1, T1〉 = −1, 〈Ti, Ti〉 = 1, (i ∈ {2, 3, 4}).
If the curve α(s) is spacelike then 〈T1, T1〉 = 1. In this case, one of the vectors T2, T3 or T4

is timelike.

3. Differential equations and integral characterizations of spacelike curves lying
on hyperbolic sphere H3

0 . In this section, we give differential equations and integral
characterizations of spacelike curves lying on the hyperbolic sphere H3

0 in the Minkowski
space-time E4

1 . First, we give the following proposition characterizing the spacelike spherical
curves with timelike vector T4 and lying on hyperbolic sphere H3

0 in E4
1 .

Proposition 1. Let α(s) : I ⊂ R→ E4
1 be a unit speed regular spacelike curve with smooth

curvature functions k1(s), k2(s), k3(s). Then the following conditions are equivalent.

i) α(s) lies on a H3
0 sphere.

ii) k1(s) 6= 0 and there are two C2-functions f(s) and g(s) such that

dρ

ds
= k2f,

df

ds
= −k2ρ+ k3g,

dg

ds
= k3f, (3)

where ρ = 1/k1.

Proof. Assume that α(s) lies on a hyperbolic sphere H3
0 with a radius a and a center x0.

Let the center x0 be chosen as origin. Then we can write 〈α, α〉 = −a2. For the position
vector of the curve we have α =

∑4
i=1 fiTi, where fi = fi(s) are the functions of arc length

parameter s and defined by fi = 〈α, Ti〉 ; (1 ≤ i ≤ 3), f4 = −〈α, T4〉; and Ti = Ti(s) are the
Frenet vectors of the curve. Differentiating equality 〈α, α〉 = −a2 with respect to s and by
using Frenet formulae, we obtain f1 = 〈α, T1〉 = 0. Differentiating again gives k1 6= 0 and
f2 = 〈α, T2〉 = −ρ. Then we have ρ′ = −k2f3 and writing f3 = −f we obtain ρ′ = k2f.

Similarly, differentiating the equality f3 = 〈α, T3〉 and using the obtained results we have
f ′ = −k2ρ+ k3g, where g = f4. Differentiating g = f4 = −〈α, T4〉 gives g′ = k3f, and finally
we write

dρ

ds
= k2f,

df

ds
= −k2ρ+ k3g,

dg

ds
= k3f.

Conversely, assume that (3) holds. Then using (3) and Frenet formulae we have d
ds
(α−∑4

2 fiTi) = 0. Thus, α −
∑4

2 fiTi = constant ≡ x0 and it is obtained that ‖α− x0‖2 =
f 2
2 + f 2

3 − f 2
4 and d

ds
‖α− x0‖2 = 0. Therefore, ‖α− x0‖2 = constant = a2, i.e. α lies on the

hyperbolic sphere H3
0 of radius a about x0.
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Theorem 1. Let α(s) : I ⊂ R → E4
1 be a unit speed regular spacelike curve with non-zero

smooth curvature functions k1(s), k2(s), k3(s) and let k2 and k3 be of a fixed sign. Then, the
condition for the spacelike curve α(s) be a H3

0 -spherical curve is that ρ(s) = 1/k1(s), k2(s)
and k3(s) satisfy one of the following differential equations which are equivalent.

i) d
ds

[
1
k3

d
ds

(
1
k2

dρ
ds

)
+ k2

k3
ρ
]
− k3

k2

dρ
ds

= 0.

ii) d
dξ

[
k2
k3

(
d2ρ
dξ2

+ ρ
)]
− k3

k2

dρ
dξ

= 0, where ξ(s) =
∫ s
0
k2(u)du.

iii) h2
(
d2ρ
dξ2

+ ρ
)2
−
(
dρ
dξ

)2
− ρ2 = K2, where k2/k3 = h(ξ), ξ(s) =

∫ s
0
k2(u)du and K is

constant.
iv) d

dθ

[
d
dθ

(
k3
k2

dρ
dθ

)
+ k2

k3
ρ
]
− k3

k2

dρ
dθ

= 0, where θ(s) =
∫ s
0
k3(u)du.

Proof. Let us consider the system of linear differential equations in (3). According to (3), we
can write

ρ
dρ

ds
= k2fρ, f

df

ds
= −k2ρf + k3gf, g

dg

ds
= k3fg,

and thus we obtain the following differential equation f df
ds

+ ρdρ
ds
− g dg

ds
= 0, which gives

f 2 + ρ2 − g2 = C2, (4)

where C is an arbitrary constant. From Proposition 1 we have α = −ρT2 − fT3 + gT4 and
then 〈α, α〉 = f 2+ρ2−g2. Using (4) it is obtained that 〈α, α〉 is constant. Then the spacelike
curve α(s) lies on hyperbolic sphere H3

0 with radius C. Eliminating f, g and their derivatives
from system (3), we find the following linear differential equation of third order in ρ

d

ds

[
1

k3

d

ds

(
1

k2

dρ

ds

)
+
k2
k3
ρ

]
− k3
k2

dρ

ds
= 0, (5)

which represents the differential equation characterizing all spacelike curves lying on H3
0 of

radius C.
By using the transformation ξ(s) =

∫ s
0
k2(u)du, (s ∈ I) from (5) we obtain the following

equation

d

dξ

[
k2
k3

(
d2ρ

dξ2
+ ρ

)]
− k3
k2

dρ

dξ
= 0. (6)

On the other hand, substituting k2/k3 = h(ξ) in equation (6), we obtain Bernoulli’s
equation with the unknown function h(ξ) and from this equation we get the nonlinear di-
fferential equation

h2
(
d2ρ

dξ2
+ ρ

)2

−
(
dρ

dξ

)2

− ρ2 = K2, (7)

where K is arbitrary constant, h = k2/k3 and ξ(s) =
∫ s
0
k2(u)du.

Also, changing the variable as θ(s) =
∫ s
0
k3(u)du, from the equation (5) we have

d

dθ

[
d

dθ

(
k3
k2

dρ

dθ

)
+
k2
k3
ρ

]
− k3
k2

dρ

dθ
= 0. (8)

Each of equations (6), (7) and (8) is equivalent to equation (5).
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Theorem 2. Let α(s) : I ⊂ R → E4
1 be a unit speed regular spacelike curve with smooth

non-zero curvature functions k1(s), k2(s), k3(s). Then α(s) is a H3
0 -spherical curve if and only

if ρ, k2 and k3 satisfy the integral relation

ρ2 +

(
K1 +

∫
k2
k3
ρ sinh θdθ

)2

−
(
K2 −

∫
k2
k3
ρ cosh θdθ

)2

= C2,

whereK1, K2, C are arbitrary constants. Moreover, a spacelike curve satisfying this condition
lies on a hyperbolic sphere H3

0 of radius C in E4
1 .

Proof. Consider the second and third equations of (3). Eliminating g and its derivatives from
these equations, we have

k3
d2f

ds2
− dk3

ds

df

ds
+ k33f = −k3

d

ds
(k2ρ) +

dk3
ds

k2ρ. (9)

If we change variables in the above equation as θ(s) =
∫ s
0
k3(u)du which is assumed

non-degenerate, we get
d2f

dθ2
+ f = − d

dθ

(
k2ρ

k3

)
. (10)

Following the same way for f , we have

k3
d2g

ds2
− dk3

ds

dg

ds
− k33g = −k23k2ρ, (11)

and making use of the transformation θ(s) =
∫ s
0
k3(u)du, it follows that

d2g

dθ2
− g = −k2ρ

k3
. (12)

Using the method of variation of parameters, the general solutions of linear differential
equations (10) and (12) with constant coefficients are obtained asf(θ) =

(
K1 +

∫
k2
k3
ρ sinh θdθ

)
sinh θ +

(
K2 −

∫
k2
k3
ρ cosh θdθ

)
cosh θ;

g(θ) =
(
K3 −

∫
k2
k3
ρ cosh θdθ

)
sinh θ +

(
K4 +

∫
k2
k3
ρ sinh θdθ

)
cosh θ,

(13)

respectively, where K1, K2, K3 and K4 are arbitrary constants, and θ(s) =
∫ s
0
k3(u)du. Wri-

ting (13) into second or third equation of (3), it is seen that K3 = K2, K4 = K1. Thus
we obtain the functions f and g satisfying the second and the third equation of (3), si-
multaneously asf(θ) =

(
K1 +

∫
k2
k3
ρ sinh θdθ

)
sinh θ +

(
K2 −

∫
k2
k3
ρ cosh θdθ

)
cosh θ;

g(θ) =
(
K1 +

∫
k2
k3
ρ sinh θdθ

)
cosh θ +

(
K2 −

∫
k2
k3
ρ cosh θdθ

)
sinh θ,

(14)

where K1 and K2 are arbitrary constants and θ(s) =
∫ s
0
k3(u)du.

Substitution (14) into the first equation of (3) we have

dρ

dθ
=
k2
k3

[(
K1 +

∫
k2
k3
ρ sinh θdθ

)
sinh θ +

(
K2 −

∫
k2
k3
ρ cosh θdθ

)
cosh θ

]
. (15)
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Then the triple (14) and (15) is equivalent to system (3). Furthermore, it is observed that
when arbitrary constants K1 and K2 are eliminated from (15), equation (8) and therefore
equation (5) are obtained.

On the other hand, it follows from (14) that the expression −f 2 + g2 can be written in
the form

−f 2 + g2 =

(
K1 +

∫
k2
k3
ρ sinh θdθ

)2

−
(
K2 −

∫
k2
k3
ρ cosh θdθ

)2

. (16)

Substituting (16) into (4), we obtain the relation

ρ2 +

(
K1 +

∫
k2
k3
ρ sinh θdθ

)2

−
(
K2 −

∫
k2
k3
ρ cosh θdθ

)2

= C2, (17)

which satisfies the differential equation (5) characterizing H3
0 -spherical spacelike curves.

The converse is also true. If (17) is satisfied for a spacelike curve, it is easily seen that
(17) satisfied the equation (5) which characterizes the H3

0 -spherical spacelike curves. For
this purpose, arbitrary constants K1, K2 and C are eliminated from (17) and the differential
equation corresponding to (17) is established. Thus, we can say that integral relation (17) is
the implicit solution of differential equations (5) or (8) such that θ(s) =

∫ s
0
k3(u)du.

4. Differential equations and integral characterizations of timelike and spacelike
curves lying on Lorentzian sphere S3

1 . In this section, we give differential equations and
integral characterizations of timelike and spacelike curves lying on Lorentzian sphere S3

1 in
the Minkowski space-time E4

1 . For this purpose, we use the following proposition given by
M. Kazaz, H. H. Uǧurlu and A. Özdemir ([3]).

Proposition 2 ([3]). Let α(s) be a unit speed regular curve with Frenet frame {T1, T2, T3, T4}
and smooth non-zero curvature functions k1(s), k2(s), k3(s). Then the following assertions are
equivalent.

i) α(s) lies on a S3
1 sphere.

ii) k1(s) 6= 0 and there are two C2-functions f(s) and g(s) such that
dρ
ds

= k2f,
df
ds

= −k2ρ+ k3g,
dg
ds

= −k3f, if ~α(s) is timelike,
dρ
ds

= k2f,
df
ds

= k2ρ+ k3g,
dg
ds

= −k3f, if ~α(s) is spacelike with timelike T2,
dρ
ds

= k2f,
df
ds

= k2ρ+ k3g,
dg
ds

= k3f, if ~α(s) is spacelike with timelike T3,
where ρ = 1/k1.

Then differential equations and integral characterizations of the S3
1-spherical curves in E4

1

are given as follows. Proofs of the following theorems can be given by a similar way of the
proofs of Theorem 1 and Theorem 2.

Theorem 3. Let α(s) be a unit speed regular curve with smooth non-zero curvature func-
tions k1(s), k2(s), k3(s). Then, the condition for the curve α(s) to be a S3

1 -spherical curve
is that ρ(s) = 1/k1(s), k2(s) and k3(s) satisfy one of the differential equations which are
equivalent.
Case 1. α(s) is a timelike curve.

i) d
ds

[
1
k3

d
ds

(
1
k2

dρ
ds

)
+ k2

k3
ρ
]
+ k3

k2

dρ
ds

= 0.
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ii) d
dξ

[
k2
k3

(
d2ρ
dξ2

+ ρ
)]

+ k3
k2

dρ
dξ

= 0, where ξ(s) =
∫ s
0
k2(u)du.

iii) −h2
(
d2ρ
dξ2

+ ρ
)2
−
(
dρ
dξ

)2
− ρ2 = K2, where k2/k3 = h(ξ) and ξ(s) =

∫ s
0
k2(u)du.

iv) d
dθ

[
d
dθ

(
k3
k2

dρ
dθ

)
+ k2

k3
ρ
]
+ k3

k2

dρ
dθ

= 0, where θ(s) =
∫ s
0
k3(u)du.

Case 2. α(s) is a spacelike curve with timelike principal normal T2.

i) d
ds

[
1
k3

d
ds

(
1
k2

dρ
ds

)
− k2

k3
ρ
]
+ k3

k2

dρ
ds

= 0.

ii) d
dξ

[
k2
k3

(
d2ρ
dξ2
− ρ
)]

+ k3
k2

dρ
dξ

= 0, where ξ(s) =
∫ s
0
k2(u)du.

iii) −h2
(
d2ρ
dξ2
− ρ
)2
−
(
dρ
dξ

)2
+ ρ2 = K2, where k2/k3 = h(ξ) and ξ(s) =

∫ s
0
k2(u)du.

iv) d
dθ

[
d
dθ

(
k3
k2

dρ
dθ

)
− k2

k3
ρ
]
+ k3

k2

dρ
dθ

= 0, where θ(s) =
∫ s
0
k3(u)du.

Case 3. α(s) is a spacelike curve with timelike first binormal T3.

i) d
ds

[
1
k3

d
ds

(
1
k2

dρ
ds

)
− k2

k3
ρ
]
− k3

k2

dρ
ds

= 0.

ii) d
dξ

[
k2
k3

(
d2ρ
dξ2
− ρ
)]
− k3

k2

dρ
dξ

= 0, where ξ(s) =
∫ s
0
k2(u)du.

iii) h2
(
d2ρ
dξ2
− ρ
)2
−
(
dρ
dξ

)2
+ ρ2 = K2, where k2/k3 = h(ξ) and ξ(s) =

∫ s
0
k2(u)du.

iv) d
dθ

[
d
dθ

(
k3
k2

dρ
dθ

)
− k2

k3
ρ
]
− k3

k2

dρ
dθ

= 0, where θ(s) =
∫ s
0
k3(u)du.

Theorem 4. Let α(s) be a unit speed regular curve with smooth non-zero curvature func-
tions k1(s), k2(s), k3(s). Then α(s) is a spherical curve lying on S3

1 if and only if ρ, k2 and k3
satisfy the following integral relation.
Case 1. α(s) is a timelike curve.

ρ2 +

(
K1 −

∫
k2
k3
ρ sin θdθ

)2

+

(
K2 −

∫
k2
k3
ρ cos θdθ

)2

= C2.

Case 2. α(s) is a spacelike curve with timelike principal normal T2.

−ρ2 +
(
K1 +

∫
k2
k3
ρ sin θdθ

)2

+

(
K2 +

∫
k2
k3
ρ cos θdθ

)2

= C2.

Case 3. α(s) is a spacelike curve with timelike first binormal T3.

−ρ2 −
(
K1 −

∫
k2
k3
ρ sinh θdθ

)2

+

(
K2 +

∫
k2
k3
ρ cosh θdθ

)2

= C2,

where K1, K2, C are arbitrary constants. Moreover, a curve satisfying this condition lies on
a Lorentzian sphere S3

1 of radius C.

5. Conclusion. Differential equations characterizing space curves play an important role in
the curve theory. In this paper, some differential equations characterizing Lorentzian spheri-
cal and hyperbolic spherical curves are given in the Minkowski space-time E4

1 . According to
the casual characters of the curves and their Frenet vectors, different conditions are found for
timelike and spacelike curves to be spherical curves in E4

1 . Furthermore, integral characteri-
zations of timelike and spacelike spherical curves are given in E4

1 .
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