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Let Mk be the set of k-valued meromorphic in G = {z : r0 6 |z|} functions with a branch
point of order k− 1 at ∞; let E∗ be a set of circles with finite sum of radii. Denote M∗(r, f) =
max |f(z)|, z ∈ {teiθ : 0 6 θ 6 2kπ, r0 6 t 6 r}\E∗, f ∈Mk;m(r, f) = 1

2πk

∫ 2πk

0
ln+|f(reiθ)|dθ.

If f ∈ Mk is a solution of the equation P (z, f, f ′) = 0 and P is a polynomial in all variables
then either |f(reiθ)| < rν , reiθ ∈ G \ E∗, ν > 0 or m(r, f) has growth order ρ > 1

2k , and the
following equality holds lnM∗(r, f) = (c+ o(1))rρ, c 6= 0, r → +∞.

А. З. Мохонько, А. А. Мохонько. О порядке роста решений дифференциальных уравнений
в окрестности точки ветвления // Мат. Студiї. – 2013. – Т.40, №1. – C.53–65.

ПустьMk — множество k-значных мероморфных в G = {z : r0 6 |z|} функций с точкой
ветвления порядка k− 1 в∞; пусть E∗ — некоторое множество кругов с конечной суммой
радиусов. Обозначим M∗(r, f) = max |f(z)|, z ∈ {teiθ : 0 6 θ 6 2kπ, r0 6 t 6 r} \ E∗, f ∈
Mk; m(r, f) = 1

2πk

∫ 2πk

0
ln+ |f(reiθ)|dθ. Если f ∈ Mk — решение уравнения P (z, f, f ′) = 0,

P — многочлен по всем переменным, то либо |f(reiθ)| < rν , reiθ ∈ G \ E∗, ν > 0, либо
m(r, f) имеет порядок роста ρ > 1

2k и выполняется равенство lnM∗(r, f) = (c + o(1))rρ,
c 6= 0, r → +∞.

Differential equations P (z, f, f ′, f ′′, f ′′′) = 0 (where P is a polynomial in all variables)
may have entire transcendental solutions of zero growth order (see [1, p. 224–226]). V. V. Zy-
moglyad showed in [2] that differential equations P (z, f, f ′, f ′′) = 0, P is a polynomial in
all variables, do not have entire transcendental solutions of zero growth order. In this paper
we obtain asymptotic estimates for meromorphic solutions of first order algebraic equations.
We show that this entails, in particular, the fact that entire transcendental solutions of
P (z, f, f ′) = 0, P is a polynomial in all variables, have the growth order ρ, 1

2
6 ρ < +∞.

Recall some definitions and properties.
Let (g, ez0), g = {z : |z − z0| < δz0} be a regular element or an element of the form

ez0(z) =
∑+∞

j=−s aj(z − z0)
j, z ∈ g = {z : |z − z0| < δz0}, s ∈ N. Suppose the element

(g, ez0) can be meromorphically continued along an arbitrary continuous curve L : [0, 1] →
G = {z : r0 6 |z| < +∞}, L(0) = z0, L(1) = z1; outcome element is either a regular
element ez1(z), z ∈ {z : |z− z1| < δz1} or an element of the form ẽz1(z) =

∑+∞
j=−m ãj(z− z0)j,

z ∈ {z : |z − z1| < δ̃z1}, m ∈ N. It is possible that for an arbitrary z1 ∈ G there exists
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an infinite set of distinct elements with the center z1 that are continued from the element
(g, ez0). The set of all such elements is denoted by F (z), z ∈ G and say that F (z), z ∈ G,
is meromorphic in the domain G function, generated by the element (g, ez0).

Let the curve L be closed: L(0) = L(1) = z0, ν(L, 0) = s be the count of loops of
the curve L around the point 0. The curve L is homotopic in G to the curve cs : z =
|z0|ei(ϕ0+2πsτ), 0 6 τ 6 1, cs(0) = z0 = cs(1) that loops s times the circle of radius |z0| with
the center at 0. If a meromorphic element (g, e0) is continued along the curve L and along
the curve cs, the results coincide: this is an element centered at z0.

Assume that the meromorphic extension of the element (g, e0) along the circle c1 : z =
|z0|ei(ϕ0+2πτ), 0 6 τ 6 1, c1(0) = z0 = c1(1) that loops once around the circle with the radius
|z0| and the center at 0, is different from the initial one. If there exists k ∈ N such that the
meromorphic extension of the element (g, e0) along the curve ck : z = |z0|ei(ϕ0+2πkτ), 0 6
τ 6 1, ck(0) = z0 = ck(1) that goes k times around the circle of radius |z0| centered at the
origin, generates the initial element (g, e0) then the point ∞ is a finite order branch point.
Let k, k ∈ N be the least one with the property described above. Then the number k − 1 is
the branching order of the point∞. In this case for any z1 ∈ G there exist exactly k distinct
elements centered at z1 that are extensions of the element (g, ez0). That means F (z), z ∈ G
is a k-valued meromorphic in the domain G function generated by the element (g, ez0).

Let Mk be the set of k-valued meromorphic in G = {riθ : 0 6 θ 6 2πk, r0 6 r} functions
with the branch point of order k−1 at∞; other singular points of function f ∈Mk are poles
with the only possible concentration point at∞. Let Ak be the set of k-valued analytic in G
functions which have unique singular point at infinity: algebraic branch point of order k− 1;
therefore Ak ⊂Mk.

Rewrite z, z ∈ C \ {0} in the exponential form: z = reiθ. A function f ∈ Mk can be
considered as a single-valued f(z), z ∈ G = {reiθ : 0 6 θ 6 2πk, r0 6 r}, on the Riemann
surface G = {reiθ : 0 6 θ 6 2πk, r0 6 r}.

Consider the differential equation∑
κ+ς=p

fκf ′ςvκς(z)zτκς =
∑

κ+ς<p

wκς(z)fκf ′ς , p ∈ N, κ, ς ∈ N ∪ {0}, (1)

|wκς(z)| < |z|aκς , vκς(z) = cκς + o(1), z →∞,
z ∈ G = {reiθ : 0 6 θ 6 2kπ, r0 6 r < +∞}, k ∈ N, τκς , aκς ∈ R, cκς ∈ C,

vκς(z), wκς(z), z ∈ G are analytic functions, for example, for some κ, ς, κ+ ς = p, vκς(z) =
cos 1√

z
, and for κ, ς such that κ + ς < p, wκς(z) = zaκς−ε Ln z, ε > 0.

By definition, vκς(z) ≡ 0 if cκς = 0; let ∃κ∗, ς∗ ∈ N ∪ {0} :

κ∗ + ς∗ = p, cκ∗ς∗ 6= 0. (2)

As E∗ we denote a set of circles in the domain G with a finite sum of radii.
Denote

m(r, f) =
1

2πk

∫ 2πk

0

ln+ |f(reiθ)|dθ, (3)

M∗(r, f) = max |f(z)|, z ∈ {teiθ : 0 6 θ 6 2kπ, r0 6 t 6 r} \Q,

Q ⊂ E∗ the set of circles with centers at zeros and poles of f with a finite sum of radii (see
(28)). By definition, m(r, f) 6 lnM∗(r, f), r 6∈ ∆, mes∆ < +∞.
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Theorem 1. Let f ∈Mk be a solution of equation (1). Then either

∃ d = d(ε) : |f(reiθ)| < rν+ε, reiθ ∈ G \ E∗, r > d, (4)

or m(r, f) has growth order ρ > 1
2k

and the following equality holds

lnM∗(r, f) = (c+ o(1))rρ, c 6= 0, c, ρ = const, r → +∞. (5)

Moreover,

a) there exists a finite (maybe empty) set of angles {z = teiθ : r0 6 t < +∞, ηκ < θ < γκ},
such that ∀ ε > 0 ∀ ε > 0 ∃ d :

ln f(z) = (cκ + g(z))zρκ , |g(z)| < ε, z ∈ {teiθ : d 6 t, ηκ + ε 6 θ 6 γκ − ε}; (6)

b) there exists a finite (maybe empty) set of rays {z = teiϕs : r0 6 t < +∞}, for which

ln |f(reiϕs)| = o(rρ), r ∈ [r0,+∞) \∆, mes∆ < +∞; (7)

c) on the complement to these angles and rays (in the domain G)

|f(reiθ)| < rν+ε, ε > 0, r > r(θ), reiθ 6∈ E∗. (8)

Numbers ηκ, γκ, cκ, ρκ, ρ, c, ϕs, ν, are defined in view of equation (1); E∗ is any set of circles
with a finite sum of radii.

If a solution f ∈Mk of equation (1) has the characteristic m(r, f) of growth order ρ = 1
2k
,

then for some η ∈ R ∀ ε > 0 ∀ ε > 0 ∃ d :

ln f(z) = z
1
2k (c+ g(z)), |g(z)| < ε, z ∈ {teiθ : d 6 t, η + ε 6 θ 6 η + 2πk − ε}, (9)

and on the ray {z = teiη : r0 6 t < +∞}

ln |f(reiη)| = o(r
1
2k ), r ∈ [r0,+∞) \∆, mes∆ < +∞. (10)

Remark 1. If a solution (1) is an entire function f(z), z ∈ C (thus k = 1) then the
characteristic m(r, f) = T (r, f) (see [3]). If the estimate (4) holds, then f is a polynomial of
a degree not grater than ν. Otherwise the characteristicm(r, f) has growth order ρ > 1

2k
= 1

2
,

and f is an entire transcendental function of order ρ > 1
2
([4]).

Example 1. The function f(z) = cos 2k
√
z, z ∈ C, from the ring Ak is a solution of the

equation f 2 + f ′24k2z2−
1
k = 0, has growth order ρ = 1

2k
. Moreover, ln f(z) = 2k

√
z(−i +

o(1)), z = reiθ ∈ {teiθ : d 6 t, 0 < θ < 2πk}, θ = const, which means that (6) holds, and on
the ray {z : z = r > 0} statement (7) is valid.

Remark 2. It will be proved that if characteristic equation (14) does not depend on L then
for a solution f ∈Mk of equation (1) the following inequality holds

|f(z)| < |z|ν+ε, z ∈ {z = reiθ : 0 6 θ 6 2πk, r > d} \ E∗. (11)

Example 2. The Weierstrass elliptic function ℘(z), z ∈ C is meromorphic with growth order
ρ = 2 ([5, V.2, p. 422]). It is a solution of the equation (f ′)2 = 4f 3−g2f−g3, g2, g2 = const,
([5, V.2, p. 362]). For the Weierstrass function estimates (11), (4) hold true.
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Remark 3. If in characteristic equation (14) all degrees dj 6 0, then for angle coefficients
of the Newton diagram of equation (1) we have 0 > ρ1 > . . . > ρT . For this case it will be
proved that (11) is valid.

Example 3. The function f(z) =
√
z, z ∈ C, is a solution of the equation 2ff ′ = 1. For

this function estimate (11) is valid.

Proof of Theorem 1. If f ∈Mk is a solution of (1) then f has growth order µ, 0 6 µ < +∞
([6]). Let (see (1) and below)

n = max{ς : κ + ς = p, cκς 6= 0}, q = min{ς : κ + ς = p, cκς 6= 0}. (12)

Divide both parts of (1) by fp(z). After a simple transformation and coefficients reassigning
this equation can be presented as

(zf ′(z)

f(z)

)n
+

n−q∑
j=1

(zf ′(z)

f(z)

)n−j
vj(z)zdj = ω(z), vj(z) = cj + o(1), cn−q 6= 0, (13)

ω(z) =
∑

κ+ς6p−1

wκς(z)zn−τp−n,n
(f ′/f)ς

fp−κ−ς
, dj ∈ R, c0 = 1, d0 = 0.

Here z ∈ G = {riθ : 0 6 θ 6 2πk, r0 6 r}. Denote zf ′(z)
f(z)

= L(z), c0 = 1, d0 = 0, and rewrite
equation (13) as

Ln(z) +

n−q∑
j=1

Ln−j(z)vj(z)zdj = ω(z), vj(z) = cj + o(1), cn−q 6= 0. (14)

Here z ∈ G, q > 0. This equation is called characteristic for (1).
Consider the equation

xn +

n−q∑
j=1

xn−jvj(z)zdj = ω(z), |ω(z)| < |z|−A, q > 0, (15)

where A is a constant defined in (20), (23) by the form of equation (15). Coefficients
ω(z), vj(z), z ∈ Φ, j ∈ {1, 2, . . . , n − q} are some functions defined on an unbounded set
Φ ⊂ gαβ = {z = reiθ : r > r0, α 6 θ 6 β} in the way that

∀ δ > 0 ∃ d = d(δ) ∀z ∈ Φ ∩ {z = reiθ : r > d, α 6 θ 6 β} ⇒
vj(z) = (cj + gj(z)), cj ∈ C, |gj(z)| < δ.

(16)

We set gj(z) ≡ 0 if cj = 0. Let F = {j : vj(z) 6≡ 0, z ∈ Φ, j ∈ {1, 2, . . . , n− q}}.
1◦ If in equation (15) q = 0 ∨ q > 1, dn−q < maxj∈F dj, then we denote d0 = 0 and

H = {(j, dj) : j ∈ F ∪ {0}} a set of points on the plain.
2◦ If in equation (15) q > 1, dn−q = maxj∈F dj, then we append to H another point

(n, dn), dn
def
= −1 and obtain the set H̃ = {(j, dj) : j ∈ F ∪ {0}} ∪ {(n, dn)}.

Let the terms in 1◦ hold. By the points of H, let us construct the Newton diagram of
equation (15) (of the set H). Consider the convex hull of the set H ([7, v. 1, p. 788]). The
boundary of this convex hull is a polygon divided by the points (0, d0) and (n − q, dn−q)
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into two broken lines. The top line is the required Newton diagram. Let vertices of Newton
diagram have abscissas

i0, i1, . . . , iT , 0 = i0 < i1 < . . . < iT = n− q. (17)

Denote
ρs =

dis − dis−1

is − is−1
, s ∈ {1, 2, . . . , T}, (18)

ρs are angle coefficients of the Newton diagram segments, ρ1 > ρ2 > . . . > ρT . Note that if
in 1◦ the following term holds true q > 1, dn−q < maxj∈F dj, then by the properties of the
convex hull of the set H, the following inequality holds ρT < 0. Denote ρs(n − j) + dj

def
=

lj,s, s ∈ {1, 2, . . . , T}, j ∈ F ;

max
j∈F

lj,s
def
= ls. (19)

In what follows we assume that in (15) the constant A is subject to the condition

A > max(0, max
s∈{1,2,...,T}

−ls). (20)

Let the terms in 2◦ hold true. In this case the Newton diagram of equation (15) is constructed
by the points H̃. Newton’s diagram vertices of the set H̃ have abscissas i0, i1, . . . , iT , iT+1,
0 = i0 < i1 < . . . < iT = n− q < iT+1 = n, that are different from the abscissas of Newton’s
diagram vertices of the set H by just one additional point iT+1 = n. Angle coefficients of the
Newton diagram segments of the set H̃ are

ρs =
dis − dis−1

is − is−1
, s ∈ {1, 2, . . . , T, T + 1}, ρ1 > ρ2 > . . . > ρT > ρT+1. (21)

From the terms in 2◦ and convex hull properties [7, p. 788] we conclude: ρT+1 < 0. Similarly
in (19) denote by ρs(n− j) + dj = lj,s, s ∈ {1, . . . , T, T + 1}, j ∈ F ;

max
j∈F

lj,s
def
= ls, s ∈ {1, . . . , T, T + 1}. (22)

In the definition of the number A (20) make one extra assumption

A > max(0, max
s∈{1,2,...,T+1}

−ls). (23)

In [8] the following lemma is proved.

Lemma 1. Let in equation (15) conditions (16) hold true and the constant A is defined in
(20) (or (23)) by the Newton diagram of this equation. Let Φ ⊂ gαβ, Φ be an unbounded
closed (open) set. By Φ0 we denote the connected component of the set Φ.

If ∀ j ∈ F = {j : gj(z) 6≡ 0, z ∈ Φ, j ∈ {1, 2, . . . , n − q}} in equation (15) the degrees
dj 6 0 then all solutions of equation (15) are bounded in Φ∩ {z = reiθ : r > d, α 6 θ 6 β}.
Let ∃ j ∈ F : dj > 0. If a continuous function x(z), z ∈ Φ is a solution of equation (15) then
only one of properties holds:
1. either ∀ δ > 0 ∃ r0 :

x(z) = (y + u(z))zρ, y 6= 0, |u(z)| < δ, z ∈ Φ0, |z| > r0,
ρ ∈ R, y ∈ C, y = y(Φ0), ρ = ρ(Φ0),

(24)

y, ρ do not change if z ∈ Φ0, |z| > r0; (y, ρ, correspondingly, one of finite set of yj, ρs
defined by the equation (15), ρs is an angle coefficient of Newton diagram).
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2. or
|x(z)| < |z|ζ+δ, ζ + δ < 0, z ∈ Φ0, |z| > r0, (25)

ζ = ρT ∨ ζ = ρT+1 (see (18), (21)), δ > 0 is sufficiently small.

Apply Lemma 1 to equation (14). Consider the set F = {j : vj(z) = cj+o(1) 6≡ 0, z ∈ G,
j ∈ {1, 2, . . . , n − q}}. By ρs, s ∈ {1, 2, . . . , T, T + 1} we denote angle coefficients of the
Newton diagram segments of the set H = {(j, dj) : j ∈ F ∪ {0}} (or the set H̃). Let

µ0 = max(µ, ρ1), ρ1 > ρ2 > . . . > ρT > ρT+1, µ > 0. (26)

For the function f ∈ Mk with growth order µ, µ < +∞ the following statement is fulfilled,
see [6, p. 208] (E∗ is a set of circles with centers in poles and zeros of f with a finite sum of
radii) ∀σ > 0 ∃ r0 : ∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣ < r2µ+2+σ 6 r2µ0+2+σ, reiθ ∈ G \ E∗, (27)

G = {reiθ : 0 6 θ 6 2πk, r0 6 r}. Thus the set

Q =
{
z : z ∈ G,

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ > |z|2µ0+2+σ
}
⊂ E∗. (28)

Let ∂Q be the boundary of Q. Since functions |z|2µ0+2+σ,
∣∣f ′(z)
f(z)

∣∣ are continuous, taking into
account (27) and (28) we obtain (σ > 0)∣∣∣∣f ′(z)

f(z)

∣∣∣∣ = |z|2µ0+2+σ, z ∈ ∂Q;

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ 6 |z|2µ0+2+σ, z ∈ G \Q. (29)

Denote (see (23) and (20))

l = max(0, max
s∈{1,2,...,T}

−ls) ∨ l = max(0, max
s∈{1,2,...,T+1}

−ls),

ν = max(y, max
κ+ς6p−1

{aκς + n− τp−n,n + (2µ0 + 2)p+ l}). (30)

Here the constant y is defined by solutions of characteristic equation (14) (see (24)). Consider
the sets

Φ = {z : z ∈ G \Q, |f(z)| > |z|ν+ε}, Φ1 = {z : z ∈ G \Q, |f(z)| < |z|ν+ε},
Φ◦ = {z : z ∈ G \Q, |f(z)| > |z|ν+ε}, Φ = Φ◦ ∪ ∂Φ.

(31)

On the set Φ the conditions of Lemma 1 hold true (|wκς(z)| < |z|aκς )

|ω(z)|
(13)
6

∑
κ+ς6p−1

|wκς(z)zn−τp−n,n| |f
′/f |ς

|f |p−κ−ς
6

6
∑
|z|n−τp−n,n+aκς |f

′/f |ς

|f |
(29)
6
∑
|z|n−τp−n,n+aκς+(2µ0+2+σ)ς 1

|f |
(31)
6 (32)

6
∑
|z|n−τp−n,n+aκς+(2µ0+2+σ)ς−ν−ε

(30)
6 |z|−l+σp+

σ
7
−ε, z ∈ Φ,

−l + σp+ σ
7
− ε < 0 (in (27), (32) assume that σ < 7ε

7p+1
).
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If (14) does not depend on L then in the left-hand side of (1) only one summand
fpvp0(z)zτp0 , vp0(z) = cp0 + o(1), has the degree p in f and f ′. Then there exists d > 0
such that Φ ∩ {z : |z| > d} = ∅. If we assume the contrary then taking into account (32)
equation (14) has the form cp0 +o(1) = o(1), z ∈ Φ. From here we obtain that cp0 = 0 which
contradicts the assumption (2). Thus in the case that is considered we have {z = reiθ : 0 6
θ 6 2πk, r > d} \ E∗ ⊂ Φ1 and from (31) it follows (11).

In particular, the Weierstrass elliptic function (see example 2) ℘(z), z ∈ C is a meromor-
phic function of growth order µ = 2. This function is a solution of the differential equation
(f ′)2 = 4f 3 − g2f − g3, g2, g2 = const. Thus the equalities hold true: 4[℘(z)]3 ≡ (d℘(z)

dz
)2 +

g2℘(z) + g3,

4 ≡ 1

℘(z)

(
℘′(z)

℘(z)

)2

+
g2℘(z) + g3

[℘(z)]3
, z ∈ C. (33)

This means that the characteristic equation does not depend on L (see (14)). For one-valued
meromorphic function ℘(z) of finite order µ the following inequality holds [4, p. 87] (E∗ is
a set of circles with a finite sum of radii)∣∣∣∣℘′(z)

℘(z)

∣∣∣∣ < |z|2µ+σ = |z|4+σ, z ∈ {z : d 6 |z| < +∞} \ E∗, σ > 0. (34)

Consider the set Φ℘ = {z : z ∈ C \ E∗, |℘(z)| > |z|8+3σ}. There exists d, d > 0 such that
Φ℘ ∩ {z : |z| > d} = ∅. If this were wrong then, taking into account (34), equality (33)
would take the following form 4 = o(1), z ∈ Φ℘ which is obviously wrong. That is why
|℘(z)| 6 |z|8+3σ, z ∈ C \ E∗, |z| > d, σ > 0.

Let (14) depend on L. Assume for definiteness in (14) q = 0. Let Φ0 be an arbitrary
connected component of Φ, Φ0 ⊂ Φ. According to Lemma 1 for the continuous function
L(z) = zf ′(z)

f(z)
which is a solution of (14) on the set Φ0, one of the following assertions is true:

either (24) or (25),

x(z) = L(z) =
zf ′(z)

f(z)
. (35)

Let y be the greatest possible values of |y| in (24) (see (30)).
If R is large enough then for the points z ∈ ∂Q the following statement holds

z ∈ ∂Q, |z| > R ⇒ z ∈ Φ1
(31)⇒ |f(z)| < |z|ν+ε. (36)

Indeed, if z ∈ Φ ∩ ∂Q then from (24), (26) we have
∣∣∣f ′(z)f(z)

∣∣∣ < 3
2
|yzρj−1| < |z|2µ0 , which

contradicts the first formula in (29). From (36) and (31) it follows that Φ◦ is an open set.
From (36) and from the definition of Φ we conclude

z ∈ ∂Φ, |z| > R
(31)⇒ |f(z)| = |z|ν+ε. (37)

It is possible to assume that for r0 the following holds true: f(r0e
iθ) 6= 0,∞, 0 6 θ 6 2πk.

Then
0 < c < |f(r0e

iθ)| < C, 0 6 θ 6 2πk, c, C = const. (38)

Take some ϕ, 0 6 ϕ < 2πk. Consider a ray S(ϕ) = {reiϕ : r > r0, ϕ = const}. If
Φ ∩ S(ϕ) = ∅ then from (31) it follows

|f(z)| < |z|ν+ε, z ∈ S(ϕ). (39)
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Let Φ ∩ S(ϕ) 6= ∅, Φ = Φ◦ ∪ ∂Φ. From (37) we have |f(z)| = |z|ν+ε, z ∈ ∂Φ. The set
Φ◦ ∩S(ϕ) is a union of finite or countable set of disjunctive maximal connected components
ω◦t = {z : z = reiϕ, r1t < r < r2t}, see [9, p. 58] such that |f(z)| > |z|ν+ε, z ∈ ω◦t . Moreover
if z1t = r1te

iϕ is the starting point, z2t = r2te
iϕ is the ending point of ω◦t and |z1t| > r0,

|z2t| < +∞ then from (37) it follows

|f(z1t)| = |z1t|ν+ε, |f(z2t)| = |z2t|ν+ε. (40)

Add the start and end points to the open interval ω◦t and obtain the closed interval ωt =
{z : z = reiϕ, r1t 6 r 6 r2t}, Φ ⊃ ωt ⊃ ω◦t , such that

|f(z)| > |z|ν+ε, z ∈ ωt. (41)

The connected set ωt is contained in the connected component Φ0 ⊂ Φ. That is why ∀ z ∈ ωt
either equality (24) holds true (y = y(t), ρ = ρ(t)) or inequality (25).

Let {ωt} be the set of all segments ωt on S(ϕ); by ω+
t we denote such segments ωt ∈ {ωt}

for which equality (24) holds with ρ > 0; let ω−t be the segments ωt for which equality (24)
with ρ 6 0 or (25) holds true. Let ω[z1t,z] be an arc (a piece of) the segment ωt from the
point z1t to the point z ∈ ωt.

Suppose there exists a section ω−t ⊂ S(ϕ). According to (24), (25), (35), for s ∈ ω−t

the following inequality holds
∣∣∣f ′(s)f(s)

∣∣∣6 (|y|+ δ
3
)

|s| . Thus by integrating f ′(z)
f(z)

along ω−t , we obtain
(|z| = r, |z1t| = r1t)

ln

∣∣∣∣ f(z)

f(z1)

∣∣∣∣ 6 ∣∣∣∣∫
ω[z1t,z]

f ′(s)

f(s)
ds

∣∣∣∣ 6 (|y|+ δ

3

)∫ r

r1t

dx

x
=

(
|y|+ δ

3

)
ln
|z|
|z1t|

. (42)

If ω−t has an infinite length then from (42) it follows (|y| 6 ν, δ < ε) ln |f(z)| 6
(
|y|+ δ

2

)
×

× ln |z| + ln |f(z1)| < (ν + ε
2
) ln |z| + ln |f(z1)|, z ∈ ω−t ⊂ Φ, z → +∞ that contradicts the

first equality in (31). Therefore r2t < +∞.
If r1t > r0 then taking into account (40) at z = z2t, inequality (42) has the form (ν +

ε) ln |z2t||z1t| 6
(
|y|+ δ

3

)
ln |z2t||z1t| , |y| 6 ν, δ < ε, that is possible only if z1t = z2t, where the

segment ω−t is actually a point z1t = z2t if (40) holds true.
If r1t = r0 then (38) and (40) yield ln |f(z1t)| < lnC, ln |f(z2t)| = (ν + ε) ln |z2t|, thus

at z = z2t inequality (42) has the form ln |f(z2t)| = (ν + ε) ln |z2t| <
(
|y|+ δ

3

)
ln r2t

r0
+ lnC,

r0 < r2t, |y| 6 ν, δ < ε, that is possible only if |z2t| < R = const which does not depend
on ϕ. Finally

{z : z = reiϕ, ϕ = const, r > R} ∩ ω−t = ∅. (43)

In particular, if in characteristic equation (14) all degrees dj 6 0 then for angle coefficients
of the Newton diagram segments of equation (14) we obtain 0 > ρ1 > . . . > ρT . Thus, on
an arbitrary connected component Φ0 equality (24) holds true with ρ 6 0. That is why
segments ω+

t ⊂ S(ϕ) do not actually exist. This and (43) implies {z : z = reiϕ, r > R, ϕ =

const} ∩ Φ◦ = ∅. Thus the ray {z = reiϕ : r > R, ϕ = const}
(31)
⊂ Φ1 ∪ Q ∪ ∂Φ and (11)

holds true (see example 3).
Let ∃ω+

t ⊂ S(ϕ) = {z : z = reiϕ, r > r0, ϕ = const}. For z = reiϕ ∈ ω+
t equalities (24)

(ρ > 0) and (40) hold.
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If we integrate (24) on the set ω+
t and remove real parts then obtain (see (35)) (y =

|y|eiβ, ρ > 0; z = reiϕ, z1t = r1te
iϕ ∈ ω+

t )

ln
f(z)

f(z1t)
=
y

ρ
(zρ − zρ1t) +

∫
ω[z1t,z]

u(ζ)ζρ−1dζ,

∣∣∣∣∫
ω[z1t,z]

u(ζ)ζρ−1dζ

∣∣∣∣ 6 δ

9

∫ r

r1t

xρ−1dx 6

6
δ

9ρ
(rρ − rρ1t), ln

∣∣∣∣ f(z)

f(z1t)

∣∣∣∣ =
|y|
ρ

(rρ − rρ1t)(cos(ρϕ+ β) + q̃(z)), |q̃(z)| < δ

9|y|
, (44)

z = reiϕ ∈ ω+
t , r1t 6 r 6 r2t 6 +∞, δ > 0, δ is small.

First suppose that all segments ω+
t have a finite length. For all segments ω+

t , where
r1t > r(ϕ), in (44) cos(ρϕ + β) = 0. To prove this let us assume that cos(ρϕ + β) 6= 0.
Substitute (40) into (44) and obtain (z = z2t)

(ν + ε) ln
r2t
r1t

= (rρ2t − r
ρ
1t)
|y|
ρ

(cos(ρϕ+ β) + q̃(z2t)), |q̃(z2t)| <
δ

9|y|
. (45)

Let in (45) cos(ρϕ + β) < 0. If δ > 0 is small and r(ϕ) is large enough then in (45) the
following inequality holds |q̃(z)| < δ

9|y| < − cos(ρϕ + β), r(ϕ) 6 r1t 6 |z|. Then in (45) the
left and right-hand side have distinct signs that presents the required contradiction.

If in (45) cos(ρϕ+ β) > 0, and r(ϕ) is large enough then in (45) the following inequality
holds |q̃(z)| < δ

9|y| <
1
2

cos(ρϕ+β), r(ϕ) 6 r1t 6 |z|, and from (45) we obtain (ν+ ε) ln r2t
r1t

>

(rρ2t − r
ρ
1t)
|y|
2ρ

cos(ρϕ+ β). Finally

c(lnx2 − lnx1) > x2 − x1, x1 = rρ1t < x2 = rρ2t, c =
2(ν + ε)

|y| cos(ρϕ+ β)
. (46)

Since the function x − c lnx grows on (c,+∞), (46) does not hold if r1 (and, x1) is large
enough, i.e. r1 > r(ϕ). Thus

ω+
t ∩ {z : z = reiϕ, cos(ρϕ+ β) 6= 0, |z| > r(ϕ), r2t < +∞} = ∅. (47)

If cos(ρϕ+ β) = 0 on the segment ω+
t in (44) then ϕ = ϕj,

ϕj =
π + 2πj

2ρ
− β

ρ
, 0 6 ϕj 6 2kπ, (48)

j is an integer; ρ, β, j take a finite amount of values (0 6 ϕj 6 2kπ). In this case from (44)
and (40) the inequality is inferred

ln
∣∣f(reiϕ)

rν+ε1t

∣∣ < δ

9ρ
(rρ − rρ1t), reiϕ ∈ ω+

t , ϕ = ϕj, r1t 6 r 6 r2t, (49)

δ > 0, δ is arbitrarily small if r1t is large enough. Then taking into account (43), (47), (49)
and the fact that |f(z)| < |z|ν+ε, z ∈ Φ1 (see (31)) we obtain

ln |f(reiϕ)| < δ

9ρ
rρ, r > r(ϕ), ϕ = ϕj, ρ = max ρt. (50)

Maximum is taken over all ρt that correspond to the segments ω+
t ⊂ S.
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Assume that the segment ω+
t has an infinite length (r2t = +∞). Take d ∈ [r1t,+∞).

Integrate (24) on the ray ω+
t from the point deiϕ to the point reiϕ, r > d; similar to (44) by

removing real parts we obtain

ln
f(z)

f(deiϕ)
=
y

ρ
(zρ − (deiϕ)ρ) +

∫
ω
[deiϕ,z]

u(ζ)ζρ−1dζ, y = |y|eiβ,∣∣∣∣∫
ω
[deiϕ,z]

u(ζ)ζρ−1dζ

∣∣∣∣ 6 δ

9

∫ r

d

xρ−1dx 6
δ

9ρ
(rρ − dρ), (51)

ln
∣∣∣ f(z)

f(deiϕ)

∣∣∣ =
|y|
ρ

(rρ − dρ)(cos(ρϕ+ β) + q̃(z)), |q̃(z)| < δ

9|y|
.

Here z = reiϕ ∈ ω+
t , r1t 6 d 6 r < +∞, δ > 0, δ is small and ω[deiϕ,z] is a part of the

segment ωt from the point deiϕ ∈ ωt to the point z ∈ ωt.
If in (51) cos(ρϕ + β) = 0 then (see (48)) ϕ = ϕj and ln |f(reiϕj)| = o(rρ), r → +∞.

From this and from (50), (48) statement (7) follows.
Let cos(ρϕ + β) < 0 on the segment ω+

t in (51). If d is large enough, then in (51)
one has |q̃(z)| < − cos(ρϕ + β). Thus, the right-hand side in (51) is negative. This infers
|f(z)| < |f(deiϕ)|, ∀ z ∈ ω+

t for which |z| > d. This contradicts (41).
Let cos(ρϕ + β) > 0 on the segment ω+

t of an infinite length in (51). Then there exists
an integer b, b ∈ Z such that |ρϕ+ β − 2πb| < π

2
. Take ϕ̃ that satisfies π

2
> ρϕ̃+ β − 2πb >

|ρϕ+ β − 2πb|. Then

cos(ρψ + β) > cos(ρϕ̃+ β) > 0, ϕ < ψ 6 ϕ̃. (52)

Here ω+
t ⊂ Φ0 is a segment of the connected component Φ. There exists d1 > d, such that

{z = reiθ : ϕ 6 θ 6 ϕ̃, r > d1} ⊂ Φ0. (53)

Indeed, let ψ be the greatest value such that the arc Hr = {reiθ : ϕ 6 θ 6 ψ, r = const >
d} ⊂ Φ0. Assume that ψ < ϕ̃. Recall that as soon as z ∈ ∂Q, then (36) holds true and
z ∈ Φ1 (see (31)); taking into account the definition of the point reiψ and the definition of
the connected component Φ0 of the set Φ we infer that reiψ ∈ ∂Φ. Then from (37) it follows

|f(reiψ)| = rν+ε. (54)

If z ∈ Hr then statement (24) holds true (ρ = ρ(Φ0) > 0). By integrating (24) along Hr and
extracting the real parts we obtain (see (35))

ln

∣∣∣∣f(reiψ)

f(z)

∣∣∣∣ =
|y|
ρ

(
rρ cos(ρψ + β)− rρ cos(ρϕ+ β)

)
+ Re

∫
Hr

u(ζ)ζρ−1dζ >

>
|y|
ρ

(
rρ cos(ρψ + β)− rρ cos(ρϕ+ β)

)
− δ

9
rρ(ψ − ϕ).

The latter statement together with (54) and (51) imply

ln rν+ε >
|y|
ρ

(
rρ cos(ρψ + β)− rρ cos(ρϕ+ β)

)
− δ

9
rρ(ψ − ϕ)+

+
|y|
ρ

(rρ − dρ)(cos(ρϕ+ β) + q̃(z)) + ln |f(deiϕ)| > |y|
ρ
rρ cos(ρψ + β)− (55)

−δ
9
rρ(ψ − ϕ)− |y|

ρ
dρ cos(ρϕ+ β)− δ

9ρ
(rρ − dρ) + ln |f(deiϕ)|, r > d.
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In (52) cos(ρϕ̃+ β) > 0; thus choose δ > 0 so that
|y|
ρ

cos(ρϕ̃+ β)− δ

9
(ψ − ϕ)− δ

9ρ
> 0. (56)

The segment ω+
t has an infinite length. Let d be such that for |z| = r > d the relations (24),

(51), (55) hold true with δ satisfying (56). If r is large enough, r > d1 > d, then from (52),
(56) it follows that inequality (55) is false. Thus ψ > ϕ̃. This completes the proof of (53).

Denote by

η =
2πb− β

ρ
− π

2ρ
, ϑ =

2πb− β
ρ

+
π

2ρ
, b ∈ Z, (57)

where b is the number defined above. Similar to the proof of (53) one can prove that
∀ ε > 0 ∃d :

P̃ = {z = reiθ : η + ε 6 θ 6 ϑ− ε, r > d} ⊂ Φ0. (58)

Therefore, for an arbitrary θ ∈ [η + ε, ϑ − ε] on the ray S(θ) = {reiθ : r > d} ⊂ Φ0 the
same conditions hold as those that gave the possibility to prove on {reiϕ : r > d} ⊂ Φ0

equality (51). Thus, ∀ ε > 0 ∀ δ > 0 ∃ d = d(ε, δ) :

ln
f(z)

f(deiθ)
=
y

ρ
(zρ − (deiθ)ρ) + q(reiθ), |q(reiθ)| < δ

9ρ
(rρ − dρ),

ln

∣∣∣∣f(reiθ)

f(deiθ)

∣∣∣∣ =
|y|
ρ

(rρ − dρ)(cos(ρθ + β) + q̃(reiθ)), |q̃(reiθ)| < δ

9|y|
, (59)

z = reiθ ∈ P̃ , cos(ρθ + β) > c̃ > 0, η + ε 6 θ 6 ϑ− ε,

ln |f(reiθ)| =
( |y|
ρ

cos(ρθ + β) + o(1)
)
rρ, cos(ρθ + β) > 0, θ ∈ (η, ϑ), (60)

r → +∞. Then (6) follows from the first equality in (59).
As it was mentioned above ρ, y, β, b, ϕj (see (24), (57)) take a finite amount of possible

values. Thus in (57) for η = ηj, ϑ = ϑj there also exists just a finite amount of possible values.
Conclude that there exists only a finite number of intervals (ηj, ϑj), where the estimates
similar to (59), (60) hold true.

For an arbitrary ϕ, 0 6 ϕ < 2πk consider a ray S(ϕ) = {reiϕ : r > r0, ϕ = const} ⊂

Φ∪Φ1 ∪Q, Q
(28)
⊂ E∗ a set of circles with a finite sum of radii, Φ = Φ◦ ∪ ∂Φ (see (31)). The

set Φ◦∩S(ϕ) is a union of disjunctive segments ω◦t . According to (43) {reiϕ : ϕ = const, r >
R} ∩ ω−t = ∅. If the ray S(ϕ) contains the segment ω+

t of an infinite length then (51) holds
where cos(ρϕ + β) > 0. If cos(ρϕ + β) = 0 then ϕ = ϕj (see (48)) and (7) holds true. If
cos(ρϕ+ β) > 0 then (59) and (6) hold.

Suppose S(ϕ) does not contain any segment ω+
t of infinite length. If ϕ takes one of

finite amounts of values ϕ = ϕj (48) then |f(z)| < |z|ν+ε holds on the intersection of the
ray S = {reiϕ : r > r(ϕ), ϕ = const} ⊂ S(ϕ) with the set Φ1 defined by (31), and (47)
and (50) hold on the segments ω+

t . This means that (7) holds true, ρ = max ρt where the
maximum is taken over those ρj that corresponds to the segments ωt ⊂ S(ϕ). If ϕ 6= ϕj then
|f(z)| < |z|ν+ε and (47) are valid on the intersection of the ray S with the sets Φ1, ω

+
t . This

completes the proof of (8).
Denote

G(r) = {seiθ : 0 6 θ 6 2kπ, r0 6 s 6 r} \Q, Q ⊂ E∗,
M∗(r, f) = max |f(z)|, z ∈ G(r), |f($)| = M∗(r, f), $ ∈ G(r),

(61)
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where the open set Q is defined in (28), the set G(r) is closed. If for some a, M∗(r, f) <
rν+2ε, ∀ r > a, then we have (4). Suppose that

∀ a > 0 ∃ r > a : M∗(r, f) = |f($)| > rν+2ε. (62)

The maximum of the absolute value of f(z) on the closed set G(r) is reached on the
edge. Taking into account (36), |f(z)| < |z|ν+ε, z ∈ ∂Q, |z| > R ⇒ $ 6∈ ∂Q. Keeping
in mind (38), |$| 6= r0. Thus if (62) holds then for the point $ at which the maximum of
|f(z)|, z ∈ G(r) is reached we have

|f($)| = M∗(r, f) > rν+2ε ⇒ |$| = r, $ 6∈ ∂Q. (63)

That is why Macintyre formula holds ([4, p. 59–62], [10])

$f ′($)

f($)
=
rM ′
∗(r, f)

M∗(r, f)
> 0, |$| = r, (64)

M ′
∗(r, f) is the right-side derivative of M∗(r, f).
Taking into account (63), (31) the point $ ∈ Φ0 ⊂ Φ and in this point (24) holds. Thus

$f ′($)

f($)
= (y + u($))$ρ > 0, |u($)| < δ

9
, $ = reiϕ(r) ∈ Φ0, r > a > r0,

y = |y|eiβ 6= 0, δ > 0 is small. By the reasonings described right above, the following
asymptotic relation for the argument holds

ρϕ(r) + β + o(1) = 2mπ, m ∈ Z, r →∞, cos(ρϕ(r) + β) = 1 + o(1), cos(ρϕ(r) + β)> 1
2
,

(65)
m takes a finite amount of values (0 6 ϕ(r) 6 2kπ). Since $ ∈ Φ0, we have that $ ∈ ω−t
or $ ∈ ω+

t . From (43) for |$| = r > R, it follows that $ 6∈ ω−t . Thus $ ∈ ω+
t . If ω

+
t

is a segment of finite length then (45) is valid for ϕ = ϕ(r). According to (65) we have
cos(ρϕ(r) + β) > 1

2
. Thus from (45) we have (ν + ε) ln r2t

r1t
= (rρ2t − r

ρ
1t)
|y|
ρ

(cos(ρϕ(r) + β) +

q̃(z2t)) > (rρ2t − r
ρ
1t)
|y|
ρ

(1
2

+ q̃(z2t)) > (rρ2t − r
ρ
1t)
|y|
4ρ
, |q̃(z2t)| < δ

9|y| <
1
4
, or

c(lnx2 − lnx1) > x2 − x1, x1 = rρ1t < x2 = rρ2t, c =
2(ν + ε)

|y|
. (66)

The function x − c lnx increases on (c,+∞). That is why (66) does not hold if x1 = rρ1t >

c = 2(ν+ε)
|y| . If x1 = rρ1t < c, x2 = rρ2t > c then from (66) it follows that (1 < r0 ≤

r1t) c lnx2 > x2 − c, c = 2(ν+ε)
|y| ; this is true if x2 < x∗ = const. Thus if |ω| = r >

max
(
R, ρ
√

2(ν + ε)/|y|, ρ
√
x∗
)
, ω ∈ ω+

t , then this segment ω+
t cannot have finite length. Thus

if |$| = r > max
(
R, ρ
√

2(ν + ε)/|y|, ρ
√
x∗
)
, ω ∈ ω+

t , then $ ∈ ω+
t a segment of an infinite

length where (51) holds. Then (60) is also true. Thus, for the point $ = reiϕ(r) at which
the maximum of the absolute value is reached, the argument ϕ(r) belongs to the union of
a finite amount of segments (ηj, ϑj), where estimates similar to (59), (60) hold true. Thus
after substituting θ = ϕ(r) into (60) (or (59)) we obtain as r →∞

M∗(r, f) = |f($)| = |f(reiϕ(r))| (60)
=

(
|y|
ρ

cos(ρϕ(r) + β) + o(1)

)
rρ

(65)
=

(
|y|
ρ

+ o(1)

)
rρ.

From here we get (5).
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Take arbitrary φ, ψ, η < φ < ψ < ϑ (see (57)). From (59) it follows that the estimate (60)
is uniform in θ, φ 6 θ 6 ψ and

cos(ρθ + β) > c̃ > 0, φ 6 θ 6 ψ. (67)
Assume that ρ < 1

2k
. Then taking into account (57), ϑ − η = π

ρ
> 2kπ and numbers

φ, ψ, η < φ < ψ < ϑ can be taken in the way that

ψ = φ+ 2kπ, sin(ρφ+ β + kπρ) 6= 0. (68)
Since f(reiφ) = f(rei(φ+2kπ)), from (60), (68) if follows

0 = ln |f(reiψ)| − ln |f(reiφ)| =
(
cos(ρφ+ ρ2kπ + β)− cos(ρφ+ β) + o(1)

) |y|
ρ
rρ =

=
(
−2(sin ρkπ) sin(ρφ+ β + kπρ) + o(1)

) |y|
ρ
rρ.

(69)

By assumption ρ < 1
2k

so 0 < ρkπ < π
2
, thus sin ρkπ 6= 0. From this statement and from (68)

it follows (sin ρkπ) sin(ρφ+ β + kπρ) 6= 0 which contradicts (69). Thus

ρ > 1/2k. (70)

From the condition η < φ < ψ < ϑ and from (57), we have ψ−φ < ϑ− η = π
ρ

(70)
6 2kπ. Thus

m(r, f) >
1

2πk

∫ ψ

φ

ln+ |f(reiθ)|dθ (60)
=

1

2πk

∫ ψ

φ

(
|y|
ρ

cos(ρθ + β) + o(1)

)
rρdθ

(67)
>

c̃(ψ − φ)|y|
ρ4πk

rρ,

r > d. This together with (70) gives the fact that the characteristic m(r, f) has the growth
order ρ > 1

2k
. If in (70) ρ = 1

2k
then ϑ − η = π

ρ
= 2kπ and from (59), (60) we obtain (9).

Estimate (10) on the ray follows from (7).
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