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We define thin and sparse metric spaces as asymptotic counterparts of discrete and very

close to discrete metric spaces respectively. We characterize sparse spaces in terms of prohibited
subspaces, and classify thin metric spaces up to coarse equivalence. We introduce the types of
sparse spaces and construct the spaces of distinct types. We unify the notions of sparse spaces
and sparse subsets of a group in context of balleans.
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Тонкие и асимптотически разреженные метрические пространства определяются как
асимптотические аналоги дискретных и асимптотически разреженных метрических про-
странств. Получена характеризация асимптотически разреженных пространств в терми-
нах запрещенных пространств, классифицированы тонкие метрические пространства с
точностью до грубой эквивалентности. Введено понятие типа асимптотически разрежен-
ных пространств и построены пространства различных типов.

1. Introduction. A metric space (X, d) is called thin (or asymptotically discrete) if, for every
m ∈ ω = {0, 1, . . . }, there exists a bounded subset V of X such that B(x,m) = {x} for each
x ∈ X \ V . Here B(x,m) = {y ∈ X : d(x, y) ≤ m}. A subset V is bounded if V ⊆ B(x0, n),
for some x0 ∈ X, n ∈ ω. We say that a subset Y of X is thin if the metric space (Y, d|Y ) is
thin. Clearly, each bounded subset of a metric space is thin, and each subset of a thin metric
space is thin.

Following [2], we say that a subset Y of a metric space (X, d) has asymptotically isolated
m-balls if there exists a sequence (xn)n∈ω in Y and an increasing sequence (mn)n∈ω in ω such
that B(xn,mn) \B(xn,m) = ∅ for each n ∈ ω. If Y has asymptotically isolated m-balls for
some m ∈ ω, we say that Y has asymptotically isolated balls.

We say that a metric space (X, d) is sparse if each unbounded subspace Y of X has
asymptotically isolated balls inX. Equivalently, (X, d) is called sparse if, for every unbounded
subset Y of X, there exists m ∈ ω, such that, for every n ∈ ω, there is y ∈ Y such that

B(y, n) \B(y,m) = ∅.

We say that a subset Y of X is sparse if the metric space (Y, dY ) is sparse. Clearly, each
thin space is sparse, and each subspace of a sparse space is sparse.

In fact, the notion of a sparse subset was introduced in the context of groups [4] in
order to characterize the strongly prime ultrafilters in the Stone-Čech compactification βG
of a discrete group G. For sparse subsets of groups see [1], [5], [6], [11].
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Given two metric spaces (X1, d1) and (X2, d2), a bijection f : X1 → X2 is said to be
an asymorphism if there are two sequences (cn)n∈ω and (c′n)n∈ω in ω such that, for each
n ∈ ω and x, y ∈ X1,

d1(x, y) ≤ n⇒ d2(f(x), f(y)) < cn, d2(f(x), f(y)) ≤ n⇒ d2(x, y) < c′n.

We note ([12, Theorem 2.1.1]) that each metric space (X, d) is asymorphic to a metric space
(X ′, d′) such that d′ takes values in ω. In what follows all metrics under consideration are
supposed to be integer valued.

A subset L of a metric space (X, d) is called large if there exists m ∈ ω such that
B(L,m) = X.

Metric spaces (X1, d1), (X2, d2) are called coarsely equivalent if there are large subsets
L1 ⊆ X1 and L2 ⊆ X2 such that the metric spaces (L1, d1) and (L2, d2) are asymorphic.

We say that a property P of metric spaces is asymptotic (resp. coarse) if P is stable under
asymorphisms (resp. coarse equivalence). It is easy to see that “thin” is an asymptotic but
not coarse property, and “asymptotic scattered” is a coarse property.

A metric space (X, d) is of bounded geometry if there exists m ∈ ω and a func-
tion c : ω → ω such that the m-capacity of every ball B(x, n) does not exceed c(n).
An m-capacity of a subset Y of X is supremum of cardinalities of m-discrete subsets of Y .
A subset Z is m-discrete if d(x, y) > m for all distinct x, y ∈ Z.

A metric space (X, d) is called uniformly locally finite if there is a function c : ω → ω such
that |B(x, n)| ≤ c(n) for each x ∈ X and n ∈ ω. It is easy to see [10, Proposition 2] that
(X, d) is of bounded geometry if and only if (X, d) is coarsely equivalent to some uniformly
locally finite metric space.

Recall that a metric d on a set X is ultrametric if d(x, y) ≤ max{d(x, z), d(y, z)} for all
x, y, z ∈ X. By [3, Theorem 3.11], every ultrametric space of bounded geometry is coarsely
equivalent to some subset of the Cantor macro-cube

2<N = {(xi)i∈N ∈ {0, 1}N : ∃n ∈ N ∀m > n xm = 0}

endowed with the ultrametric d((xi)i∈N, (yi)i∈N) = max{n ∈ N : xn 6= yn}. By [2],
an ultrametric space of bounded geometry without asymptotically isolated balls is coarsely
equivalent to 2<N. However [9], there are c pairwise non-asymorphic uniformly locally finite
ultrametric spaces.

In section 2 we characterize the sparse spaces in terms of prohibited subspaces. In section 3
we classify thin spaces up to coarse equivalence. In section 4 we introduce the types of sparse
spaces and construct the sparse spaces of distinct types. In sections 5 and 6 we unify the
notions of sparse spaces and sparse subsets of a group in context of balleans.

2. Characterizations. For a metric space (X, d) and m ∈ ω, a sequence x1, . . . , xn in X is
called an m-chain if d(xi, xi+1) ≤ m for each i ∈ {1, . . . , n− 1}. We set

B�(x,m) = {y ∈ X : there is an m-chain between x and y}

and say that X is cellular if, for each m ∈ ω, there is cm ∈ ω such that B�(x,m) ⊆ B(x, cm)
for every x ∈ X. By [12, Theorems 3.1.1 and 3.1.3], the following three conditions are
equivalent:

• (X, d) is cellular;
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• asdim(X) = 0;

• (X, d) is asymorphic to some ultrametric space.

Let (X, d) be an unbounded metric space. We define a function h : X × ω → ω by

h(x,m) = min{n : B(x, n) \B(x,m) 6= ∅},

and note that (X, d) is sparse if and only if, for each unbounded subset Y of X, there exist
m ∈ ω and an unbounded subset Z ⊆ Y such that the set {h(x,m) : x ∈ Z} is infinite.

Theorem 1. Every sparse metric space (X, d) is cellular.

Proof. If (X, d) is not cellular then there exist m ∈ ω and an unbounded injective sequence
(xn)n∈ω in X such that B�(xn,m) \B(xn, n) 6= ∅. It follows that h(xn, k) ≤ k +m for each
k ∈ {0, . . . , n}. We put Y = {xn : n ∈ ω} and observe that the set {h(xn, k) : n ∈ ω} is finite
for each k ∈ ω. Hence, (X, d) is not sparse.

Theorem 2. If X1, X2 are sparse subspaces of a metric space (X, d) then X1∪X2 is sparse.

Proof. Let Y be an unbounded subset of X1 ∪X2. We may suppose that Y ⊆ X1. Since X1

is sparse there exist m ∈ ω, a sequence (yn)n∈ω in Y and an increasing sequence (mn)n∈ω in
ω such that for every n ∈ ω, (X1 ∩B(yn,mn)) \B(yn,m) = ∅.

If the set {n ∈ ω : B(yn,mn) \ B(yn,m) 6= ∅} is finite then Y ′ = {yn : n ∈ ω} has
asymptotically isolated m-balls in X1 ∪ X2. Otherwise, we may suppose that B(yn,mn) \
B(yn,m) 6= ∅ for each n ∈ ω. We pick zn ∈ B(yn,mn) \B(yn,m) such that

d(zn, yn) = min{d(z, yn) : z ∈ B(yn,mn) \B(yn,m)}.

If the sequence (d(zn, yn)n∈ω) is unbounded in ω, Y ′ has an asymptotically isolated
m-balls in X1 ∪ X2. Otherwise, we take t ∈ ω such that d(zn, yn) ≤ t for each n ∈ ω.
Since Z = {zn : n ∈ ω} is an unbounded subset of X2, Z has an asymptotically isolated
m′-balls in X2 for some m′ ∈ ω. Then Y ′ has asymptotically isolated (m + m′ + t)-balls in
X1 ∪X2.

We define a metric ρ′ on ω by the rule: ρ′(n, n) = 0 and ρ′(n,m) = max{n,m} if
m 6= n. Then we define a metric ρ on W = ω × ω by the rule ρ((n,m), (n′,m′)) =
max{ρ′(n, n′), ρ′(m,m′)}.

We consider two subspaces W1 and W2 of (W, ρ)

W1 = {(n, 0) : n ∈ ω}, W2 = W1 ∪ {(n,m) : n > m > 0},

and observe that W1 is isometric to the subspace {x ∈ 2<N : supt(x) ≤ 1}, W2 is isometric
to the subspace {x ∈ 2<N : supt(x) ≤ 2} of the Cantor macro-cube 2<N. Here supt(x) is the
number of non-zero coordinates of x = (xn)n∈N.

Theorem 3. Ametric space (X, d) is sparse if and only if (X, d) has no subspaces asymorphic
to W2.

Proof. To show that W2 is not sparse, we use the function h : W2 × ω → ω. For n > m ≥ 0,
we have h((n, 0),m) = m+ 1. Hence the subspace W1 of W2 has no asymptotically isolated
balls.
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Now assume that X is not sparse and find a subset W ′ of X asymorphic to W2. We take
a subset X ′ = {xn : n ∈ ω} without isolated balls. Passing to subsequences of (xn)n∈ω ω
times, we can choose a sequence (yn)n∈ω in X ′ and an increasing sequence (mn)n∈ω in ω such
that m0 = 0 and

(1) (X ∩B(yn,mi)) \B(yn,mi−1) 6= ∅, n > 0, i ∈ {1, . . . , n};
(2) B(yn,mn) ∩B(yi,mi) = ∅, 0 ≤ i < n < ω.
We use (1), (2) to choose a subsequence (zn0)n∈ω of (yn)n∈ω, a subsequence (kn)n∈ω and,

for each n > 0, the elements zn1, . . . , znn such that
(3) zni ∈ (X ∩B(zn0, ki)) \B(zn0, ki−1), i ∈ {1, . . . , n};
(4) d(zni, znj) > j, 0 ≤ i < j ≤ n;
(5) B(zn0, kn) ∩B(zi0, ki) = ∅, 0 ≤ i < n < ω.
Then we consider a setW ′ = {z00}∪{zni : n > i ≥ 0} and define a mapping f : W2 → W ′

by the rule: f(0, 0) = z00 and f(n, i) = zni, n > i ≥ 0. By (3) and (4), f is a bijection.
If f is not an asymorphism, we get the following two cases.
Case 1. There exist t > 0 and two sequences (an)n∈ω, (bn)n∈ω inW2 such that ρ(an, bn) = t

but d(f(an), f(bn)) → ∞. We may suppose that an = (cn, t), bn = (cn, s), s < t. But
d(zcnt, zcns) ≤ 2kt, a contradiction.

Case 2. There exist t > 0 and two sequences (an)n∈ω, (bn)n∈ω in W2 such that
d(f(an), f(bn)) = t but ρ(an, bn)→∞. In view of (4), (5), we may suppose that f(an) = zcnin ,
f(bn) = zcnjn and 0 ≤ in < jn < t. But then ρ(an, bn) < t, a contradiction.

3. Thin spaces. The following three theorems are from [7].

Theorem 4. A metric space X is thin if and only if each unbounded subset of X has
asymptotically isolated 0-balls.

We say that a metric space X is coarsely thin if X is coarsely equivalent to some thin
space.

Theorem 5. For a metric space X, the following statements are equivalent:

(i) X is coarsely thin;

(ii) X contains large thin subset;

(iii) there exists m ∈ ω such that each unbounded subset of X has asymptotically isolated
m-balls.

A subset Y of a metric space X is called asymptotically isolated if, for each m ∈ ω, there
is a bounded subset V of X such that B(y,m) ⊆ Y for each y ∈ Y \ V .

Theorem 6. A metric space X is sparse if and only if each unbounded subset of X has
an asymptotically isolated coarsely thin subset.

Given a sequence of cardinals (κn)n∈N, we consider the space T (κn)n∈N =
⋃

n∈N κn×{n}
endowed with the ultrametric ρ defined by ρ(x, y) = max{m,n} for any distinct points
x ∈ κn × {n}, y ∈ κm × {m}.

Lemma 1. Every thin metric space (X, d) is asymorphic to the space T (κn)n∈N for some
sequence of cardinals (κn)n∈N.
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Proof. We partition X =
⋃

i∈ωXi1 by the equivalence ∼1 defined by x ∼1 y ⇔ x = y ∨
d(x, y) = 1. Since X is thin, the set X1 =

⋃
{Xi1 : |Xi1| > 1} is bounded. We partition

X \ X1 =
⋃

i∈ωXi2 by the equivalence ∼2 defined by x ∼2 y ⇔ x = y ∨ d(x, y) = 2. Since
X \X1 is thin, the set X2 = ∪{Xi2 : |Xi2| > 1} is bounded. We partition X \ (X1 ∪X2) by
the equivalence ∼3 defined by x ∼3 y ⇔ x = y ∨ d(x, y) = 3, and so on.

After ω steps, we get a partition X =
⋃

n∈NXn, |Xn| = κn. Then we partition κ =
⋃
Kn

so that |Kn| = κn. For each n ∈ N, let fn : Xn → Kn be an arbitrary bijection. It is easy to
see that f =

⋃
n∈N fn is an asymorphism between X and T (κn)n∈N.

For a metric space X, the minimal cardinality asden(X) of large subsets of X is called
an asymptotic density of X. Clearly asden(X) = 1 if and only if X is bounded. We note
also that asymptotic density is invariant under coarse equivalence, and each metric space is
coarsely equivalent to a metric space X such that |X| = asden(X).

Theorem 7. Let X be an unbounded thin metric space such that |X| = asden(X) = κ.
Then the following statements hold

(i) if κ = ℵ0 then X is coarsely equivalent either to T (1, 1, . . . ) or to T (ℵ0,ℵ0, . . . );
(ii) if cf(κ) > ℵ0 then X is coarsely equivalent to T (κ,κ, . . . );
(iii) if κ > ℵ0, cf(κ) = ℵ0 and (κ′n)n∈N is a sequence of cardinals such that κ′n < κ′n+1

and sup{κ′n : n ∈ N} = κ then X is coarsely equivalent either to T (κ′n)n∈N or to
T (κ,κ, . . . ).

Proof. In view of Theorem 1, we may suppose that X is ultrametric. By Lemma 1, there is
a partition κ =

⋃
n∈NKn, |Kn| = κn such that X is asymorphic to T (κn)n∈N.

(i) We consider two cases.
Case 1. There exists n0 ∈ N such that κn < ℵ0 for each n > n0. The subset ℵ0\

⋃
i≤n0

Ki is
large in T (κn)n∈N and hence coarsely equivalence to T (κn)n∈N. We take an arbitrary bijection
f : ℵ0 \

⋃
i≤n0

Ki → T (1, 1, . . . ) and note that f is an asymorphism.
Case 2. There exists an increasing sequence (nk)k∈N in N such that κnk

= ℵ0 for each
k ∈ N. We partition ℵ0 =

⋃
k∈NK

′
k so that |K ′k| = ℵ0 for each k ∈ N. Then we take

an arbitrary bijection f : ℵ0 → ℵ0 such that f(
⋃

i≤n1
Ki) = K ′1, f(

⋃
n1<i≤n2

Ki) = K2, . . . . It
is easy to see that f is an asymorphism between T (κn)n∈N and T (ℵ0,ℵ0, . . . ).

(ii) Asume that there exists n0 ∈ N such that κn < κ for each n > n0. On one hand, the
subspace κ\

⋃
i≤n0

Ki is coarsely equivalent to T (κn)n∈N. On the other hand, |κ\
⋃

i≤n0
Ki| <

κ because cf(κ) > ℵ0. Thus asden(X) < κ contradicting the assumption.
Hence there exists an increasing sequence (nk)k∈N in N such that Knk

= κ for each k ∈ N.
We partition κ =

⋃
k∈NK

′
k, |K ′k| = κ and define an asymorphism f : T (κn)n∈N → T (κ, κ, . . . )

as in the Case 2 of (i).
(iii) We consider two cases.
Case 1. There is m ∈ N such that κn < κ for each n ≥ m. We may suppose that

m = 1. We partition κ =
⋃

n∈NK
′
n such that K ′n = κ′n and choose two increasing sequences

(nk)k∈N, (mk)k∈N in N such that κ′m1
≤ |

⋃
i≤n1

Ki| < κ′m2
and, for each k > 1, κ′mk

≤
|
⋃

nk<i≤nk+1
Ki| < κ′mk+1

. Then we choose a bijection f : κ → κ such that for each k ∈ N,⋃
i≤mk

K ′i ⊆ f
(⋃
i≤nk

Ki

)
⊆

⋃
i≤mk+1

K ′i.

Then f is a desired asymorphism between T (κn)n∈N and T (κ′n)n∈N.
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Case 2. There is an increasing sequence (nk)k∈N in N such that κnk
= κ for each k ∈ N.

Then an asymorphism f : T (κn)n∈N → T (κ,κ, . . . ) can be defined as in the Case 2 of (i).

Remark 1. The metric spaces T (1, 1, . . . ) and T (ℵ0,ℵ0, . . . ) are not coarsely equivalent
because T (1, 1, . . . ) is uniformly locally finite but T (ℵ0,ℵ0, . . . ) is not of bounded geometry.
We show that the metric spaces T (κ,κ, . . . ) and T (κ′n)n∈N from (iii) of Theorem 7 are
not coarsely equivalent. We note that each large subset of T (κ,κ, . . . ) (resp. T (κ′n)n∈N) is
asymorphic to T (κ,κ, . . . ) (resp. T (κ′n)n∈N). Let f : T (κ,κ, . . . )→ T (κ′n)n∈N is a bijection,
and let κ =

⋃
n∈NKn be a partition which determine T (κ,κ, . . . ). On one hand K1 is

bounded in T (κ,κ, . . . ). On the other hand |f(K1)| = κ so f(K1) is unbounded in T (κ′n)n∈N.
Hence f is not an asymorphism.

4. Sparse types. Let X be a sparse metric space. We say that X is of type 0 if X is bounded,
and X is of type 1 if X is unbounded and coarsely thin. For m > 1, X is of type m if and
only if X can be partitioned in m coarsely thin subsets, but X is not of type less then m. If
X is not of type m for each m ∈ ω, we say that X is of infinite type. Clearly, the types are
invariant under coarse equivalence.

For m ∈ ω, we say that a metric space X is m-thin if, for every n ∈ ω, there exists
a bounded subset V of X such that |B(x, n)| ≤ m for each x ∈ X \ V . Clearly, X is 0-thin
if and only if X is bounded. By [5], every unbounded m-thin space can be partitioned in
≤ m thin subsets. Applying Theorem 5, we conclude that an unbounded metric space X
is of type m if and only if m is the minimal number such that X contains a large m-thin
subsets. Thus, a classification of sparse metric spaces of finite types is reduced to the case
of m-thin spaces.

Now we consider some construction of sparse spaces. Let (Xn)n∈ω be a sequence of subsets
of ω such that minXn > n for each n ∈ ω. We denote by W (Xn)n∈ω the subspace

⋃
{Xn ×

{n} : n ∈ ω} of W2. Applying Theorem 3, we conclude that W (Xn)n∈ω is sparse if and only
if, for each infinite subset I of ω, there exists a finite subset F ⊂ I such that

⋂
n∈F Xn is

finite.
By Theorem 7 (i), each metric space of bounded geometry of type 1 is coarsely equivalent

to W1.

Example 1. For each i > 2, we construct a subset of W2 of type i. To this end, we take
a sequence (Xn)n∈ω of infinite subsets of ω such that minXn > n, n ∈ ω and

(1)
⋂

n∈F Xn is finite for each F ⊂ ω, |F | = i+ 1;

(2)
⋂

n∈H Xn is infinite for each H ⊂ ω, |H| = i.

By (1), W (Xn)n∈ω is i-thin. By (2), each large subset of W (Xn) is not (i − 1)-thin. Hence,
W (Xn)n∈ω is of type i.

Example 2. We put X0 = ω \ {0} and choose a sequence (Xn)0<n<ω of infinite pairwise
disjoint subsets of ω \ {0, 1} such that minXn > n and ω \ ∪0<n<ωXn is infinite. Clearly,
the space W (Xn)n∈ω is of type 2. Moreover, each metric space of bounded geometry of type
2 is coarsely equivalent to W (Xn)n∈ω. Thus, up to the coarse equivalence, there is only one
space of bounded geometry of type 2.

Question 1. Let X be a metric space of bounded geometry of type i > 3. Does there exist
a family {Xn : n ∈ ω} of subsets of ω such that X is coarsely equivalent to W (Xn)n∈ω?
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Question 2. For each i > 3, classify the metric spaces of bounded geometry of type i up to
the coarse equivalence.

5. Ballean context. Following [12], we say that a ball structure is a triple B = (X,P,B),
where X, P are non-empty sets and, for every x ∈ X and α ∈ P , B(x, α) is a subset of X
which is called a ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X
and α ∈ P . The set X is called the support of B, P is called the set of radii.

Given any x ∈ X, A ⊆ X, α ∈ P , we set

B∗(x.α) = {y ∈ X : x ∈ B(y, α)}, B(A,α) =
⋃
a∈A

B(a, α).

A ball structure B = (X,P,B) is called a ballean if
• for any α, β ∈ P , there exist α′, β′ ∈ P such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β′);

• for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).

A ballean B on X can also be defined in terms of entourages of diagonal ∆X of X × X,
in this case it is called a coarse structure ([13]). For our “scattered” goal, we prefer the ball
language.

We suppose that all ballean under consideration are connected, i.e. for any x, y ∈ X there
exists α ∈ P such that y ∈ B(x, α).

Let B1 = (X1, P1, B1) and B2 = (X2, P2, B2) be balleans. A mapping f : X1 → X2 is
called a ≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such that, for every x ∈ X,
f(B1(x, α)) ⊆ B2(f(x), β). If there exists a bijection f : X1 → X2 such that f and f−1 are
≺-mappings, B1 and B2 are called asymorphic.

For a ballean B = (X,P,B), a subset Y ⊆ X is called large if there is α ∈ P such
that X = B(Y, α). A subset V ⊆ X is called bounded if V ⊆ B(x, α) for some x ∈ X
and α ∈ P . Each non-empty subset Y ⊆ X defines a subballean BY = (Y, P,BY ), where
BY (Y, α) = Y ∩B(y, α).

By the definition, two balleans B = (X,P,B) and B′ = (X ′, P ′, B′) are coarsely equivalent
if there exist large subsets Y ⊆ X, Y ′ ⊆ X ′ such that the subballeans BY and BY ′ are
asymorphic.

Let G be a group, I be an ideal in the Boolean algebra PG of all subsets of G, i.e. ∅ ∈ I
and if A,B ∈ I and A′ ⊆ A, then A ∪ B ∈ I and A′ ∈ I. An ideal I is called a group ideal
if I contains all finite subsets of G and, for all A,B ∈ I, we have AB ∈ I and A−1 ∈ I.

Now let X be a transitive G-space with the action G × X → X, (g, x) 7→ gx, and
let I be a group ideal in PG. We define a ballean B(G,X, I) as a triple (X, I, B), where
B(x,A) = Ax ∪ {x} for all x ∈ X, A ∈ I. By [8, Theorem 1] every ballean B with the
support X is asymorphic to the ballean B(G,X, I) for some group G of permutation of X
and some group ideal I in PG.

For a group G, we denote by FG the ideal of all finite subsets of G. Each metric space
(X, d) can be considered as the ballean (X,ω,Bd).

The following two theorems are from [12, Theorem 2.1.1] and [10, Theorem 1].
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Theorem 8. Let G be a countable transitive group of permutations of a set X. Then
there exists a uniformly locally finite metric d on X such that the ballean B(G,FG, X) is
asymorphic to (X, d).

Theorem 9. Let (X, d) be a uniformly locally finite metric space. Then there exists
a countable group G of permutations of X such that (X, d) is asymorphic to B(G,FG, X).

We say that a ballean B = (X,P,B) is thin if, for every α ∈ P , there exists a bounded
subset V of X such that B(x, α) = {x} for each x ∈ X \ V . A subset Y ⊆ X is called thin
if the subballean BY is thin.

We use the natural preordering < on P : α < β if and only if B(x, α) ⊆ B(x, β) for each
x ∈ X. We say that a subset Y ⊆ X has asymptotically α-isolated balls if, for every β > α,
there exists y ∈ Y such that B(y, β) \B(y, α) = ∅. If Y has asymptotically α-isolated balls
for some α ∈ P , we say that Y has asymptotically isolated balls.

A ballean B = (X,P,B) is called sparse if each unbounded subset ofX has asymptotically
isolated balls in X. A subset Y ⊆ X is called sparse if the subballean BY is sparse.

6. Sparse subsets of a group. In this section, we consider a group G as a ballean
B(G,FG, X) where X = G and G acts on X by the left translations. We remind that,
for g ∈ G and F ∈ FG, B(g, F ) = Fg ∪ {g}, and say that a subset A of a group G is sparse
if A is a sparse subset of the ballean B(G,FG, X).

Theorem 10. For a subset A of a group G, the following statements are equivalent

(i) A is sparse;

(ii) for every infinite subset Y of A, there exists a finite subset F such that the set
⋂

g∈F gA
is finite;

(iii) for each free ultrafilter U on G with A ∈ U , the set {g ∈ G : A ∈ gU} is finite, where
gU = {gU : U ∈ U}.

Proof. The equivalence (ii)⇔ (iii) has been proven in [11, Proposition 5].
(i)⇒ (ii). Suppose that there exists an injective sequence (gn)n∈ω in G such that

⋂
i6n giA

is infinite for each n ∈ ω. Then we choose an injective sequence (yn)n∈ω in A such that
g−1n {yn, yn+1, . . .} ⊆ A for every n ∈ ω. We put Y = {yn : n ∈ ω} and note that Y has no
asymptotically isolated balls in A. Hence, A is not sparse.

(ii)⇒ (ii). Suppose that A is not sparse. Then there is an infinite subset X of A with no
asymptotically isolated balls in A. We choose inductively an injective sequence (xn)n∈ω in X
and an injective sequence (yn)n∈ω in G such that yn{xn, xn+1, . . .} ⊆ A for every n ∈ ω. We
put Y = {yn : n ∈ ω} and note that

⋂
g∈F gA is infinite for every finite subset F ⊂ Y −1.

Theorem 11. Every countable group G contains a sparse subset of infinite type and, for
each m ∈ ω, a sparse subset of type m.

Proof. We write G as a union G =
⋃

n∈ωKn, K0 = {e} of an increasing chain of finite
symmetric subsets.

In the proof of Theorem 2.1 from [4], we constructed a sparse subset A of the form
A =

⋃
n∈ω Fnxn where (Fn)n∈ω is an appropriate sequence in FG. By the construction, A has

the following property
(1) for all n > 0 and m > 0, there exists F ∈ FG and an infinite subset I ⊂ ω such that

|F | = m+ 1, F = Fn for each n ∈ I and Knxxi ∩ A = {xxi} for all x ∈ F and i ∈ I.
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We fix m > 0, take an arbitrary large subset L ⊆ A and pick n ∈ ω such that A ⊆ KnL.
By (1), Fixi ⊂ L for each i ∈ I. Since F = Fi and |F | = m + 1, we conclude that L is not
m-thin. Hence A is of infinite type.

In the proof of Theorem 1.1 ([4]), for each m > 0, we constructed a sparse subset
A =

⋃
n∈ω Fnxn with following properties

(2) |Fi| = m, KiFixi ∩KnFnxn = ∅, 0 ≤ i < n < ω;
(3) for each n ∈ ω, there exist F ∈ FG and an infinite subset I ⊂ ω such that F = Fi

and Knxxi ∩ A = {xxi} for all i ∈ I and x ∈ F .
By (2), A is m-thin. Let L be a large subset of A. We pick n ∈ ω such that A ⊆ KnL.

By (3), Fixi ⊂ L for each i ∈ I. Since F = Fi and |F | = m, we conclude that L is not
(m− 1)-thin. Hence A is of type m.
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