
Математичнi Студiї. Т.41, №1 Matematychni Studii. V.41, No.1

УДК 517.555

A. I. Bandura, O. B. Skaskiv

BOUNDEDNESS OF L-INDEX IN DIRECTION OF FUNCTIONS

OF THE FORM f(〈z,m〉) AND EXISTENCE THEOREMS
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f(〈z,m〉) and existence theorems, Mat. Stud. 41 (2014), 45–52.

We obtain a criterion of boundedness of L-index in direction for functions f(〈z,m〉). Using
this criterion we find sufficient conditions of boundedness L-index in direction for some class of
entire functions with “plane” zeros. Moreover, we prove some existence theorems of an entire
function f(〈z,m〉) of bounded L-index in direction for a given L and of a positive continuous
function L for a given entire function F (z) such that F is of bounded L-index in direction.

А. И. Бандура, О. Б. Скаскив. Ограниченность L-индекса по направлению функций вида
f(〈z,m〉) и теоремы существования // Мат. Студiї. – 2014. – Т.41, №1. – C.45–52.

Получен критерий ограниченности L-индекса по направлению для функций вида f(〈z,
m〉). Используя этот критерий, сформулированы достаточные условия ограниченности L-
индекса по направлению для некоторого класса целых функций с “плоскими” нулями. До-
казаны теоремы существования целой функции вида f(〈z,m〉) ограниченного L-индекса
по направлению для заданной L и существования функции L для заданной целой функ-
ции F с ограниченным L-индексом по направлению.

1. Introduction. We introduced a class of entire functions of bounded L-index in direction
as an object of study in [1]–[4]. There were investigated properties of these functions. As
usually, the investigations have led to new open problems. For example, find conditions of
boundedness of L-index in direction for a function F (z) = f(〈z,m〉) and some function L,
where 〈z,m〉 =

∑n
j=1 zjmj, z,m ∈ Cn, and f(t) is of bounded l-index. Especially, this

problem is interesting for entire functions with “plane” zeros(definition see in [5]).
We need some standard notation. For η > 0, z ∈ Cn, b = (b1, . . . , bn) ∈ Cn \ {0} and

a positive continuous function L we define

λb1 (z, η) = inf

{
inf

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
: t0 ∈ C

}
,

λb2 (z, η) = sup

{
sup

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
: t0 ∈ C

}
,

λb1 (η) = inf{λb1 (z, η) : z ∈ Cn}, λb2 (η) = sup{λb2 (z, η) : z ∈ Cn}.

By Qn
b we denote the class of functions L which satisfy the condition for all η ≥ 0,

0 < λb1 (η) ≤ λb2 (η) < +∞.
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For a positive continuous function l(t), t ∈ C, t0 ∈ C and η > 0 we set λ1(t0, η) ≡
λb1 (0, t0, η) and λ2(t0, η) ≡ λb2 (0, t0, η) in the case where z = 0, b = 1, n = 1, L ≡ l, and
also λ1(η) = inf{λ1(t0, η) : t0 ∈ C}, λ2(η) = sup{λ2(t0, η) : t0 ∈ C}. As in [8], let Q ≡ Q1

1 be
the class of positive continuous functions l(t), t ∈ C, that satisfy the condition for all η > 0,
0 < λ1(η) ≤ λ2(η) < +∞.

An entire function of F (z), z ∈ Cn, is called (see [1]–[3]) a function of bounded L-index
in direction b, if there exists m0 ∈ Z+ such that for every m ∈ Z+ and every z ∈ Cn the
following inequality is valid

1

m!Lm(z)

∣∣∣∣∂mF (z)∂bm

∣∣∣∣ ≤ max

{
1

k!Lk(z)

∣∣∣∣∂kF (z)∂bk

∣∣∣∣ : 0 ≤ k ≤ m0

}
, (1)

where

∂0F (z)

∂b0
= F (z),

∂F (z)

∂b
=

n∑
j=1

∂F (z)

∂zj
bj = 〈grad F, b〉, ∂

kF (z)

∂bk
=

∂

∂b

(∂k−1F (z)
∂bk−1

)
, k ≥ 2.

Below we formulate assertions that indicate possible ways to construct a function L(z) ∈
Qn

b given a function l(t) ∈ Q. Their proofs are based on the definitions of Q and Qn
b. For

l ∈ Q we denote l1(z) = l(|z|), z ∈ Cn.

Lemma 1. If l ∈ Q then l1 ∈ Qn
b for every b ∈ Cn.

Proof. Since l ∈ Q we have that for u ∈ C

0 < inf
u0∈C

λ1(u0, η) ≤ inf

{
l(u)

l(u0)
: |u− u0| ≤

η

l(u0)

}
≤ 1 ≤

≤ sup

{
l(u)

l(u0)
: |u− u0| ≤

η

l(u0)

}
≤ sup

u0∈C
λ2(u0, η) < +∞.

Using these inequalities we obtain

inf

{
l1(z

0 + tb)

l1(z0 + t0b)
: |t− t0| ≤

η

l(|z0 + t0b|)

}
= inf

{
l(|z0 + tb|)
l(|z0 + t0b|)

: |t− t0| ≤
η

l(|z0 + t0b|)

}
=

= inf

{
l(|z0 + tb|)
l(|z0 + t0b|)

: |z0 + tb− (z0 + t0b)| ≤
|b|η

l(|z0 + t0b|)

}
≥

≥ inf

{
l(|z̃|)
l(|z̃0|)

:
∣∣|z̃| − |z̃0|∣∣ ≤ |b|η

l(|z̃0|)

}
≥ inf

{
l(t̃)

l(t̃0)
: |t̃− t̃0| ≤

|b|η
l(t̃0)

}
≥ λ1(|bη) > 0,

where z̃ = z0 + tb, z̃0 = z0 + t0b, t̃ = |z̃|, t̃0 = |z̃0|.
Using similar considerations we obtain

sup

{
l1(z

0 + t0b)

l1(z0 + t0b)
: |t− t0| ≤

η

l(|z0 + t0b)

}
= sup

{
l(|z0 + t0b|)
l(|z0 + t0b|)

: |t− t0| ≤
η

l(|z0 + t0b)

}
=

= sup

{
l(|z0 + tb|)
l(|z0 + t0b|)

: |z0 + tb− (z0 + t0b)| ≤
|b|η

l(|z0 + t0b|)

}
≤

≤ sup

{
l(|z̃|
l(|z̃0|)

: ||z̃| − |z̃0|| ≤
|b|η
l(|z̃0|)

}
≤ sup

{
l(t̃)

l(t̃0)
: |t̃− t̃0| ≤

|b|η
l(t̃0)

}
≤ λ2(|bη) < +∞.

Thus we proved that if l ∈ Q then for any b ∈ Cn one has l1 ∈ Qn
b.
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Lemma 2. If l(|t|) ∈ Q then for all m ∈ Cn and every b ∈ Cn we have l(|〈z,m〉|) ∈ Qn
b.

Proof. Since l(|t|) ∈ Q we have that for any q > 0

sup

{
l(|t|)
l(|t0|)

: |t− t0| ≤
q

l(t0)

}
≤ λ2(q) < +∞.

We substitute t = 〈z,m〉, t0 = 〈z0,m〉 and obtain

sup

{
l(|〈z,m〉|)
l(|〈z0,m〉|)

: |〈z,m〉 − 〈z0,m〉| ≤ q

l(|〈z0,m〉|)

}
≤ λ2(q) < +∞.

Let z = z̃ + tb, z0 = z̃ + t0b. Then we have

|〈z,m〉 − 〈z0,m〉| = |〈b,m〉| |t− t0| ≤
q

l(|〈z0,m〉|)
.

Hence

sup

{
l(|〈z̃ + tb,m〉|)
l(|〈z̃ + t0b,m〉|)

: |t− t0| ≤
q

|〈b,m〉|l(|z̃ + t0b,m|)

}
≤ λ2(q) < +∞.

We denote q∗ = q
|〈b,m〉| . Since the number q is arbitrary, we obtain that for every q∗ > 0 the

following inequality is valid

sup

{
l(|〈z̃ + tb,m〉|)
l(|〈z̃ + t0b,m〉|)

: |t− t0| ≤
q∗

l(|〈z̃ + t0b,m〉|)

}
≤ λ2(q

∗|〈b,m〉|) <∞. (2)

A similar inequality can be deduced for inf. Indeed, the condition l(t) ∈ Q implies
the inequality

inf

{
l(|t|)
l(|t0|)

: |t− t0| ≤
q

l(t0)

}
≥ λ1(q) > 0.

As above we substitute t = 〈z̃ + tb,m〉 and t0 = 〈z̃ + t0b,m〉 and obtain

inf

{
l(|〈z̃ + tb,m〉|)
l(|〈z̃ + t0b,m〉|)

: |t− t0| ≤
q

|〈b,m〉|l(|〈z̃ + t0b,m〉|)

}
≥ λ1(q) > 0. (3)

Therefore from (2) and (3) we have that l(|〈z,m〉|) ∈ Qn
b.

We need an analogue of Hayman’s theorem for entire functions of bounded l-index.

Theorem 1 ([7]). An entire function f is of bounded l-index if and only if there exist
numbers p ∈ Z+ and C > 0 such, that for every z ∈ C

|f (p+1)(z)|
lp+1(z)

≤ Cmax

{
|f (k)(z)|
lk(z)

: 0 ≤ k ≤ p

}
.

This theorem was proved M. M. Sheremeta in [7].
In [1] we proved a proposition, which is a multidimensional analogue of Hayman’s theorem

for functions of bounded L-index in direction.
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Theorem 2 ([1]). Let L ∈ Qn
b. An entire function F (z), z ∈ Cn, is of bounded L-index in

the direction b if and only if there exist numbers p ∈ Z+ and c > 0 such that for every
z ∈ Cn ∣∣∣∣ 1

Lp+1(z)

∂p+1F (z)

∂bp+1

∣∣∣∣ ≤ Cmax

{∣∣∣∣ 1

Lk(z)

∂kF (z)

∂bk

∣∣∣∣ : 0 ≤ k ≤ p

}
. (4)

As a consequence, we obtain the following result.

Theorem 3. Let l(|t|) ∈ Q. An entire function f(t), t ∈ C, is of bounded l-index if and
only if the entire function f(〈z,m〉) is of bounded L-index in the direction b ∈ Cn, where
L(z) = l(|〈z,m〉|), z ∈ Cn, m ∈ Cn, 〈b,m〉 6= 0.

Proof. At first we calculate the directional derivative

∂sf(〈z,m〉)
∂bs

= f (s)(〈z,m〉)〈b,m〉s for s ≥ 1. (5)

Since the function f(t) is of bounded l-index, by Theorem 1 there exist p ∈ Z+ and C∗ > 0
such that for all t ∈ C

|f (p+1)(t)|
lp+1(|t|)

≤ C∗max

{
|f (k)(z)|
lk(|t|)

: 0 ≤ k ≤ p

}
.

In other words, for t = 〈z,m〉 the following estimation holds

1

lp+1(|〈z,m〉|)

∣∣∣∣∂p+1f(〈z,m〉)
∂bp+1

∣∣∣∣ = |f (p+1)(〈z,m〉)|
lp+1(|〈z,m〉|)

· |〈b,m〉|p+1 ≤

≤ C∗|〈b,m〉|p+1 max

{
|f (k)(〈z,m〉)|
lk(|〈z,m〉|)

: 0 ≤ k ≤ p

}
=

= C∗|〈b,m〉|p+1max

{
1

lk(|〈z,m〉|)|〈b,m〉|k

∣∣∣∣∂kf(〈z,m〉)∂bk

∣∣∣∣ : 0 ≤ k ≤ p

}
≤

≤ C∗max{|〈b,m〉|p+1−k : 0 ≤ k ≤ p}max

{
1

lk(|〈z,m〉|)

∣∣∣∣∂kf(〈z,m〉)∂bk

∣∣∣∣ : 0 ≤ k ≤ p

}
Hence there exist p ∈ Z+ and C = C∗max{|〈b,m〉|p+1−k : 0 ≤ k ≤ p}, that for all z ∈ Cn

inequality (4) holds. Therefore by Theorem 2 the function f(〈z,m〉) is of bounded L-index
in the direction b (L(z) = l(|〈z,m〉|) ∈ Qn

b by Lemma 2).
The proof of sufficiency is similar and uses (5).

This theorem is useful in the study of boundedness of L-index in direction for some
infinite products.

Let π be an entire function in Cn of genus p with “plane” zeros

π(z) =
∞∏
k=1

g(〈z, ak|ak|−2〉, p), (6)

p 6= 0 g(u, p) = (1− u) exp
{
u+

u2

2
+ · · ·+ up

p

}
, p = 0 g(u, 0) = (1− u),
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where ak ∈ Cn is a sequence of genus p, i.e.

∞∑
k=1

1/|ak|p+1 < +∞,
∞∑
k=1

1/|ak|p = +∞. (7)

We assume that the sequence (ak) is ordered in such a way that |ak| ≤ |ak+1| (k ≥ 1).
Moreover, we suppose that elements of sequence (ak) are located on some ray

akj = mj|ak| for all k ≥ 1, (8)

m = (m1,m2, . . . ,mn). If condition (8) holds then π(z) is a function of 〈z,m〉. For the class
of such functions we obtained some conditions (see [4] and [1]) on the sequence ak, under
which π(z) is a function of bounded L-index in direction.

We note that for these conditions the proof of sufficiency is similar to that for one-
dimensional case ([9], [10]). But in view of Theorem 3 and Lemma 2 now we can apply
the corresponding propositions for infinite products from [9], [10] to obtain sufficient condi-
tions of boundedness L-index in direction for functions π(z). Thus the next corollaries of
Propositions 2–4 from [9] are true. Let n(r) =

∑
|ak|<r 1.

Corollary 1. If |a
k|p+1

k
↗∞ (k →∞), (ak) satisfies condition (8), L(z) = l(|〈z,m〉|), l ∈ Q,

n(r) lnn(r) = O(rl(r)) and

rp−1
n(r)∑
l=1

1

|ak|p
+ rp

∞∑
k=n(r)+1

1

|ak|p+1
= O(l(r)), r → +∞,

then a function π(z) defined by (6) is a function of bounded L-index in the direction b.

Corollary 2. Let |a
k|p+1

k
↗ ∞ (k → ∞), (ak) satisfy condition (8), L1(z) = l1(|〈z,m〉|),

l1 ∈ Q and l1(r) � rp
∑n(r)

k=1
1
|ak|p (r0 ≤ r → +∞). If n(r) lnn(r)

r
= O(L1(r)) (r → +∞), then

the function π(z) defined by (6) is a function of bounded L1-index in the direction b.

Corollary 3. Let |a
k|p+1

k
↗ ∞ (k → ∞), (ak) satisfy condition (8), L2(z) = l2(|〈z,m〉|),

l2(z) ∈ Q and l2(r) � rp
∑∞

k=n(r)+1
1
|ak|p (r0 ≤ r → +∞). If n(r) lnn(r)

r
= O(l2(r)) (r → +∞),

then the function π(z) defined by (6) is a function of bounded L2-index in the direction b.

Let Q̃ be the class of nondecreasing functions l(t) ∈ Q. We obtain the next corollaries of
Lemma 2 and Theorem 1 from [10].

Corollary 4. Let L(z) = l(|〈z,m〉|), l ∈ Q and (ak) satisfy condition (8), l(|as|)) =
O(l(|as+1|)) s→ +∞, for some q0 > 0 and every k ≥ 1

|ak+1|−|ak| > 2q0
L(|ak+1|)

,

s−1∑
k=1

1

|as| − |ak|
= O(L(|as|)),

∞∑
k=s+2

1

|ak| − |as|
= O(L(|as|)), s→∞.

Then the function π(z) of genus 0 defined by (6) is a function of bounded L-index in the
direction b.
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Corollary 5. If for some η > 0 and every k ≥ 1 (1 + η)|ak| ≤ |ak+1| and (ak) satisfies
condition (8) then there exists L(z) = l(|〈z,m〉|), l ∈ Q̃ such, that l(r) ∼ n(r)

r
(r → +∞)

and the function π(z) of genus 0 defined by (6) is a function of bounded L-index in the
direction b.

Theorem 1 from [11] gives one more corollary.

Corollary 6. If 0 < |a1| = d1 ≤ dk = |ak| − |ak−1| ↗ ∞ (2 ≤ k → ∞), (ak) satisfies
condition (8) then there exists L(z) = l(|〈z,m〉|), l ∈ Qn

b, such that l(r) → 0 r → +∞,
and the function π(z) with genus 0 defined by (6) is a function of bounded L-index in the
direction b.

Applying Lemma 9 from [1] to these Corollaries 1–6 and putting L(〈z,m〉) ≡ 1, one can
obtain corresponding sufficient conditions of boundedness index in the sense of Bordulyak-
Sheremeta (see definition in [16]).

For the one-dimensional case, for some past time mathematicians were interested in the
following two problems: the problem of the existence of an entire function of bounded l-index
for a given l, and the problem of the existence of a function l for a given entire function f
such that f is of bounded l-index (see [12]–[15]). It is clear that the same problems can be
posed for the multidimensional case.

We note that the solution of the first problem in the one-dimensional case is given by
a canonical product. The solution of the first problem in the multidimensional case also
exists in the class of canonical product with “plane” zeros.

Theorem 4. For every positive continuous function L(z) = l(|〈z,m〉|), where m ∈ Cn is
a fixed vector, l(t) : [0,+∞)→ (0,+∞) is a continuous function and rl(r)→ +∞(r → +∞)
there exists an entire transcendental function F of bounded L-index in every direction b.

Proof. By Theorem 1 from [13] for every positive continuous function l(|t|), t ∈ C, such that
rl(r) → +∞ (r → +∞), there exists an entire function f(t) of bounded l-index. We put
t = 〈z,m〉 and by Theorem 3 we obtain that F (z) = f(〈z,m〉) is a function of bounded
L-index in the direction b.

We consider the function F (z0+ tb) if z0 ∈ Cn is fixed. If F (z0+ tb) 6≡ 0, then we denote
by pb(z0 + a0kb) the multiplicity of the zero a0k of the function F (z0 + tb). If F (z0 + tb) ≡ 0
for some z0 ∈ Cn, then we put pb(z0 + tb) =∞.

Theorem 5. In order that for an entire function F there exist a positive continuous func-
tion L(z) such that F (z) is a function of bounded L-index in the direction b it is necessary
and sufficient that ∃p ∈ Z+ ∀z0 ∈ Cn such, that F (z0 + tb) 6≡ 0, and ∀k pb(z0 + a0kb) ≤ p.

Proof. Necessity. To simplify the notation we consider everywhere in the proof p0k ≡ pb(z
0+

ak0b). Necessity follows from the definition of bounded L-index in direction. Indeed, assume
on the contrary that ∀p ∈ Z+ ∃z0 ∃k p0k > p. This means that

∂p
0
kF (z0 + a0kb)

∂bp
0
k

6= 0 and
∂jF (z0 + a0kb)

∂bj
= 0

for all j ∈ {1, . . . , p0k − 1}. Therefore L-index in the direction b at the point z0 + a0kb is not
less than p0k > p

Nb(F,L, z
0 + a0kb) > p.



A BOUNDEDNESS OF THE L-INDEX IN DIRECTION FUNCTIONS f(〈z,m〉) 51

If p → +∞, then we obtain that Nb(F,L, z
0 + a0kb) → +∞. But this contradicts the

boundedness of L-index in the direction of the function F.
Sufficiency. If for some z0 ∈ Cn, F (z0 + tb) ≡ 0, then inequality (1) is obvious.

Let p be the smallest integer such that ∀z0 ∈ Cn F (z0 + tb) 6≡ 0, and ∀k pk(z0) ≤ p.
For any point z ∈ Cn we define unambiguously the choice of z0 ∈ Cn and t0 ∈ C such
that z = z0 + t0b. We choose a point z0 on a hyperplane 〈z,m〉 = 1, where 〈b,m〉 = 1
(actually it is sufficient that 〈b,m〉 6= 0, i. e. the hyperplane is not parallel to b). Therefore
t0 = 〈z,m〉− 1, z0 = z− (〈z,m〉− 1)b. We put KR = {t ∈ C : max{0, R− 1} ≤ |t| ≤ R+1}
for all R ≥ 0 and

m1(z
0, R) = min

a0k∈KR

{
1

p0k!

∣∣∣∣∣∂p
0
kF (z0 + a0kb)

∂bp
0
k

∣∣∣∣∣
}
.

Since F is an entire function, there exists ε = ε(z0, R) > 0 such that

1

p0k!

∣∣∣∣∣∂p
0
kF (z0 + tb)

∂bp
0
k

∣∣∣∣∣ ≥ m1(z
0, R)

2

for all k and all t ∈ KR ∩ {t ∈ C : |t − a0k| < ε(R, z0)}. We denote G0
ε =

⋃
a0k∈KR

{t ∈ C :

|t− a0k| < ε}, m2(z
0, R) = min{|F (z0 + tb)| : |t| ≤ R + 1, t /∈ G0

ε},

Q(R, z0) = min

{
m1(R, z

0)

2
,m2(R, z

0)

}
.

We take R = |t0|. Then at least one of the numbers |F (z0 + t0b)|,
∣∣∣∂F (z0+t0b)

∂b

∣∣∣ , . . . ,
1
p!

∣∣∣∂pF (z0+t0b)
∂bp

∣∣∣ is not less than Q(R, z0) (respectively, 1
p0k!

∣∣∣∂p0kF (z0+t0)b)

∂b
p0
k

∣∣∣ for t0 ∈ G0
ε and |F (z0+

t0b)| for t /∈ Gε). Hence

max

{
1

j!

∣∣∣∣∂jF (z0 + t0b)

∂bj

∣∣∣∣ : 0 ≤ j ≤ p

}
≥ Q(R, z0). (9)

On the other hand, for |t0| = R and j ≥ p+ 1 Cauchy’s inequality is valid

1

j!

∣∣∣∣∂jF (z0 + t0b)

∂bj

∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
|τ−t0|=1

F (z0 + τb)

(τ − t0)j+1
dτ

∣∣∣∣ ≤ max{|F (z0+ τb)| : |τ | ≤ R+1}. (10)

We choose a positive continuous function L(z) such that

L(z0 + t0b) ≥ max

{
max{|F (z0 + tb)| : |τ |R + 1}

Q(R, z0)
, 1

}
.

From (9) and (10) with |t0| = R and j ≥ p+ 1 we obtain

1
j!Lj(z0+t0b)

·
∣∣∣∂jF (z0+t0b)

∂bj

∣∣∣
max

{
1

k!Lk(z0+t0b)

∣∣∣∂kF (z0+t0b)
∂bk

∣∣∣ : 0 ≤ k ≤ p
} ≤ L−j(z0 + tb)

Q(R, z0)L−p(z0 + tb)
×

×max{|F (z0 + tb)| : |τ | ≤ R + 1} ≤ Lp+1−j(z0 + tb) ≤ 1.

Since z = z0 + tb, we have

1

j!Lj(z)

∣∣∣∣∂jF (z)∂bj

∣∣∣∣ ≤ max

{
1

k!Lk(z)

∣∣∣∣∂kF (z)bk

∣∣∣∣ : 0 ≤ k ≤ p

}
.

But z is arbitrary. So F is a function of bounded L-index in the direction b.
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Let γF (z) be a multiplicity of the zero point of function F

γF (z) = min
ak 6=0
‖k‖

for F (z) =
∑∞
‖k‖=0 ak(z − z0)k, ‖k‖ = k1 + . . .+ kn, k ∈ Zn+, z ∈ Cn. If F (z0) = 0 and for all

j ∈ {1, . . . , p} ∂jF (z0)
∂bj = 0 and ∂p+1F (z0)

∂b
6= 0, then the point z0 is called zero of multiplicity p

in the direction b, and we denote this multiplicity by pb(z). It is clear that γF (z) ≤ pb(F ).
Using the proved theorem we obtain the following corollary.
Corollary 7. If F is an entire function of bounded index in the direction b (i. e. L(z) = 1),
then the multiplicities of the zero points of function F are uniformly bounded.
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