УДК 517.547.24

A. SARKAR

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING SETS

A. Sarkar. Some results on uniqueness of meromorphic functions sharing sets, Mat. Stud. 41 (2014), 53–61.

Let f and g be two non constant meromorphic functions defined in the open complex plane \mathbb{C} . In 2011 A. Banerjee ([4]), in an attempt to answer on the question of F. Gross ([9]), by W. C. Lin and H. X. Yi ([18]), improved a result of I. Lahiri ([14]) by reducing the cardinality of the set shared by f and g from 7 to 6 under weaker condition on ramification index. In this paper we show that the cardinality of the shared set can further be reduced to 4 as well as the condition on ramification index can be replaced by weaker one to obtain the same conclusion as A. Banerjee ([4]).

А. Саркар. Некоторые результаты единственности мероморфных функций, разделяющих множества // Мат. Студії. – 2014. – Т.41, №1. – С.53–61.

Пусть f и g — две мероморфные в открытой плоскости функции, не равные тождественно постоянной. В 2011 г. А. Банерджи ([4]), отвечая на вопрос Ф. Гросса ([9]), В. К. Лин и Г. Х. Йи ([18]), уточнили результат И. Лахира ([14]) уменьшив мощность множества розделённых значений f и g с 7 до 6 при более слабых условиях на индекс ветления. В этой статье показано, что мощность множества розделённых значений может быть уменьшена до 4, а условия на индекс ветления могут быть ослаблены, при этом сохраняется то же заключения, как и у А. Банерджи ([4]).

1. Introduction, definitions and results. Let f and g be two non constant meromorphic functions defined in the open complex plane \mathbb{C} . If for some $a \in \mathbb{C} \cup \{\infty\}$, f and g have the same set of a-points with the same multiplicities, we say that f and g share the value a CM (Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said to share the value a IM (Ignoring Multiplicities). We do not explain the standard notations and definitions of the value distribution theory as these are available in [11]. Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and $E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity then we replace the above set by $\overline{E}_f(S)$. If $E_f(S) = E_g(S)$ we say that f and g share the set S CM. On the other hand if $\overline{E}_f(S) = \overline{E}_g(S)$, we say that f and g share the set S IM.

In 1976 F. Gross([9]) raised the following question.

Question A. Can one find finite sets S_j , $j \in \{1, 2\}$ such that any two nonconstant entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for $j \in \{1, 2\}$ must be identical?

2010 Mathematics Subject Classification: 30D35.

Keywords: meromorphic functions; weighted sharing; uniqueness.

As a natural outcome of the above question W. C. Lin and H. X. Yi([18]) raised the following question in 2003.

Question B. Can one find finite sets S_j , $j \in \{1, 2\}$ such that any two nonconstant meromorphic functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for $j \in \{1, 2\}$ must be identical?

During last couple of years a great deal of works has been directed by researchers to answer the above questions ([1]–[8], [10], [14], [16]–[18], [20]–[26]).

In 2003, M. Fang and I. Lahiri exhibited a unique range set with smaller cardinalities than that obtained some previously imposing restrictions on the poles of f and g in the following result.

Theorem A([6]). Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \geq 7$ be an integer and a and b be two nonzero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. If f and g be two nonconstant meromorphic functions having no simple poles such that $E_f(S) = E_g(S)$ and $E_f(\{\infty\}) = E_g(\{\infty\})$ then $f \equiv g$.

In 2001 I. Lahiri introduced an idea of gradation of sharing of values and sets known as weighted sharing as follows.

Definition 1 ([12, 13]). Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k+1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_0 is a zero of f - a with multiplicity $m(\leq k)$ if and only if it is a zero of g - a with multiplicity $m(\leq k)$ and z_0 is a zero of f - a of multiplicity m(>k) if and only if it is a zero of g - a with multiplicity n(>k) with multiplicity m(>k) if and only if it is a zero of g - a with multiplicity n(>k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Definition 2 ([13]). Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and k be a positive integer or ∞ . We denote by $E_f(S, k)$ the set $\bigcup_{a \in S} E_k(a; f)$.

With the notion of weighted sharing of sets improving Theorem A, I. Lahiri ([14]) proved the following theorem.

Theorem B([14]). Let S be defined as in Theorem A. If f and g are two nonconstant meromorphic functions such that $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\},\infty) = E_g(\{\infty\},\infty)$ and $\Theta(\infty; f) + \Theta(\infty; g) > 1$ then $f \equiv g$.

Suppose that the polynomial P(w) is defined by

$$P(w) = a\omega^{n} - n(n-1)w^{2} + 2n(n-2)bw - (n-1)(n-2)b^{2}$$
(1)

where $n \ge 3$ is an integer and a and b are two nonzero complex numbers satisfying $ab^{n-2} \ne 2$. We also define

$$R(w) = \frac{aw^{n}}{n(n-1)(w-\alpha_{1})(w-\alpha_{2})},$$
(2)

where α_1 , α_2 are two distinct roots of $n(n-1)w^2 - 2n(n-2)bw + (n-1)(n-2)b^2 = 0$. It can be shown that P(w) has only simple roots([25]).

In 2011 A. Banerjee improved Theorem B in the following result by lowering the cardinality of the shared set replacing it by a new one in the following theorem.

Theorem C([4]). Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1) and $n \geq 6$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\},\infty) = E_g(\{\infty\},\infty)$ and $\Theta_f + \Theta_g + \min\{\Theta(b,f),\Theta(b,g)\} > 8 - n$, where $\Theta_f = 2\Theta(0;f) + \Theta(b;f) + \Theta(\infty;f)$ and Θ_g is defined similarly. Then $f \equiv g$.

Before proceeding further we need the following definitions.

Definition 3. For $a \in \mathbb{C} \cup \{\infty\}$ and a positive integer m we denote by $\overline{N}(r, a; f \geq m)$ the reduced counting function of those a-points of f whose multiplicity is greater than or equal to m.

Definition 4. We put $N_2(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f \geq 2)$ and $\delta_2(a; f) = 1 - \overline{\lim_{r \to \infty} \frac{N_2(r, a; f)}{T(r, f)}}$.

The aim of this paper is to improve Theorem C in the following way.

- 1. By replacing $n \ge 7$ in Theorem C with $n \ge 4$.
- 2. By replacing the condition on ramification index by weaker one.

Note that in the definition of the polynomial P(w), we require $ab^{n-2} \neq 2$. For our purpose, in addition to it we assume $ab^{n-2} \neq 1$, by which the polynomial P(w) will not lose any of its properties mentioned above. Thus from now on our set S is given by $S = \{w \mid P(w) = 0\}$ where P(w) is given by (1) with $ab^{n-2} \neq 2$, 1. We state below our theorem.

Theorem 1. Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1) and $n \geq 4$ and $ab^{n-2} \neq 2$, 1. If f and g be two nonconstant meromorphic functions such that $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\},\infty) = E_g(\{\infty\},\infty)$ and

$$\Theta_f + \Theta_g + \min\{\Theta(b, f), \Theta(b, g)\} + \min\left\{\sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, f), \sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, g)\right\} > 8 - n \quad (3)$$

then $f \equiv g$, where $\Theta_f = 2\Theta(0; f) + \Theta(b; f) + \Theta(\infty; f)$ and Θ_g is defined similarly.

Following Corollaries are the easy consequences of the above theorem.

Corollary 1. Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1) and $n \geq 7$ and $ab^{n-2} \neq 2, 1$. If f and g are two nonconstant entire functions such that $E_f(S, 2) = E_g(S, 2)$, then $f \equiv g$.

Corollary 2. Let $S = \{w \mid P(w) = 0\}$, where P(w) is given by (1) and $n \geq 7$ and $ab^{n-2} \neq 2, 1$. If f and g are two nonconstant meromorphic functions having no simple zeros and satisfying $E_f(S,2) = E_g(S,2)$ and $E_f(\{\infty\},\infty) = E_g(\{\infty\},\infty)$, then $f \equiv g$.

We conclude this section with the definition of a few more notations.

Definition 5 ([4, 13]). Let f and g be two nonconstant meromorphic functions such that fand g share (a, 0) for $a \in \mathbb{C} \cup \{\infty\}$. Let z_0 be an a-point of f with multiplicity p, and an a-point of g of multiplicity q. We denote by $\overline{N}_L(r, a; f)(\overline{N}_L(r, a; g))$ the reduced counting function of those a-points of f and g where p > q(q > p). We denote by $\overline{N}_*(r, a; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the corresponding a-points of g. Clearly $\overline{N}_*(r, a; f, g) = \overline{N}_*(r, a; g, f)$ and $\overline{N}_*(r, a; f, g) = \overline{N}_L(r, a; f) + \overline{N}_L(r, a; g)$. We also denote by $N_E^{(1)}(r, 1; f)$ the counting function of those 1-points of f and g where p = q = 1.

A. SARKAR

2. Lemmas. In this section we present some lemmas which will be required to establish our results. In the lemmas several times we use the function H defined by $H = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}$ where F and G are two non-constant meromorphic functions.

Let f and g be two nonconstant meromorphic functions and

$$F = R(f), \ G = R(g), \tag{4}$$

where R(w) is given by (2). From (2) and (5) it is clear that

$$T(r,f) = \frac{1}{n}T(r,F) + S(r,f), T(r,g) = \frac{1}{n}T(r,G) + S(r,g).$$
(5)

Lemma 1 ([2]). Let F, G be given by (4) and $H \neq 0$. If F, G share (1, m) and f, g share (∞, k) , then

$$\begin{split} N_E^{(1)}(r,1;F) &\leq \overline{N}_L(r,1;F) + \overline{N}_L(r,1;G) + \overline{N}(r,0;f) + \overline{N}(r,b;f) + \overline{N}(r,0;g) + \overline{N}(r,b;g) + \\ &+ \overline{N}_*(r,\infty;f,g) + \overline{N}_0(r,0;f') + \overline{N}_0(r,0;g'), \end{split}$$

where $\overline{N}_0(r,0;f')$ denotes the reduced counting function corresponding to the zeros of f' which are not the zeros of f(f-b) and F-1. $\overline{N}_0(r,0;g')$ is defined similarly.

Lemma 2 ([19]). Let f be a non-constant meromorphic function and let $R(f) = \frac{\sum_{k=0}^{n} a_k f^k}{\sum_{j=0}^{m} b_j f^j}$ be an irreducible rational function in f with constant coefficients $\{a_k\}$ and $\{b_j\}$ where $a_n \neq 0$, $b_m \neq 0$. Then T(r, R(f)) = dT(r, f) + S(r, f), where $d = \max\{m, n\}$.

Lemma 3 ([2]). Let F and G be given by (4) and $H \neq 0$. If F and G share (1, m) and f, g share (∞, k) , where $0 \leq m < \infty$, $0 \leq k < \infty$, then

$$\begin{split} [(n-2)k+n-3]\overline{N}(r,\infty;f\mid\geq k+1) &= [(n-2)k+n-3]\overline{N}(r,\infty;g\mid\geq k+1) \leq \\ &\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}_*(r,1;F,G) + S(r,f) + S(r,g). \end{split}$$

Lemma 4 ([4]). Let f, g be two non-constant meromorphic functions sharing $(\infty, 0)$ and suppose that α_1 and α_2 are two distinct roots of the equation $n(n-1)w^2 - 2n(n-2)bw + (n-1)(n-2)b^2 = 0$. Then $\frac{f^n}{(f-\alpha_1)(f-\alpha_2)} \cdot \frac{g^n}{(g-\alpha_1)(g-\alpha_2)} \neq \frac{n^2(n-1)^2}{a^2}$, where $n \geq 3$ is an integer.

Lemma 5 ([8]). Let $Q(w) = (n-1)^2(w^n-1)(w^{n-2}-1) - n(n-2)(w^{n-1}-1)^2$, then $Q(w) = (w-1)^4(w-\beta_1)(w-\beta_2)\dots(w-\beta_{2n-6})$ where $\beta_j \in \mathbb{C} \setminus \{0,1\}, (j \in \{1,2,\dots,2n-6\})$ which are pairwise distinct.

Lemma 6. Let F, G be given by (5), where $n \ge 4$ is an integer. If f, g share $(\infty, 0)$ then $F \equiv G \Rightarrow f \equiv g$.

Proof. From the definitions of F, G we observe that $F \equiv G \Rightarrow \frac{f^n}{(f-\alpha_1)(f-\alpha_2)} \equiv \frac{g^n}{(g-\alpha_1)(g-\alpha_2)}$. Therefore f, g share $(0, \infty)$ and (∞, ∞) . Then from above and in view of the definitions of R(w) we obtain

$$n(n-1)f^2g^2(f^{n-2}-g^{n-2}) - 2n(n-2)bfg(f^{n-1}-g^{n-1}) + (n-1)(n-2)b^2(f^n-g^n) = 0.$$
 (6)

Let $h = \frac{f}{a}$, that is f = gh which on substitution in (6) yields

$$n(n-1)h^2g^2(h^{n-2}-1) - 2n(n-2)bhg(h^{n-1}-1) + (n-1)(n-2)b^2(h^n-1) = 0.$$
 (7)

Note that since f and g share $(0, \infty)$ and (∞, ∞) , $(0, \infty)$ are the exceptional values of Picard of h. If h is non-constant then from Lemma 6 and (7) we have

$$\{n(n-1)h(h^{n-2}-1)g - n(n-2)b(h^{n-1}-1)\}^2 = -n(n-2)b^2Q(h)$$
(8)

where $Q(h) = (h-1)^4(h-\beta_1)(h-\beta_2)\dots(h-\beta_{2n-6}), \beta_j \in \mathbb{C} \setminus \{0,1\}, j \in \{1,2,\dots,2n-6\}$ which are pairwise distinct. From (8)we observe that each zero of $h-\beta_j, j \in \{1,2,\dots,2n-6\}$ is of order at least two. Therefore by the second main theorem we obtain

$$(2n-6)T(r,h) \le \overline{N}(r,\infty;h) + \overline{N}(r,0;h) + \sum_{j=1}^{2n-6} \overline{N}(r,\beta_j;h) + S(r,h) \le \frac{1}{2}(2n-6)T(r,h) + S(r,h),$$

which is a contradiction for $n \ge 4$. Thus h must be a constant. From (8) it follows that $h^{n-2} - 1 = 0$ and $h^{n-1} - 1 = 0$ which implies that $h \equiv 1$. Therefore $f \equiv g$.

Lemma 7 ([4]). Let F, G be given by (4) and S be defined as in Theorem 1, where $n \ge 4$. If $E_f(S,0) = E_g(S,0)$ then S(r,f) = S(r,g).

Lemma 8 ([15]). If $N(r, 0; f^{(k)} | f \neq 0)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity then $N(r, 0; f^{(k)} | f \neq 0) \leq k\overline{N}(r, \infty; f) + N(r, 0; f | < k) + k\overline{N}(r, 0; f | \geq k) + S(r, f)$ where N(r, 0; f | < k) is the counting function of the zeros of f with multiplicity < k each zero being counted according to its multiplicity.

3. Proof of Theorem 1. Let F, G be given by (4). Suppose first that $H \not\equiv 0$. Let p be any positive integer and $a_j \not\in S \cup \{0, b, \infty\}, j \in \{1, 2, \dots, p\}$ be distinct complex numbers. We denote by $N_*(r, 0; f')$ the counting function of the zeros of f' which are not the zeros of $f(f-b) \prod_{j=1}^p (f-a_j)$ and F-1. Similarly may we define $N_*(r, 0; g')$ and the corresponding reduced counting functions $\overline{N}_*(r, 0; f')$ and $\overline{N}_*(r, 0; g')$. Note that $\overline{N}_0(r, 0; f') = \overline{N}_*(r, 0; f') + \sum_{j=1}^p \overline{N}(r, a_j, f \mid \geq 2)$. Since $E_f(S, 2) = E_g(S, 2)$, it follows that F, G share (1,2). Also since $E_f(\{\infty\}, \infty) = E_g(\{\infty\}, \infty)$ we see that $\overline{N}_*(r, \infty; f, g) \equiv 0$. We denote the elements of S by w_1, w_2, \dots, w_n . By Lemma 8 we note that $\overline{N}_0(r, 0; g') + \overline{N}(r, 1; G \mid \geq 2) + \overline{N}_*(r, 1; F, G) \leq \overline{N}_0(r, 0; g') + \overline{N}(r, 1; G \mid \geq 2) + \overline{N}(r, 1; G \mid \geq 2) + 2\overline{N}(r, w_j; g \mid \geq 3) \leq N(r, 0; g' \mid g \neq 0) + S(r, g) \leq \overline{N}(r, 0; g) + \overline{N}(r, \infty; g) + S(r, g)$.

Hence by above and the second main theorem we obtain for $\epsilon > 0$ using Lemma 1 and Lemma 2,

$$\begin{split} (n+p+1)T(r,f) &\leq \overline{N}(r,1;F) + \overline{N}(r,0;f) + \overline{N}(r,b;f) + \overline{N}(r,\infty;f) + \sum_{j=1}^{p} \overline{N}(r,a_{j};f) - \\ &-N_{*}(r,0;f') + S(r,f) = \overline{N}(r,1;F \mid = 1) + \overline{N}(r,1;F \mid \geq 2) + \overline{N}(r,0;f) + \overline{N}(r,b;f) + \\ &+ \overline{N}(r,\infty;f) + \sum_{j=1}^{p} \overline{N}(r,a_{j};f) - N_{*}(r,0;f') + S(r,f) \leq \\ &\leq 2\{\overline{N}(r,0;f) + \overline{N}(r,b;f)\} + \overline{N}(r,\infty;f) + \overline{N}(r,0;g) + \overline{N}(r,b;g) + \overline{N}(r,1;G \mid \geq 2) + \\ &+ \overline{N}_{*}(r,1;F,G) + \overline{N}_{0}(r,0;g') + \overline{N}_{0}(r,0;f') + \sum_{j=1}^{p} \overline{N}(r,a_{j};f) - N_{*}(r,0;f') + S(r,g) + \end{split}$$

$$\begin{split} +S(r,f) &\leq 2\{\overline{N}(r,0;f) + \overline{N}(r,b;f)\} + \overline{N}(r,\infty;f) + \overline{N}(r,0;g) + \overline{N}(r,b;g) + \\ +\overline{N}(r,1;G \mid \geq 2) + \overline{N}_*(r,1;F,G) + \overline{N}_0(r,0;g') + \overline{N}_*(r,0;f') + \sum_{j=1}^p \overline{N}(r,a_j,f \mid \geq 2) + \\ &+ \sum_{j=1}^p \overline{N}(r,a_j;f) - N_*(r,0;f') + S(r,g) + S(r,f) \leq \\ &\leq 2\{\overline{N}(r,0;f) + \overline{N}(r,b;f)\} + \overline{N}(r,\infty;f) + \overline{N}(r,0;g) + \overline{N}(r,b;g) + \overline{N}(r,1;G \mid \geq 2) + \\ &+ \overline{N}_*(r,1;F,G) + \overline{N}_0(r,0;g') + \overline{N}_*(r,0;f') + \sum_{j=1}^p \overline{N}(r,a_j,f \mid \geq 2) + \sum_{j=1}^p \overline{N}(r,a_j;f) - \\ &- N_*(r,0;f') + S(r,g) + S(r,f) \leq 2\{\overline{N}(r,0;f) + \overline{N}(r,b;f) + \overline{N}(r,0;g)\} + \\ &+ \overline{N}(r,\infty;f) + \overline{N}(r,b;g) + \overline{N}(r,\infty;g) + \sum_{j=1}^p N_2(r,a_j;f) + S(r,g) + S(r,f), \end{split}$$

and hence

$$(n+p+1)T(r,f) \le (9+p-2\Theta(0;f)-2\Theta(0;g)-\Theta(\infty;f)-\Theta(\infty;g)-2\Theta(b;f)- \Theta(b;g) - \sum_{j=1}^{p} \delta_2(a_j,f) + \epsilon)T(r) + S(r),$$
(9)

where $T(r) = \max\{T(r, f), T(r, g)\}$ and S(r) = o(T(r)) as $r \to \infty, r \notin E$. Similarly we obtain

$$(n+p+1)T(r,g) \le (9+p-2\Theta(0;f)-2\Theta(0;g)-\Theta(\infty;f)-\Theta(\infty;g)-2\Theta(b;g)-\Theta(b;f) - \sum_{j=1}^{p} \delta_2(a_j,g) + \epsilon)T(r) + S(r).$$
(10)

Combining (9) and (10) we obtain

$$(n+p+1)T(r) \leq \left[9+p-2\Theta(0;f)-2\Theta(0;g)-\Theta(\infty;f)-\Theta(\infty;g)-\Theta(b;f)-\Theta(b;g)-\min\{\Theta(b;f),\Theta(b;g)\}-\min\{\sum_{j=1}^{p}\delta_{2}(a_{j},f),\sum_{j=1}^{p}\delta_{2}(a_{j},g)\}+\epsilon\right]T(r)+S(r) \Rightarrow \left[\Theta_{f}+\Theta_{g}+\min\{\Theta(b;f),\Theta(b;g)\}+\min\{\sum_{j=1}^{p}\delta_{2}(a_{j},f),\sum_{j=1}^{p}\delta_{2}(a_{j},g)\}-(8-n)-\epsilon\right]T(r) \leq S(r).$$

Since p is arbitrary we have from above,

$$\left[\Theta_f + \Theta_g + \min\{\Theta(b; f), \Theta(b; g)\} + \\ + \min\left\{ \sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, f), \sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, g) \right\} - (8 - n) - \epsilon \right] T(r) \le S(r),$$

but this contradicts (3). Hence $H \equiv 0$. Then

$$F \equiv \frac{AG + B}{CG + D} \tag{11}$$

where A, B, C, D are constants such that $AD - BC \neq 0$. Also T(r, F) = T(r, G) + O(1), and hence from (5)

$$T(r, f) = T(r, g) + O(1).$$
 (12)

Since $R(w) - c = \frac{a(w-b)^3 Q_{n-3}(w)}{n(n-1)(w-\alpha_1)(w-\alpha_2)}$, where $c = \frac{ab^{n-2}}{2} \neq 1, \frac{1}{2}$ and $Q_{n-3}(w)$ is a polynomial in w of degree n-3, in view of the definitions of F and G we notice that

$$\overline{N}(r,c;F) \le \overline{N}(r,b;f) + (n-3)T(r,f) \le (n-2)T(r,f) + S(r,f), \overline{N}(r,c;G) \le \overline{N}(r,b;g) + (n-3)T(r,g) \le (n-2)T(r,g) + S(r,g).$$
(13)

Now we consider the following cases.

Case 1. $C \neq 0$.

Since f, g share (∞, ∞) it follows from (11) that ∞ is an exceptional value of Picard of f and g. Therefore from (2) and (4) it follows that

$$\overline{N}(r,\infty;F) = \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f), \quad \overline{N}(r,\infty;G) = \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g).$$
(14)

Subcase 1.1. $A \neq 0$.

Suppose $B \neq 0$. Then from (11) it follows that $\overline{N}(r, -\frac{B}{A}; G) = \overline{N}(r, 0; F)$. Thus from the second main theorem and (13) we have

$$nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,-\frac{B}{A};G) + S(r,G) \leq \\ \leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,0;f) + S(r,g).$$
(15)

Clearly (14) leads to a contradiction if $n \ge 5$. Let n = 4. Note that if either $\overline{N}(r, 0; g) < T(r, g) + S(r, g)$ or $\overline{N}(r, 0; f) < T(r, f) + S(r, f)$ then also above leads to a contradiction.

So let $\overline{N}(r, 0; g) \sim T(r, g) + S(r, g)$ and $\overline{N}(r, 0; f) \sim T(r, f) + S(r, f)$ that is $\Theta(0, g) = 0$ and $\Theta(0, f) = 0$. Since $\Theta(\infty, g) = 1$, and $\Theta(\infty, f) = 1$, from (3) we obtain with n = 4, $\Theta(b, f) + \Theta(b, g) + \min\{\sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, f), \sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, g)\} > 2$, which is not possible. Therefore B = 0. Then $F \equiv \frac{A_c^{C,G}}{G + C}$ and therefore $\overline{N}(r, \frac{-D}{C}; G) = \overline{N}(r, \infty; F)$. We also note that $c = \frac{ab^{n-2}}{2} \neq 0$. If possible suppose $c = \frac{-D}{C}$. Also suppose that F has no 1-points. This amounts to saying that f has no w_i -points where $w_i \in S$ and $i \in \{1, 2, \dots, n(\geq 4)\}$, which is not possible. Therefore F must have some 1-points. Since F, G share 1-points, we have A = C + D = C - cC and hence $F = \frac{(C - cC)G}{CG - cC} = \frac{(1 - c)G}{G - c}$, since $C \neq 0$ by our assumption. Then since $c \neq \frac{1}{2}$, from above $\overline{N}(r, c; F) = \overline{N}(r, \frac{c^2}{2c-1}; G)$ and since $c \neq 1$, $c \neq \frac{c^2}{2c-1}$. Thus by the second main theorem and (13) we have $2nT(r, g) \leq \overline{N}(r, 0; G) + \overline{N}(r, \alpha_1; f) + \overline{N}(r, \alpha_2; f) + (n - 2)T(r, f) + S(r, g) \leq (5 + n - 2)T(r, g) + S(r, g)$, which leads to a contradiction for $n \geq 4$. Next let $c \neq \frac{-D}{C}$. Hence as before by the second main theorem and (13) we have $2nT(r, g) \leq \overline{N}(r, 0; G) + \overline{N}(r, \infty; G) + \overline{N}(r, \alpha_1; g) + \overline{N}(r, \alpha_1; g) + \overline{N}(r, \alpha_2; g) + \overline{N}(r, \alpha_2; g) + N(r, \alpha_1; f) + \overline{N}(r, \alpha_2; g) + N(r, \alpha_2; g) + N(r, \alpha_2; f) + (n - 2)T(r, g) + S(r, g) \leq (5 + n - 2)T(r, g) + S(r, g) + S(r, g) \leq (5 + n - 2)T(r, g) + S(r, g)$, which leads to a contradiction for $n \geq 4$. Next let $c \neq \frac{-D}{C}$. Hence as before by the second main theorem and (13) we have $2nT(r, g) \leq \overline{N}(r, 0; G) + \overline{N}(r, \alpha_1; f) + \overline{N}(r, \alpha_2; f) + (n - 2)T(r, g) + S(r, g) \leq (5 + n - 2)T(r, g) + S(r, g)$, which leads to a contradiction for $n \geq 4$.

Subcase 1.2. A = 0.

A. SARKAR

Then clearly $B \neq 0$ and $F \equiv \frac{1}{\gamma G + \delta}$ where $\gamma = \frac{C}{B}$ and $\delta = \frac{D}{B}$. Since F and G have some 1-points, then $\gamma + \delta = 1$ and so $F \equiv \frac{1}{\gamma G + 1 - \gamma}$. Suppose $\gamma \neq 1$. If $\frac{1}{1 - \gamma} \neq c$ then by second main theorem and (13) we have

$$2nT(r,f) \leq \overline{N}(r,0;F) + \overline{N}(r,\frac{1}{1-\gamma};F) + \overline{N}(r,c;F) + \overline{N}(r,\infty;F) + S(r,F) \leq \\ \leq \overline{N}(r,0;f) + (n-2)T(r,f) + \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + S(r,f) \\ \Rightarrow (n+2)T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + S(r,f),$$

which is a contradiction for $n \ge 4$. If $c = \frac{1}{1-\gamma}$, then $F \equiv \frac{c}{(c-1)G+1}$. If $c \ne \frac{1}{1-c}$, then by the second main theorem and (13) we obtain

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,c;G) + \overline{N}\left(r,\frac{1}{1-c};G\right) + \overline{N}(r,\infty;G) + S(r,g) \leq \\ \leq \overline{N}(r,0;g) + (n-2)T(r,g) + \overline{N}(r,\infty;F) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g) \leq \\ \leq \overline{N}(r,0;g) + (n-2)T(r,g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g).$$

Thus $(n+2)T(r,g) \leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + S(r,g)$, which leads to a contradiction for $n \geq 4$.

If $c = \frac{1}{1-c}$ then $G \equiv \frac{c(F-c)}{F}$ and by the second main theorem we obtain $nT(r, f) \leq \overline{N}(r, 0; F) + \overline{N}(r, c; F) + \overline{N}(r, \infty; F) + S(r, f) \leq \overline{N}(r, 0; f) + \overline{N}(r, 0; g) + \overline{N}(r, \alpha_1; f) + \overline{N}(r, \alpha_2; f) + S(r, f)$. Above leads to a contradiction for $n \geq 5$. Let n = 4. If either $\overline{N}(r, 0; f) < T(r, f) + S(r, f)$ or $\overline{N}(r, 0; g) < T(r, g) + S(r, g)$ then also above leads to a contradiction. Therefore suppose $\overline{N}(r, 0; f) \sim T(r, f)$ and $\overline{N}(r, 0; g) \sim T(r, g)$ that is $\Theta(0, f) = 0$ and $\Theta(0, g) = 0$.

Since $\Theta(\infty, f) = \Theta(\infty, g) = 1$, from (3) we get for n = 4 and $\Theta(b, f) + \Theta(b, g) + \min\{\Theta(b, f), \Theta(b, g)\} + \min\{\sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, f), \sum_{a \notin S \cup \{0, b, \infty\}} \delta_2(a, g)\} > 2$, which is not possible. Therefore we must have $\gamma = 1$ and hence $FG \equiv 1$, which is again impossible by Lemma 4.

Case 2. C = 0.

Clearly $A \neq 0$ and $F \equiv \alpha G + \beta$, where $\alpha = \frac{A}{D}, \beta = \frac{B}{D}$. Since F and G must have some 1-points, $\alpha + \beta = 1$ and so $F \equiv \alpha G + 1 - \alpha$. Suppose $\alpha \neq 1$. If $1 - \alpha \neq c$, then by the second main theorem and (13) we obtain

$$2nT(r,f) \leq \overline{N}(r,0;F) + \overline{N}(r,c;F) + \overline{N}(r,\infty;F) + \overline{N}(r,1-\alpha;F) + S(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,\infty;f) + \overline{N}(r,\alpha_1;f) + \overline{N}(r,\alpha_2;f) + (n-2)T(r,f) + \overline{N}(r,0;G) + S(r,f).$$

Thus $(n+2)T(r, f) \leq \overline{N}(r, 0; f) + \overline{N}(r, \infty; f) + \overline{N}(r, \alpha_1; f) + \overline{N}(r, \alpha_2; f) + \overline{N}(r, 0; g) + S(r, f)$ which leads to a contradiction for $n \geq 4$. If $1 - \alpha = c$, then $F \equiv (1 - c)G + c$. Since $c \neq 1$ we obtain from the second main theorem and (13)

$$2nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,c;G) + \overline{N}(r,\infty;G) + \overline{N}\left(r,\frac{c}{c-1};G\right) + S(r,g) \leq \\ \leq \overline{N}(r,0;g) + (n-2)T(r,g) + \overline{N}(r,\infty;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,0;F) + S(r,g).$$

Thus $(n+2)T(r,g) \leq \overline{N}(r,0;g) + \overline{N}(r,\alpha_1;g) + \overline{N}(r,\alpha_2;g) + \overline{N}(r,0;f) + S(r,f)$

Thus $(n+2)T(r,g) \leq N(r,0;g) + N(r,\alpha_1;g) + N(r,\alpha_2;g) + N(r,\infty;g) + N(r,0;f) + S(r,f)$ which leads to a contradiction for $n \geq 4$.

So $\alpha = 1$. Hence $F \equiv G$ and therefore by Lemma 6, $f \equiv g$.

REFERENCES

- 1. A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., **31** (2007), 7–17.
- A. Banerjee, On uniqueness of meromorphic functions that share two sets, Georgian Math. J., 15 (2008), №1, 21–28.
- A. Banerjee, S. Mukherjee, Uniqueness of meromorphic functions sharing two or three sets, Hokkaido Math. J., 37 (2008), №3, 507–530.
- A. Banerjee, A uniqueness result on meromorphic functions sharing two sets, J. Adv. Math. Stud., 4 (2011), №1, 1–10.
- 5. M. Fang, H. Guo, On meromorphic functions sharing two values, Analysis, 17 (1997), №4, 355–366.
- M. Fang, I. Lahiri, Uniquene range set for certain meromorphic functions, Indian J. Math., 45 (2003), №2, 141–150.
- 7. M. Fang, W. Xu, A note on a problem of Gross, Chinese Ann. Math. Ser. A, 18 (1997), №4, 355–366.
- G. Frank, M.R. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl., 37 (1998), 185–193.
- 9. F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Lexington, Lecture notes in Math., Springer, Berlin, **599** (1977), 51–69.
- Q. Han, H.X. Yi, Some further results on meromorphic functions that share two sets, Ann. Polon. Math. 91 (2008), №1, 17–31.
- 11. W.K. Hayman, Meromorphic functions. Clarendon Press, Oxford, 1964.
- I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193–206.
- I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241–253.
- 14. I. Lahiri, On a question of Hong Xun Yi, Arch Math. (Brno), 38 (2002), 119–128.
- I. Lahiri, S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26 (2003), 95–100.
- P. Li, C.C. Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124 (1996), 177–185.
- P. Li, C.C. Yang, Some further results on the unique range sets for meromorphic functions, Kodai Math. J., 18 (1995), 437–450.
- W.C. Lin, H.X. Yi, Some further results on meromorphic functions that share two sets, Kyungpook Math. J., 43 (2003), 73–85.
- A.Z. Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Funct. Funct. Anal. Appl., 14 (1971), 83–87.
- H.X. Yi, Uniqueness of meromorphic functions and a question of Gross, Science in China(A), 37 (1994), №7, 802–813.
- H.X. Yi, Unicity theorem for meromorphic functions or entire functions, Bull. Austral. Math. Soc. II, 52 (1995), 215–224.
- H.X. Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc., 57 (1998), 343–349.
- H.X. Yi, Meromorphic functions that share two sets (Chinese), Acta Math. Sinica (Chinese Ser.), 45 (2002), №1, 75–82.
- 24. H.X. Yi, Uniqueness of meromorphic functions II, Indian J. Pure Appl. Math., 28 (1997), 509–519.
- H.X. Yi, W.C. Lin, Uniqueness of meromorphic and a question of Gross, Kyungpook Math. J., 46 (2006), 437–444.
- H.X. Yi, W.R. Lu, Meromorphic functions that share two sets II, Acta Math. Sci. Ser. B, Eng Ed., 24 (2004), №1, 83–90.

Department of Mathematics, Kandi Raj College West Bengal, India arindamsarkarmath@gmail.com