A. SARKAR

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING SETS

Abstract

A. Sarkar. Some results on uniqueness of meromorphic functions sharing sets, Mat. Stud. 41 (2014), 53-61.

Let f and g be two non constant meromorphic functions defined in the open complex plane \mathbb{C}. In 2011 A. Banerjee ([4]), in an attempt to answer on the question of F. Gross ([9]), by W. C. Lin and H. X. Yi ([18]), improved a result of I. Lahiri ([14]) by reducing the cardinality of the set shared by f and g from 7 to 6 under weaker condition on ramification index. In this paper we show that the cardinality of the shared set can further be reduced to 4 as well as the condition on ramification index can be replaced by weaker one to obtain the same conclusion as A. Banerjee ([4]).

А. Саркар. Некоторые результаты единственности мероморфных функиий, разделяющих множества // Мат. Студії. - 2014. - Т.41, №1. - С.53-61.

Пусть f и g - две мероморфные в открытой плоскости функции, не равные тождественно постоянной. В 2011 г. А. Банерджи ([4]), отвечая на вопрос Ф. Гросса ([9]), В. К. Лин и Г. Х. Йи ([18]), уточнили результат И. Лахира ([14]) уменьшив мощность множества розделённых значений f и g с 7 до 6 при более слабых условиях на индекс ветления. В этой статье показано, что мощность множества розделённых значений может быть уменьшена до 4 , а условия на индекс ветления могут быть ослаблены, при этом сохраняется то же заключения, как и у А. Банерджи ([4]).

1. Introduction, definitions and results. Let f and g be two non constant meromorphic functions defined in the open complex plane \mathbb{C}. If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with the same multiplicities, we say that f and g share the value a CM (Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said to share the value $a \mathrm{IM}$ (Ignoring Multiplicities). We do not explain the standard notations and definitions of the value distribution theory as these are available in [11]. Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity then we replace the above set by $\bar{E}_{f}(S)$. If $E_{f}(S)=E_{g}(S)$ we say that f and g share the set S CM. On the other hand if $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we say that f and g share the set S IM.

In 1976 F. Gross([9]) raised the following question.
Question A. Can one find finite sets $S_{j}, j \in\{1,2\}$ such that any two nonconstant entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j \in\{1,2\}$ must be identical?

2010 Mathematics Subject Classification: 30D35.
Keywords: meromorphic functions; weighted sharing; uniqueness.

As a natural outcome of the above question W. C. Lin and H. X. Yi([18]) raised the following question in 2003.

Question B. Can one find finite sets $S_{j}, j \in\{1,2\}$ such that any two nonconstant meromorphic functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j \in\{1,2\}$ must be identical?

During last couple of years a great deal of works has been directed by researchers to answer the above questions ([1]-[8], [10], [14], [16]-[18], [20]-[26]).

In 2003, M. Fang and I. Lahiri exhibited a unique range set with smaller cardinalities than that obtained some previously imposing restrictions on the poles of f and g in the following result.
Theorem $\mathbf{A}([6])$. Let $S=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$ where $n(\geq 7)$ be an integer and a and b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root. If f and g be two nonconstant meromorphic functions having no simple poles such that $E_{f}(S)=E_{g}(S)$ and $E_{f}(\{\infty\})=E_{g}(\{\infty\})$ then $f \equiv g$.

In 2001 I. Lahiri introduced an idea of gradation of sharing of values and sets known as weighted sharing as follows.

Definition $1([12,13])$. Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$ and z_{0} is a zero of $f-a$ of multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$ where m is not necessarily equal to n.

We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 2 ([13]). Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a positive integer or ∞. We denote by $E_{f}(S, k)$ the set $\bigcup_{a \in S} E_{k}(a ; f)$.

With the notion of weighted sharing of sets improving Theorem A, I. Lahiri ([14]) proved the following theorem.

Theorem $\mathbf{B}([14])$. Let S be defined as in Theorem A. If f and g are two nonconstant meromorphic functions such that $E_{f}(S, 2)=E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>1$ then $f \equiv g$.

Suppose that the polynomial $P(w)$ is defined by

$$
\begin{equation*}
P(w)=a \omega^{n}-n(n-1) w^{2}+2 n(n-2) b w-(n-1)(n-2) b^{2} \tag{1}
\end{equation*}
$$

where $n \geq 3$ is an integer and a and b are two nonzero complex numbers satisfying $a b^{n-2} \neq 2$. We also define

$$
\begin{equation*}
R(w)=\frac{a w^{n}}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)}, \tag{2}
\end{equation*}
$$

where α_{1}, α_{2} are two distinct roots of $n(n-1) w^{2}-2 n(n-2) b w+(n-1)(n-2) b^{2}=0$. It can be shown that $P(w)$ has only simple roots $([25])$.

In 2011 A. Banerjee improved Theorem B in the following result by lowering the cardinality of the shared set replacing it by a new one in the following theorem.

Theorem $\mathbf{C}([4])$. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1) and $n(\geq 6)$. Suppose that f and g are two nonconstant meromorphic functions satisfying $E_{f}(S, 2)=E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ and $\Theta_{f}+\Theta_{g}+\min \{\Theta(b, f), \Theta(b, g)\}>8-n$, where $\Theta_{f}=$ $2 \Theta(0 ; f)+\Theta(b ; f)+\Theta(\infty ; f)$ and Θ_{g} is defined similarly. Then $f \equiv g$.

Before proceeding further we need the following definitions.
Definition 3. For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer m we denote by $\bar{N}(r, a ; f \mid \geq m)$ the reduced counting function of those a-points of f whose multiplicity is greater than or equal to m.

Definition 4. We put $N_{2}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)$ and $\delta_{2}(a ; f)=1-\varlimsup_{r \rightarrow \infty} \frac{N_{2}(r, a ; f)}{T(r, f)}$.
The aim of this paper is to improve Theorem C in the following way.

1. By replacing $n \geq 7$ in Theorem C with $n \geq 4$.
2. By replacing the condition on ramification index by weaker one.

Note that in the definition of the polynomial $P(w)$, we require $a b^{n-2} \neq 2$. For our purpose, in addition to it we assume $a b^{n-2} \neq 1$, by which the polynomial $P(w)$ will not lose any of its properties mentioned above. Thus from now on our set S is given by $S=\{w \mid P(w)=0\}$ where $P(w)$ is given by (1) with $a b^{n-2} \neq 2,1$. We state below our theorem.

Theorem 1. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1) and $n(\geq 4)$ and $a b^{n-2} \neq 2$, 1. If f and g be two nonconstant meromorphic functions such that $E_{f}(S, 2)=$ $E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ and

$$
\begin{equation*}
\Theta_{f}+\Theta_{g}+\min \{\Theta(b, f), \Theta(b, g)\}+\min \left\{\sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, f), \sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, g)\right\}>8-n \tag{3}
\end{equation*}
$$

then $f \equiv g$, where $\Theta_{f}=2 \Theta(0 ; f)+\Theta(b ; f)+\Theta(\infty ; f)$ and Θ_{g} is defined similarly.
Following Corollaries are the easy consequences of the above theorem.
Corollary 1. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1) and $n(\geq 7)$ and $a b^{n-2} \neq 2,1$. If f and g are two nonconstant entire functions such that $E_{f}(S, 2)=E_{g}(S, 2)$, then $f \equiv g$.

Corollary 2. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1) and $n(\geq 7)$ and $a b^{n-2} \neq 2$, 1. If f and g are two nonconstant meromorphic functions having no simple zeros and satisfying $E_{f}(S, 2)=E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$, then $f \equiv g$.

We conclude this section with the definition of a few more notations.
Definition 5 ([4, 13]). Let f and g be two nonconstant meromorphic functions such that f and g share $(a, 0)$ for $a \in \mathbb{C} \cup\{\infty\}$. Let z_{0} be an a-point of f with multiplicity p, and an a-point of g of multiplicity q. We denote by $\bar{N}_{L}(r, a ; f)\left(\bar{N}_{L}(r, a ; g)\right)$ the reduced counting function of those a-points of f and g where $p>q(q>p)$. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the corresponding a-points of g. Clearly $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$. We also denote by $N_{E}^{1)}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q=1$.
2. Lemmas. In this section we present some lemmas which will be required to establish our results. In the lemmas several times we use the function H defined by $H=\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}-\frac{G^{\prime \prime}}{G^{\prime}}+\frac{2 G^{\prime}}{G-1}$ where F and G are two non-constant meromorphic functions.

Let f and g be two nonconstant meromorphic functions and

$$
\begin{equation*}
F=R(f), G=R(g), \tag{4}
\end{equation*}
$$

where $R(w)$ is given by (2). From (2) and (5) it is clear that

$$
\begin{equation*}
T(r, f)=\frac{1}{n} T(r, F)+S(r, f), T(r, g)=\frac{1}{n} T(r, G)+S(r, g) . \tag{5}
\end{equation*}
$$

Lemma 1 ([2]). Let F, G be given by (4) and $H \not \equiv 0$. If F, G share ($1, m$) and f, g share (∞, k), then

$$
\begin{gathered}
N_{E}^{1)}(r, 1 ; F) \leq \bar{N}_{L}(r, 1 ;
\end{gathered} \begin{gathered}
F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g)+ \\
+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)
\end{gathered}
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ denotes the reduced counting function corresponding to the zeros of f^{\prime} which are not the zeros of $f(f-b)$ and $F-1 . \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is defined similarly.

Lemma 2 ([19]). Let f be a non-constant meromorphic function and let $R(f)=\frac{\sum_{k=0}^{n} a_{k} f^{k}}{\sum_{j=0}^{n} b_{j} f^{j}}$ be an irreducible rational function in f with constant coefficients $\left\{a_{k}\right\}$ and $\left\{b_{j}\right\}$ where $a_{n} \neq 0$, $b_{m} \neq 0$. Then $T(r, R(f))=d T(r, f)+S(r, f)$, where $d=\max \{m, n\}$.

Lemma 3 ([2]). Let F and G be given by (4) and $H \not \equiv 0$. If F and G share ($1, m$) and f, g share (∞, k), where $0 \leq m<\infty, 0 \leq k<\infty$, then

$$
\begin{gathered}
{[(n-2) k+n-3] \bar{N}(r, \infty ; f \mid \geq k+1)=[(n-2) k+n-3] \bar{N}(r, \infty ; g \mid \geq k+1) \leq} \\
\leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{gathered}
$$

Lemma 4 ([4]). Let f, g be two non-constant meromorphic functions sharing $(\infty, 0)$ and suppose that α_{1} and α_{2} are two distinct roots of the equation $n(n-1) w^{2}-2 n(n-2) b w+$ $(n-1)(n-2) b^{2}=0$. Then $\frac{f^{n}}{\left(f-\alpha_{1}\right)\left(f-\alpha_{2}\right)} \cdot \frac{g^{n}}{\left(g-\alpha_{1}\right)\left(g-\alpha_{2}\right)} \not \equiv \frac{n^{2}(n-1)^{2}}{a^{2}}$, where $n \geq 3$ is an integer.

Lemma 5 ([8]). Let $Q(w)=(n-1)^{2}\left(w^{n}-1\right)\left(w^{n-2}-1\right)-n(n-2)\left(w^{n-1}-1\right)^{2}$, then $Q(w)=(w-1)^{4}\left(w-\beta_{1}\right)\left(w-\beta_{2}\right) \ldots\left(w-\beta_{2 n-6}\right)$ where $\beta_{j} \in \mathbb{C} \backslash\{0,1\},(j \in\{1,2, \ldots, 2 n-6\})$ which are pairwise distinct.

Lemma 6. Let F, G be given by (5), where $n \geq 4$ is an integer. If f, g share $(\infty, 0)$ then $F \equiv G \Rightarrow f \equiv g$.

Proof. From the definitions of F, G we observe that $F \equiv G \Rightarrow \frac{f^{n}}{\left(f-\alpha_{1}\right)\left(f-\alpha_{2}\right)} \equiv \frac{g^{n}}{\left(g-\alpha_{1}\right)\left(g-\alpha_{2}\right)}$. Therefore f, g share $(0, \infty)$ and (∞, ∞). Then from above and in view of the definitions of $R(w)$ we obtain
$n(n-1) f^{2} g^{2}\left(f^{n-2}-g^{n-2}\right)-2 n(n-2) b f g\left(f^{n-1}-g^{n-1}\right)+(n-1)(n-2) b^{2}\left(f^{n}-g^{n}\right)=0$.
Let $h=\frac{f}{g}$, that is $f=g h$ which on substitution in (6) yields

$$
\begin{equation*}
n(n-1) h^{2} g^{2}\left(h^{n-2}-1\right)-2 n(n-2) b h g\left(h^{n-1}-1\right)+(n-1)(n-2) b^{2}\left(h^{n}-1\right)=0 . \tag{7}
\end{equation*}
$$

Note that since f and g share $(0, \infty)$ and $(\infty, \infty),(0, \infty)$ are the exceptional values of Picard of h. If h is non-constant then from Lemma 6 and (7) we have

$$
\begin{equation*}
\left\{n(n-1) h\left(h^{n-2}-1\right) g-n(n-2) b\left(h^{n-1}-1\right)\right\}^{2}=-n(n-2) b^{2} Q(h) \tag{8}
\end{equation*}
$$

where $Q(h)=(h-1)^{4}\left(h-\beta_{1}\right)\left(h-\beta_{2}\right) \ldots\left(h-\beta_{2 n-6}\right), \beta_{j} \in \mathbb{C} \backslash\{0,1\}, j \in\{1,2, \ldots, 2 n-6\}$ which are pairwise distinct. From (8)we observe that each zero of $h-\beta_{j}, j \in\{1,2, \ldots, 2 n-6\}$ is of order at least two. Therefore by the second main theorem we obtain

$$
(2 n-6) T(r, h) \leq \bar{N}(r, \infty ; h)+\bar{N}(r, 0 ; h)+\sum_{j=1}^{2 n-6} \bar{N}\left(r, \beta_{j} ; h\right)+S(r, h) \leq \frac{1}{2}(2 n-6) T(r, h)+S(r, h)
$$

which is a contradiction for $n \geq 4$. Thus h must be a constant. From (8) it follows that $h^{n-2}-1=0$ and $h^{n-1}-1=0$ which implies that $h \equiv 1$. Therefore $f \equiv g$.

Lemma 7 ([4]). Let F, G be given by (4) and S be defined as in Theorem 1, where $n \geq 4$. If $E_{f}(S, 0)=E_{g}(S, 0)$ then $S(r, f)=S(r, g)$.

Lemma $8([15])$. If $N\left(r, 0 ; f^{(k)} \mid f \neq 0\right)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity then $N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leq k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k)+k \bar{N}(r, 0 ; f \mid \geq k)+S(r, f)$ where $N(r, 0 ; f \mid<k)$ is the counting function of the zeros of f with multiplicity $<k$ each zero being counted according to its multiplicity.
3. Proof of Theorem 1. Let F, G be given by (4). Suppose first that $H \not \equiv 0$. Let p be any positive integer and $a_{j} \notin S \cup\{0, b, \infty\}, j \in\{1,2, \ldots, p\}$ be distinct complex numbers. We denote by $N_{*}\left(r, 0 ; f^{\prime}\right)$ the counting function of the zeros of f^{\prime} which are not the zeros of $f(f-b) \prod_{j=1}^{p}\left(f-a_{j}\right)$ and $F-1$. Similarly may we define $N_{*}\left(r, 0 ; g^{\prime}\right)$ and the corresponding reduced counting functions $\bar{N}_{*}\left(r, 0 ; f^{\prime}\right)$ and $\bar{N}_{*}\left(r, 0 ; g^{\prime}\right)$. Note that $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)=\bar{N}_{*}\left(r, 0 ; f^{\prime}\right)+$ $\sum_{j=1}^{p} \bar{N}\left(r, a_{j}, f \mid \geq 2\right)$. Since $E_{f}(S, 2)=E_{g}(S, 2)$, it follows that F, G share $(1,2)$. Also since $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ we see that $\bar{N}_{*}(r, \infty ; f, g) \equiv 0$. We denote the elements of S by $w_{1}, w_{2}, \ldots, w_{n}$. By Lemma 8 we note that $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \leq$ $\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}(r, 1 ; G \mid \geq 3) \leq \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\sum_{j=1}^{n}\left\{\bar{N}\left(r, w_{j} ; g \mid=2\right)+\right.$ $\left.2 \bar{N}\left(r, w_{j} ; g \mid \geq 3\right)\right\} \leq N\left(r, 0 ; g^{\prime} \mid g \neq 0\right)+S(r, g) \leq \bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+S(r, g)$.

Hence by above and the second main theorem we obtain for $\epsilon>0$ using Lemma 1 and Lemma 2,

$$
\begin{aligned}
& (n+p+1) T(r, f) \leq \bar{N}(r, 1 ; F)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j} ; f\right)- \\
& -N_{*}\left(r, 0 ; f^{\prime}\right)+S(r, f)=\bar{N}(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+ \\
& \quad+\bar{N}(r, \infty ; f)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j} ; f\right)-N_{*}\left(r, 0 ; f^{\prime}\right)+S(r, f) \leq \\
& \leq 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)\}+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g)+\bar{N}(r, 1 ; G \mid \geq 2)+ \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j} ; f\right)-N_{*}\left(r, 0 ; f^{\prime}\right)+S(r, g)+
\end{aligned}
$$

$$
\begin{gathered}
+S(r, f) \leq 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)\}+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g)+ \\
+\bar{N}(r, 1 ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{*}\left(r, 0 ; f^{\prime}\right)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j}, f \mid \geq 2\right)+ \\
\quad+\sum_{j=1}^{p} \bar{N}\left(r, a_{j} ; f\right)-N_{*}\left(r, 0 ; f^{\prime}\right)+S(r, g)+S(r, f) \leq \\
\leq 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)\}+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; g)+\bar{N}(r, 1 ; G \mid \geq 2)+ \\
+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+\bar{N}_{*}\left(r, 0 ; f^{\prime}\right)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j}, f \mid \geq 2\right)+\sum_{j=1}^{p} \bar{N}\left(r, a_{j} ; f\right)- \\
\quad-N_{*}\left(r, 0 ; f^{\prime}\right)+S(r, g)+S(r, f) \leq 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, 0 ; g)\}+ \\
\quad+\bar{N}(r, \infty ; f)+\bar{N}(r, b ; g)+\bar{N}(r, \infty ; g)+\sum_{j=1}^{p} N_{2}\left(r, a_{j} ; f\right)+S(r, g)+S(r, f)
\end{gathered}
$$

and hence

$$
\begin{gather*}
(n+p+1) T(r, f) \leq(9+p-2 \Theta(0 ; f)-2 \Theta(0 ; g)-\Theta(\infty ; f)-\Theta(\infty ; g)-2 \Theta(b ; f)- \\
\left.-\Theta(b ; g)-\sum_{j=1}^{p} \delta_{2}\left(a_{j}, f\right)+\epsilon\right) T(r)+S(r), \tag{9}
\end{gather*}
$$

where $T(r)=\max \{T(r, f), T(r, g)\}$ and $S(r)=o(T(r))$ as $r \rightarrow \infty, r \notin E$. Similarly we obtain

$$
\begin{align*}
(n+p+1) T(r, g) \leq & (9+p-2 \Theta(0 ; f)-2 \Theta(0 ; g)-\Theta(\infty ; f)-\Theta(\infty ; g)-2 \Theta(b ; g)- \\
& \left.-\Theta(b ; f)-\sum_{j=1}^{p} \delta_{2}\left(a_{j}, g\right)+\epsilon\right) T(r)+S(r) \tag{10}
\end{align*}
$$

Combining (9) and (10) we obtain

$$
\begin{aligned}
& (n+p+1) T(r) \leq[9+p-2 \Theta(0 ; f)-2 \Theta(0 ; g)-\Theta(\infty ; f)-\Theta(\infty ; g)-\Theta(b ; f)-\Theta(b ; g)- \\
& \left.-\min \{\Theta(b ; f), \Theta(b ; g)\}-\min \left\{\sum_{j=1}^{p} \delta_{2}\left(a_{j}, f\right), \sum_{j=1}^{p} \delta_{2}\left(a_{j}, g\right)\right\}+\epsilon\right] T(r)+S(r) \Rightarrow\left[\Theta_{f}+\Theta_{g}+\right. \\
& \left.\quad+\min \{\Theta(b ; f), \Theta(b ; g)\}+\min \left\{\sum_{j=1}^{p} \delta_{2}\left(a_{j}, f\right), \sum_{j=1}^{p} \delta_{2}\left(a_{j}, g\right)\right\}-(8-n)-\epsilon\right] T(r) \leq S(r) .
\end{aligned}
$$

Since p is arbitrary we have from above,

$$
\begin{gathered}
{\left[\Theta_{f}+\Theta_{g}+\min \{\Theta(b ; f), \Theta(b ; g)\}+\right.} \\
\left.+\min \left\{\sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, f), \sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, g)\right\}-(8-n)-\epsilon\right] T(r) \leq S(r),
\end{gathered}
$$

but this contradicts (3). Hence $H \equiv 0$. Then

$$
\begin{equation*}
F \equiv \frac{A G+B}{C G+D} \tag{11}
\end{equation*}
$$

where A, B, C, D are constants such that $A D-B C \neq 0$. Also $T(r, F)=T(r, G)+O(1)$, and hence from (5)

$$
\begin{equation*}
T(r, f)=T(r, g)+O(1) \tag{12}
\end{equation*}
$$

Since $R(w)-c=\frac{a(w-b)^{3} Q_{n-3}(w)}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)}$, where $c=\frac{a b^{n-2}}{2} \neq 1, \frac{1}{2}$ and $Q_{n-3}(w)$ is a polynomial in w of degree $n-3$, in view of the definitions of F and G we notice that

$$
\begin{align*}
& \bar{N}(r, c ; F) \leq \bar{N}(r, b ; f)+(n-3) T(r, f) \leq(n-2) T(r, f)+S(r, f), \\
& \bar{N}(r, c ; G) \leq \bar{N}(r, b ; g)+(n-3) T(r, g) \leq(n-2) T(r, g)+S(r, g) \text {. } \tag{13}
\end{align*}
$$

Now we consider the following cases.
Case 1. $C \neq 0$.
Since f, g share (∞, ∞) it follows from (11) that ∞ is an exceptional value of Picard of f and g. Therefore from (2) and (4) it follows that

$$
\begin{equation*}
\bar{N}(r, \infty ; F)=\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right), \quad \bar{N}(r, \infty ; G)=\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right) \tag{14}
\end{equation*}
$$

Subcase 1.1. $A \neq 0$.

Suppose $B \neq 0$. Then from (11) it follows that $\bar{N}\left(r,-\frac{B}{A} ; G\right)=\bar{N}(r, 0 ; F)$. Thus from the second main theorem and (13) we have

$$
\begin{align*}
& n T(r, g) \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}\left(r,-\frac{B}{A} ; G\right)+S(r, G) \leq \\
& \leq \bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+\bar{N}(r, 0 ; f)+S(r, g) \tag{15}
\end{align*}
$$

Clearly (14) leads to a contradiction if $n \geq 5$. Let $n=4$. Note that if either $\bar{N}(r, 0 ; g)<$ $T(r, g)+S(r, g)$ or $\bar{N}(r, 0 ; f)<T(r, f)+S(r, f)$ then also above leads to a contradiction.

So let $\bar{N}(r, 0 ; g) \sim T(r, g)+S(r, g)$ and $\bar{N}(r, 0 ; f) \sim T(r, f)+S(r, f)$ that is $\Theta(0, g)=0$ and $\Theta(0, f)=0$. Since $\Theta(\infty, g)=1$, and $\Theta(\infty, f)=1$, from (3) we obtain with $n=4$, $\Theta(b, f)+\Theta(b, g)+\min \left\{\sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, f), \sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, g)\right\}>2$, which is not possible. Therefore $B=0$. Then $F \equiv \frac{\frac{A}{C} \cdot G}{G+\frac{D}{C}}$ and therefore $\bar{N}\left(r, \frac{-D}{C} ; G\right)=\bar{N}(r, \infty ; F)$. We also note that $c=\frac{a b^{n-2}}{2} \neq 0$. If possible suppose $c=\frac{-D}{C}$. Also suppose that F has no 1-points. This amounts to saying that f has no w_{i}-points where $w_{i} \in S$ and $i \in\{1,2, \ldots, n(\geq 4)\}$, which is not possible. Therefore F must have some 1-points. Since F, G share 1-points, we have $A=C+D=C-c C$ and hence $F=\frac{(C-c C) G}{C G-c C}=\frac{(1-c) G}{G-c}$, since $C \neq 0$ by our assumption. Then since $c \neq \frac{1}{2}$, from above $\bar{N}(r, c ; F)=\bar{N}\left(r, \frac{c^{2}}{2 c-1} ; G\right)$ and since $c \neq 1$, $c \neq \frac{c^{2}}{2 c-1}$. Thus by the second main theorem and (13) we have $2 n T(r, g) \leq \bar{N}(r, 0 ; G)+$ $\bar{N}(r, \infty ; G)+\bar{N}(r, c ; G)+\bar{N}\left(r, \frac{c^{2}}{2 c-1} ; G\right)+S(r, g) \leq \bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+$ $\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+(n-2) T(r, f)+S(r, g) \leq(5+n-2) T(r, g)+S(r, g)$, which leads to a contradiction for $n \geq 4$. Next let $c \neq \frac{-D}{C}$. Hence as before by the second main theorem and (13) we have $2 n T(r, g) \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}\left(r, \frac{-D}{C} ; G\right)+\bar{N}(r, c ; G)+S(r, G) \leq$ $\bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+(n-2) T(r, g)+S(r, g) \leq$ $(5+n-2) T(r, g)+S(r, g)$, which leads to a contradiction for $n \geq 4$.
Subcase 1.2. $A=0$.

Then clearly $B \neq 0$ and $F \equiv \frac{1}{\gamma G+\delta}$ where $\gamma=\frac{C}{B}$ and $\delta=\frac{D}{B}$. Since F and G have some 1-points, then $\gamma+\delta=1$ and so $F \equiv \frac{1}{\gamma G+1-\gamma}$. Suppose $\gamma \neq 1$. If $\frac{1}{1-\gamma} \neq c$ then by second main theorem and (13) we have

$$
\begin{aligned}
& 2 n T(r, f) \leq \bar{N}(r, 0 ; F)+\bar{N}\left(r, \frac{1}{1-\gamma} ; F\right)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+S(r, F) \leq \\
& \leq \bar{N}(r, 0 ; f)+(n-2) T(r, f)+\bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+S(r, f) \\
& \Rightarrow(n+2) T(r, f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+S(r, f),
\end{aligned}
$$

which is a contradiction for $n \geq 4$. If $c=\frac{1}{1-\gamma}$, then $F \equiv \frac{c}{(c-1) G+1}$. If $c \neq \frac{1}{1-c}$, then by the second main theorem and (13) we obtain

$$
\begin{gathered}
2 n T(r, g) \leq \bar{N}(r, 0 ; G)+\bar{N}(r, c ; G)+\bar{N}\left(r, \frac{1}{1-c} ; G\right)+\bar{N}(r, \infty ; G)+S(r, g) \leq \\
\leq \bar{N}(r, 0 ; g)+(n-2) T(r, g)+\bar{N}(r, \infty ; F)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+S(r, g) \leq \\
\leq \bar{N}(r, 0 ; g)+(n-2) T(r, g)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+S(r, g)
\end{gathered}
$$

Thus $(n+2) T(r, g) \leq \bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+$ $S(r, g)$, which leads to a contradiction for $n \geq 4$.

If $c=\frac{1}{1-c}$ then $G \equiv \frac{c(F-c)}{F}$ and by the second main theorem we obtain $n T(r, f) \leq$ $\bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+S(r, f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; f\right)+$ $\overline{\bar{N}}\left(r, \alpha_{2} ; f\right)+S(r, f)$. Above leads to a contradiction for $n \geq 5$. Let $n=4$. If either $\bar{N}(r, 0 ; f)<T(r, f)+S(r, f)$ or $\bar{N}(r, 0 ; g)<T(r, g)+S(r, g)$ then also above leads to a contradiction. Therefore suppose $\bar{N}(r, 0 ; f) \sim T(r, f)$ and $\bar{N}(r, 0 ; g) \sim T(r, g)$ that is $\Theta(0, f)=0$ and $\Theta(0, g)=0$.

Since $\Theta(\infty, f)=\Theta(\infty, g)=1$, from (3) we get for $n=4$ and $\Theta(b, f)+\Theta(b, g)+$ $\min \{\Theta(b, f), \Theta(b, g)\}+\min \left\{\sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, f), \sum_{a \notin S \cup\{0, b, \infty\}} \delta_{2}(a, g)\right\}>2$, which is not possible. Therefore we must have $\gamma=1$ and hence $F G \equiv 1$, which is again impossible by Lemma 4.

Case 2. $C=0$.
Clearly $A \neq 0$ and $F \equiv \alpha G+\beta$, where $\alpha=\frac{A}{D}, \beta=\frac{B}{D}$. Since F and G must have some 1 -points, $\alpha+\beta=1$ and so $F \equiv \alpha G+1-\alpha$. Suppose $\alpha \neq 1$. If $1-\alpha \neq c$, then by the second main theorem and (13) we obtain

$$
\begin{aligned}
& 2 n T(r, f) \leq \bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 1-\alpha ; F)+S(r, f) \leq \bar{N}(r, 0 ; f)+ \\
& \quad+\bar{N}(r, \infty ; f)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+(n-2) T(r, f)+\bar{N}(r, 0 ; G)+S(r, f)
\end{aligned}
$$

Thus $(n+2) T(r, f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)+\bar{N}(r, 0 ; g)+S(r, f)$ which leads to a contradiction for $n \geq 4$. If $1-\alpha=c$, then $F \equiv(1-c) G+c$. Since $c \neq 1$ we obtain from the second main theorem and (13)

$$
\begin{gathered}
2 n T(r, g) \leq \bar{N}(r, 0 ; G)+\bar{N}(r, c ; G)+\bar{N}(r, \infty ; G)+\bar{N}\left(r, \frac{c}{c-1} ; G\right)+S(r, g) \leq \\
\leq \bar{N}(r, 0 ; g)+(n-2) T(r, g)+\bar{N}(r, \infty ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+\bar{N}(r, 0 ; F)+S(r, g)
\end{gathered}
$$

Thus $(n+2) T(r, g) \leq \bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+\bar{N}(r, \infty ; g)+\bar{N}(r, 0 ; f)+S(r, f)$ which leads to a contradiction for $n \geq 4$.

So $\alpha=1$. Hence $F \equiv G$ and therefore by Lemma $6, f \equiv g$.

REFERENCES

1. A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., $\mathbf{3 1}$ (2007), 7-17.
2. A. Banerjee, On uniqueness of meromorphic functions that share two sets, Georgian Math. J., 15 (2008), №1, 21-28.
3. A. Banerjee, S. Mukherjee, Uniqueness of meromorphic functions sharing two or three sets, Hokkaido Math. J., 37 (2008), №3, 507-530.
4. A. Banerjee, A uniqueness result on meromorphic functions sharing two sets, J. Adv. Math. Stud., 4 (2011), №1, 1-10.
5. M. Fang, H. Guo, On meromorphic functions sharing two values, Analysis, 17 (1997), №4, 355-366.
6. M. Fang, I. Lahiri, Uniquene range set for certain meromorphic functions, Indian J. Math., 45 (2003), №2, 141-150.
7. M. Fang, W. Xu, A note on a problem of Gross, Chinese Ann. Math. Ser. A, 18 (1997), №4, 355-366.
8. G. Frank, M.R. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl., 37 (1998), 185-193.
9. F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Lexington, Lecture notes in Math., Springer, Berlin, 599 (1977), 51-69.
10. Q. Han, H.X. Yi, Some further results on meromorphic functions that share two sets, Ann. Polon. Math. 91 (2008), №1, 17-31.
11. W.K. Hayman, Meromorphic functions. - Clarendon Press, Oxford, 1964.
12. I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206.
13. I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241-253.
14. I. Lahiri, On a question of Hong Xun Yi, Arch Math. (Brno), 38 (2002), 119-128.
15. I. Lahiri, S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26 (2003), 95-100.
16. P. Li, C.C. Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124 (1996), 177-185.
17. P. Li, C.C. Yang, Some further results on the unique range sets for meromorphic functions, Kodai Math. J., 18 (1995), 437-450.
18. W.C. Lin, H.X. Yi, Some further results on meromorphic functions that share two sets, Kyungpook Math. J., 43 (2003), 73-85.
19. A.Z. Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Funct. Funct. Anal. Appl., 14 (1971), 83-87.
20. H.X. Yi, Uniqueness of meromorphic functions and a question of Gross, Science in China(A), $\mathbf{3 7}$ (1994), №7, 802-813.
21. H.X. Yi, Unicity theorem for meromorphic functions or entire functions, Bull. Austral. Math. Soc. II, 52 (1995), 215-224.
22. H.X. Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc., 57 (1998), 343-349.
23. H.X. Yi, Meromorphic functions that share two sets (Chinese), Acta Math. Sinica (Chinese Ser.), 45 (2002), №1, 75-82.
24. H.X. Yi, Uniqueness of meromorphic functions II, Indian J. Pure Appl. Math., 28 (1997), 509-519.
25. H.X. Yi, W.C. Lin, Uniqueness of meromorphic and a question of Gross, Kyungpook Math. J., 46 (2006), 437-444.
26. H.X. Yi, W.R. Lu, Meromorphic functions that share two sets II, Acta Math. Sci. Ser. B, Eng Ed., 24 (2004), №1, 83-90.

Department of Mathematics, Kandi Raj College
West Bengal, India
arindamsarkarmath@gmail.com

