
Математичнi Студiї. Т.41, №1 Matematychni Studii. V.41, No.1

УДК 517.547.24

A. Sarkar

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC FUNCTIONS

SHARING SETS

A. Sarkar. Some results on uniqueness of meromorphic functions sharing sets, Mat. Stud. 41
(2014), 53–61.

Let f and g be two non constant meromorphic functions defined in the open complex
plane C. In 2011 A. Banerjee ([4]), in an attempt to answer on the question of F. Gross ([9]),
by W. C. Lin and H. X. Yi ([18]), improved a result of I. Lahiri ([14]) by reducing the cardinality
of the set shared by f and g from 7 to 6 under weaker condition on ramification index. In this
paper we show that the cardinality of the shared set can further be reduced to 4 as well as the
condition on ramification index can be replaced by weaker one to obtain the same conclusion
as A. Banerjee ([4]).

А. Саркар. Некоторые результаты единственности мероморфных функций, разделяю-
щих множества // Мат. Студiї. – 2014. – Т.41, №1. – C.53–61.

Пусть f и g — две мероморфные в открытой плоскости функции, не равные тож-
дественно постоянной. В 2011 г. А. Банерджи ([4]), отвечая на вопрос Ф. Гросса ([9]),
В. К. Лин и Г. Х. Йи ([18]), уточнили результат И. Лахира ([14]) уменьшив мощность
множества розделённых значений f и g с 7 до 6 при более слабых условиях на индекс
ветления. В этой статье показано, что мощность множества розделённых значений может
быть уменьшена до 4, а условия на индекс ветления могут быть ослаблены, при этом
сохраняется то же заключения, как и у А. Банерджи ([4]).

1. Introduction, definitions and results. Let f and g be two non constant meromorphic
functions defined in the open complex plane C. If for some a ∈ C ∪ {∞}, f and g have the
same set of a-points with the same multiplicities, we say that f and g share the value a CM
(Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said
to share the value a IM (Ignoring Multiplicities). We do not explain the standard notations
and definitions of the value distribution theory as these are available in [11]. Let S be a set
of distinct elements of C ∪ {∞} and Ef (S) =

⋃
a∈S{z : f(z) − a = 0}, where each zero is

counted according to its multiplicity. If we do not count the multiplicity then we replace the
above set by Ef (S). If Ef (S) = Eg(S) we say that f and g share the set S CM. On the
other hand if Ef (S) = Eg(S), we say that f and g share the set S IM.

In 1976 F. Gross([9]) raised the following question.

Question A. Can one find finite sets Sj, j ∈ {1, 2} such that any two nonconstant entire
functions f and g satisfying Ef (Sj) = Eg(Sj) for j ∈ {1, 2} must be identical?
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As a natural outcome of the above question W. C. Lin and H. X. Yi([18]) raised the
following question in 2003.

Question B. Can one find finite sets Sj, j ∈ {1, 2} such that any two nonconstant meromor-
phic functions f and g satisfying Ef (Sj) = Eg(Sj) for j ∈ {1, 2} must be identical?

During last couple of years a great deal of works has been directed by researchers to
answer the above questions ([1]–[8], [10], [14], [16]–[18], [20]–[26]).

In 2003, M. Fang and I. Lahiri exhibited a unique range set with smaller cardinalities
than that obtained some previously imposing restrictions on the poles of f and g in the
following result.

Theorem A([6]). Let S = {z : zn + azn−1 + b = 0} where n(≥ 7) be an integer and a and
b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root. If f and g be
two nonconstant meromorphic functions having no simple poles such that Ef (S) = Eg(S)
and Ef ({∞}) = Eg({∞}) then f ≡ g.

In 2001 I. Lahiri introduced an idea of gradation of sharing of values and sets known as
weighted sharing as follows.

Definition 1 ([12, 13]). Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ k and k+ 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g share
the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is a zero of f −a
with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity m(≤ k) and z0
is a zero of f − a of multiplicity m(> k) if and only if it is a zero of g − a with multiplicity
n(> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g
share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also we note that f, g share
a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 2 ([13]). Let S be a set of distinct elements of C ∪ {∞} and k be a positive
integer or ∞. We denote by Ef (S, k) the set

⋃
a∈S Ek(a; f).

With the notion of weighted sharing of sets improving Theorem A, I. Lahiri ([14]) proved
the following theorem.

Theorem B([14]). Let S be defined as in Theorem A. If f and g are two nonconstant
meromorphic functions such that Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) and
Θ(∞; f) + Θ(∞; g) > 1 then f ≡ g.

Suppose that the polynomial P (w) is defined by

P (w) = aωn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2 (1)

where n ≥ 3 is an integer and a and b are two nonzero complex numbers satisfying abn−2 6= 2.
We also define

R(w) =
awn

n(n− 1)(w − α1)(w − α2)
, (2)

where α1, α2 are two distinct roots of n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0. It
can be shown that P (w) has only simple roots([25]).
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In 2011 A. Banerjee improved Theorem B in the following result by lowering the cardi-
nality of the shared set replacing it by a new one in the following theorem.

Theorem C([4]). Let S = {w | P (w) = 0}, where P (w) is given by (1) and n(≥ 6). Suppose
that f and g are two nonconstant meromorphic functions satisfying Ef (S, 2) = Eg(S, 2) and
Ef ({∞},∞) = Eg({∞},∞) and Θf + Θg + min{Θ(b, f),Θ(b, g)} > 8 − n, where Θf =
2Θ(0; f) + Θ(b; f) + Θ(∞; f) and Θg is defined similarly. Then f ≡ g.

Before proceeding further we need the following definitions.

Definition 3. For a ∈ C ∪ {∞} and a positive integer m we denote by N(r, a; f |≥ m) the
reduced counting function of those a-points of f whose multiplicity is greater than or equal
to m.

Definition 4. We put N2(r, a; f)=N(r, a; f)+N(r, a; f |≥ 2) and δ2(a; f)=1− lim
r→∞

N2(r,a;f)
T (r,f)

.

The aim of this paper is to improve Theorem C in the following way.

1. By replacing n ≥ 7 in Theorem C with n ≥ 4.
2. By replacing the condition on ramification index by weaker one.

Note that in the definition of the polynomial P (w), we require abn−2 6= 2. For our purpose,
in addition to it we assume abn−2 6= 1, by which the polynomial P (w) will not lose any of its
properties mentioned above. Thus from now on our set S is given by S = {w | P (w) = 0}
where P (w) is given by (1) with abn−2 6= 2, 1. We state below our theorem.

Theorem 1. Let S = {w | P (w) = 0}, where P (w) is given by (1) and n (≥ 4) and
abn−2 6= 2, 1. If f and g be two nonconstant meromorphic functions such that Ef (S, 2) =
Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) and

Θf + Θg + min{Θ(b, f),Θ(b, g)}+ min
{ ∑
a6∈S∪{0,b,∞}

δ2(a, f),
∑

a6∈S∪{0,b,∞}

δ2(a, g)
}
> 8− n (3)

then f ≡ g, where Θf = 2Θ(0; f) + Θ(b; f) + Θ(∞; f) and Θg is defined similarly.

Following Corollaries are the easy consequences of the above theorem.

Corollary 1. Let S = {w | P (w) = 0}, where P (w) is given by (1) and n (≥ 7) and
abn−2 6= 2, 1. If f and g are two nonconstant entire functions such that Ef (S, 2) = Eg(S, 2),
then f ≡ g.

Corollary 2. Let S = {w | P (w) = 0}, where P (w) is given by (1) and n (≥ 7) and
abn−2 6= 2, 1. If f and g are two nonconstant meromorphic functions having no simple zeros
and satisfying Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞), then f ≡ g.

We conclude this section with the definition of a few more notations.

Definition 5 ([4, 13]). Let f and g be two nonconstant meromorphic functions such that f
and g share (a, 0) for a ∈ C∪{∞}. Let z0 be an a-point of f with multiplicity p, and an a-point
of g of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the reduced counting function of
those a-points of fand g where p > q(q > p). We denote byN∗(r, a; f, g) the reduced counting
function of those a-points of f whose multiplicities differ from the corresponding a-points
of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g). We
also denote by N1)

E (r, 1; f) the counting function of those 1-points of f and g where p = q = 1.
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2. Lemmas. In this section we present some lemmas which will be required to establish our
results. In the lemmas several times we use the functionH defined byH = F ′′

F ′
− 2F ′

F−1−
G′′

G′
+ 2G′

G−1
where F and G are two non-constant meromorphic functions.

Let f and g be two nonconstant meromorphic functions and

F = R(f), G = R(g), (4)

where R(w) is given by (2). From (2) and (5) it is clear that

T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g). (5)

Lemma 1 ([2]). Let F,G be given by (4) and H 6≡ 0. If F,G share (1,m) and f, g share
(∞, k), then

N
1)
E (r, 1;F ) ≤ NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f) +N(r, 0; g) +N(r, b; g)+

+N∗(r,∞; f, g) +N0(r, 0; f ′) +N0(r, 0; g′),

where N0(r, 0; f ′) denotes the reduced counting function corresponding to the zeros of f ′
which are not the zeros of f(f − b) and F − 1. N0(r, 0; g′) is defined similarly.

Lemma 2 ([19]). Let f be a non-constant meromorphic function and let R(f) =
∑n

k=0 akf
k∑m

j=0 bjf
j be

an irreducible rational function in f with constant coefficients {ak} and {bj} where an 6= 0,
bm 6= 0. Then T (r, R(f)) = dT (r, f) + S(r, f), where d = max{m,n}.

Lemma 3 ([2]). Let F and G be given by (4) and H 6≡ 0. If F and G share (1,m) and f, g
share (∞, k), where 0 ≤ m <∞, 0 ≤ k <∞, then

[(n− 2)k + n− 3]N(r,∞; f |≥ k + 1) = [(n− 2)k + n− 3]N(r,∞; g |≥ k + 1) ≤
≤ N(r, 0; f) +N(r, 0; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Lemma 4 ([4]). Let f, g be two non-constant meromorphic functions sharing (∞, 0) and
suppose that α1 and α2 are two distinct roots of the equation n(n− 1)w2 − 2n(n− 2)bw +

(n− 1)(n− 2)b2 = 0. Then fn

(f−α1)(f−α2)
· gn

(g−α1)(g−α2)
6≡ n2(n−1)2

a2
, where n ≥ 3 is an integer.

Lemma 5 ([8]). Let Q(w) = (n − 1)2(wn − 1)(wn−2 − 1) − n(n − 2)(wn−1 − 1)2, then
Q(w) = (w−1)4(w−β1)(w−β2) . . . (w−β2n−6) where βj ∈ C\{0, 1}, (j ∈ {1, 2, . . . , 2n−6})
which are pairwise distinct.

Lemma 6. Let F,G be given by (5), where n ≥ 4 is an integer. If f, g share (∞, 0) then
F ≡ G⇒ f ≡ g.

Proof. From the definitions of F,G we observe that F ≡ G ⇒ fn

(f−α1)(f−α2)
≡ gn

(g−α1)(g−α2)
.

Therefore f, g share (0,∞) and (∞,∞). Then from above and in view of the definitions of
R(w) we obtain

n(n−1)f 2g2(fn−2− gn−2)−2n(n−2)bfg(fn−1− gn−1) + (n−1)(n−2)b2(fn− gn) = 0. (6)

Let h = f
g
, that is f = gh which on substitution in (6) yields

n(n− 1)h2g2(hn−2 − 1)− 2n(n− 2)bhg(hn−1 − 1) + (n− 1)(n− 2)b2(hn − 1) = 0. (7)
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Note that since f and g share (0,∞) and (∞,∞), (0,∞) are the exceptional values of
Picard of h. If h is non-constant then from Lemma 6 and (7) we have

{n(n− 1)h(hn−2 − 1)g − n(n− 2)b(hn−1 − 1)}2 = −n(n− 2)b2Q(h) (8)

where Q(h) = (h− 1)4(h− β1)(h− β2) . . . (h− β2n−6), βj ∈ C \ {0, 1}, j ∈ {1, 2, . . . , 2n− 6}
which are pairwise distinct. From (8)we observe that each zero of h−βj, j ∈ {1, 2, . . . , 2n−6}
is of order at least two. Therefore by the second main theorem we obtain

(2n−6)T (r, h) ≤ N(r,∞;h)+N(r, 0;h)+
2n−6∑
j=1

N(r, βj;h)+S(r, h) ≤ 1

2
(2n−6)T (r, h)+S(r, h),

which is a contradiction for n ≥ 4. Thus h must be a constant. From (8) it follows that
hn−2 − 1 = 0 and hn−1 − 1 = 0 which implies that h ≡ 1. Therefore f ≡ g.

Lemma 7 ([4]). Let F,G be given by (4) and S be defined as in Theorem 1, where n ≥ 4.
If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

Lemma 8 ([15]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to its multiplicity
then N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f) where
N(r, 0; f |< k) is the counting function of the zeros of f with multiplicity < k each zero
being counted according to its multiplicity.

3. Proof of Theorem 1. Let F,G be given by (4). Suppose first that H 6≡ 0. Let p be
any positive integer and aj 6∈ S ∪ {0, b,∞}, j ∈ {1, 2, . . . , p} be distinct complex numbers.
We denote by N∗(r, 0; f ′) the counting function of the zeros of f ′ which are not the zeros of
f(f − b)

∏p
j=1(f − aj) and F − 1. Similarly may we define N∗(r, 0; g′) and the corresponding

reduced counting functions N∗(r, 0; f ′) and N∗(r, 0; g′). Note that N0(r, 0; f ′) = N∗(r, 0; f ′)+∑p
j=1N(r, aj, f |≥ 2). Since Ef (S, 2) = Eg(S, 2), it follows that F , G share (1,2). Also since

Ef ({∞},∞) = Eg({∞},∞) we see that N∗(r,∞; f, g) ≡ 0. We denote the elements of S by
w1, w2, . . . , wn. By Lemma 8 we note that N0(r, 0; g′) + N(r, 1;G |≥ 2) + N∗(r, 1;F,G) ≤
N0(r, 0; g′) + N(r, 1;G |≥ 2) + N(r, 1;G |≥ 3) ≤ N0(r, 0; g′) +

∑n
j=1{N(r, wj; g |= 2) +

2N(r, wj; g |≥ 3)} ≤ N(r, 0; g′ | g 6= 0) + S(r, g) ≤ N(r, 0; g) +N(r,∞; g) + S(r, g).
Hence by above and the second main theorem we obtain for ε > 0 using Lemma 1 and

Lemma 2,

(n+ p+ 1)T (r, f) ≤ N(r, 1;F ) +N(r, 0; f) +N(r, b; f) +N(r,∞; f) +

p∑
j=1

N(r, aj; f)−

−N∗(r, 0; f ′) + S(r, f) = N(r, 1;F |= 1) +N(r, 1;F |≥ 2) +N(r, 0; f) +N(r, b; f)+

+N(r,∞; f) +

p∑
j=1

N(r, aj; f)−N∗(r, 0; f ′) + S(r, f) ≤

≤ 2{N(r, 0; f) +N(r, b; f)}+N(r,∞; f) +N(r, 0; g) +N(r, b; g) +N(r, 1;G |≥ 2)+

+N∗(r, 1;F,G) +N0(r, 0; g′) +N0(r, 0; f ′) +

p∑
j=1

N(r, aj; f)−N∗(r, 0; f ′) + S(r, g)+
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+S(r, f) ≤ 2{N(r, 0; f) +N(r, b; f)}+N(r,∞; f) +N(r, 0; g) +N(r, b; g)+

+N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g′) +N∗(r, 0; f ′) +

p∑
j=1

N(r, aj, f |≥ 2)+

+

p∑
j=1

N(r, aj; f)−N∗(r, 0; f ′) + S(r, g) + S(r, f) ≤

≤ 2{N(r, 0; f) +N(r, b; f)}+N(r,∞; f) +N(r, 0; g) +N(r, b; g) +N(r, 1;G |≥ 2)+

+N∗(r, 1;F,G) +N0(r, 0; g′) +N∗(r, 0; f ′) +

p∑
j=1

N(r, aj, f |≥ 2) +

p∑
j=1

N(r, aj; f)−

−N∗(r, 0; f ′) + S(r, g) + S(r, f) ≤ 2{N(r, 0; f) +N(r, b; f) +N(r, 0; g)}+

+N(r,∞; f) +N(r, b; g) +N(r,∞; g) +

p∑
j=1

N2(r, aj; f) + S(r, g) + S(r, f),

and hence

(n+ p+ 1)T (r, f) ≤ (9 + p− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)− 2Θ(b; f)−

−Θ(b; g)−
p∑
j=1

δ2(aj, f) + ε)T (r) + S(r), (9)

where T (r) = max{T (r, f), T (r, g)} and S(r) = o(T (r)) as r → ∞, r 6∈ E. Similarly we
obtain

(n+ p+ 1)T (r, g) ≤ (9 + p− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)− 2Θ(b; g)−

−Θ(b; f)−
p∑
j=1

δ2(aj, g) + ε)T (r) + S(r). (10)

Combining (9) and (10) we obtain

(n+ p+ 1)T (r) ≤
[
9 + p− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)−Θ(b; f)−Θ(b; g)−

−min
{

Θ(b; f),Θ(b; g)
}
−min

{ p∑
j=1

δ2(aj, f),

p∑
j=1

δ2(aj, g)
}

+ε
]
T (r) + S(r)⇒

[
Θf + Θg+

+ min
{

Θ(b; f),Θ(b; g)
}

+ min
{ p∑
j=1

δ2(aj, f),

p∑
j=1

δ2(aj, g)
}
−(8− n)− ε

]
T (r) ≤ S(r).

Since p is arbitrary we have from above,[
Θf + Θg + min{Θ(b; f),Θ(b; g)}+

+ min
{ ∑
a6∈S∪{0,b,∞}

δ2(a, f),
∑

a6∈S∪{0,b,∞}

δ2(a, g)
}
−(8− n)− ε

]
T (r) ≤ S(r),

but this contradicts (3). Hence H ≡ 0. Then

F ≡ AG+B

CG+D
(11)
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where A,B,C,D are constants such that AD−BC 6= 0. Also T (r, F ) = T (r,G) +O(1), and
hence from (5)

T (r, f) = T (r, g) +O(1). (12)

Since R(w)− c = a(w−b)3Qn−3(w)
n(n−1)(w−α1)(w−α2)

, where c = abn−2

2
6= 1, 1

2
and Qn−3(w) is a polynomial

in w of degree n− 3, in view of the definitions of F and G we notice that

N(r, c;F ) ≤ N(r, b; f) + (n− 3)T (r, f) ≤ (n− 2)T (r, f) + S(r, f),

N(r, c;G) ≤ N(r, b; g) + (n− 3)T (r, g) ≤ (n− 2)T (r, g) + S(r, g). (13)

Now we consider the following cases.

Case 1. C 6= 0.
Since f, g share (∞,∞) it follows from (11) that ∞ is an exceptional value of Picard of

f and g. Therefore from (2) and (4) it follows that

N(r,∞;F ) = N(r, α1; f) +N(r, α2; f), N(r,∞;G) = N(r, α1; g) +N(r, α2; g). (14)

Subcase 1.1. A 6= 0.
Suppose B 6= 0. Then from (11) it follows that N(r,−B

A
;G) = N(r, 0;F ). Thus from the

second main theorem and (13) we have

nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r,−B
A

;G) + S(r,G) ≤

≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r, 0; f) + S(r, g). (15)

Clearly (14) leads to a contradiction if n ≥ 5. Let n = 4. Note that if either N(r, 0; g) <
T (r, g) + S(r, g) or N(r, 0; f) < T (r, f) + S(r, f) then also above leads to a contradiction.

So let N(r, 0; g) ∼ T (r, g) + S(r, g) and N(r, 0; f) ∼ T (r, f) + S(r, f) that is Θ(0, g) = 0
and Θ(0, f) = 0. Since Θ(∞, g) = 1, and Θ(∞, f) = 1, from (3) we obtain with n = 4,
Θ(b, f)+Θ(b, g)+min{

∑
a6∈S∪{0,b,∞} δ2(a, f),

∑
a6∈S∪{0,b,∞} δ2(a, g)} > 2, which is not possible.

Therefore B = 0. Then F ≡
A
C
.G

G+D
C

and therefore N(r, −D
C

;G) = N(r,∞;F ). We also note

that c = abn−2

2
6= 0. If possible suppose c = −D

C
. Also suppose that F has no 1-points.

This amounts to saying that f has no wi-points where wi ∈ S and i ∈ {1, 2, . . . , n(≥ 4)},
which is not possible. Therefore F must have some 1-points. Since F,G share 1-points,
we have A = C + D = C − cC and hence F = (C−cC)G

CG−cC = (1−c)G
G−c , since C 6= 0 by our

assumption. Then since c 6= 1
2
, from above N(r, c;F ) = N(r, c2

2c−1 ;G) and since c 6= 1,
c 6= c2

2c−1 . Thus by the second main theorem and (13) we have 2nT (r, g) ≤ N(r, 0;G) +

N(r,∞;G) + N(r, c;G) + N
(
r, c2

2c−1 ;G
)

+S(r, g) ≤ N(r, 0; g) + N(r, α1; g) + N(r, α2; g) +

N(r, α1; f) +N(r, α2; f) + (n− 2)T (r, f) +S(r, g) ≤ (5 +n− 2)T (r, g) +S(r, g), which leads
to a contradiction for n ≥ 4. Next let c 6= −D

C
. Hence as before by the second main theorem

and (13) we have 2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N(r, −D
C

;G) +N(r, c;G) +S(r,G) ≤
N(r, 0; g) + N(r, α1; g) + N(r, α2; g) + N(r, α1; f) + N(r, α2; f) + (n − 2)T (r, g) + S(r, g) ≤
(5 + n− 2)T (r, g) + S(r, g), which leads to a contradiction for n ≥ 4.

Subcase 1.2. A = 0.



60 A. SARKAR

Then clearly B 6= 0 and F ≡ 1
γG+δ

where γ = C
B

and δ = D
B
. Since F and G have some

1-points, then γ+ δ = 1 and so F ≡ 1
γG+1−γ . Suppose γ 6= 1. If 1

1−γ 6= c then by second main
theorem and (13) we have

2nT (r, f) ≤ N(r, 0;F ) +N(r,
1

1− γ
;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, F ) ≤

≤ N(r, 0; f) + (n− 2)T (r, f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f)

⇒ (n+ 2)T (r, f) ≤ N(r, 0; f) +N(r, 0; g) +N(r, α1; f) +N(r, α2; f) + S(r, f),

which is a contradiction for n ≥ 4. If c = 1
1−γ , then F ≡

c
(c−1)G+1

. If c 6= 1
1−c , then by the

second main theorem and (13) we obtain

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N
(
r,

1

1− c
;G
)

+N(r,∞;G) + S(r, g) ≤

≤ N(r, 0; g) + (n− 2)T (r, g) +N(r,∞;F ) +N(r, α1; g) +N(r, α2; g) + S(r, g) ≤
≤ N(r, 0; g) + (n− 2)T (r, g) +N(r, α1; f) +N(r, α2; f) +N(r, α1; g) +N(r, α2; g)+S(r, g).

Thus (n + 2)T (r, g) ≤ N(r, 0; g) + N(r, α1; f) + N(r, α2; f) + N(r, α1; g) + N(r, α2; g) +
S(r, g), which leads to a contradiction for n ≥ 4.

If c = 1
1−c then G ≡ c(F−c)

F
and by the second main theorem we obtain nT (r, f) ≤

N(r, 0;F ) + N(r, c;F ) + N(r,∞;F ) + S(r, f) ≤ N(r, 0; f) + N(r, 0; g) + N(r, α1; f)+
N(r, α2; f) + S(r, f). Above leads to a contradiction for n ≥ 5. Let n = 4. If either
N(r, 0; f) < T (r, f) + S(r, f) or N(r, 0; g) < T (r, g) + S(r, g) then also above leads to
a contradiction. Therefore suppose N(r, 0; f) ∼ T (r, f) and N(r, 0; g) ∼ T (r, g) that is
Θ(0, f) = 0 and Θ(0, g) = 0.

Since Θ(∞, f) = Θ(∞, g) = 1, from (3) we get for n = 4 and Θ(b, f) + Θ(b, g) +
min{Θ(b, f),Θ(b, g)} + min{

∑
a6∈S∪{0,b,∞} δ2(a, f),

∑
a6∈S∪{0,b,∞} δ2(a, g)} > 2, which is not

possible. Therefore we must have γ = 1 and hence FG ≡ 1, which is again impossible by
Lemma 4.

Case 2. C = 0.
Clearly A 6= 0 and F ≡ αG + β, where α = A

D
, β = B

D
. Since F and G must have some

1-points, α+β = 1 and so F ≡ αG+ 1−α. Suppose α 6= 1. If 1−α 6= c, then by the second
main theorem and (13) we obtain

2nT (r, f) ≤ N(r, 0;F ) +N(r, c;F ) +N(r,∞;F ) +N(r, 1− α;F ) + S(r, f) ≤ N(r, 0; f)+

+N(r,∞; f) +N(r, α1; f) +N(r, α2; f) + (n− 2)T (r, f) +N(r, 0;G) + S(r, f).

Thus (n+2)T (r, f) ≤ N(r, 0; f)+N(r,∞; f)+N(r, α1; f)+N(r, α2; f)+N(r, 0; g)+S(r, f)
which leads to a contradiction for n ≥ 4. If 1 − α = c, then F ≡ (1 − c)G + c. Since c 6= 1
we obtain from the second main theorem and (13)

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N(r,∞;G) +N
(
r,

c

c− 1
;G
)

+S(r, g) ≤

≤ N(r, 0; g) + (n− 2)T (r, g) +N(r,∞; g) +N(r, α1; g) +N(r, α2; g) +N(r, 0;F ) + S(r, g).

Thus (n+ 2)T (r, g) ≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g) +N(r,∞; g) +N(r, 0; f) +S(r, f)
which leads to a contradiction for n ≥ 4.

So α = 1. Hence F ≡ G and therefore by Lemma 6, f ≡ g.
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