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Let f and g be two non constant meromorphic functions defined in the open complex
plane C. In 2011 A. Banerjee ([4]), in an attempt to answer on the question of F. Gross ([9]),
by W. C. Lin and H. X. Yi ([18]), improved a result of I. Lahiri ([14]) by reducing the cardinality
of the set shared by f and ¢ from 7 to 6 under weaker condition on ramification index. In this
paper we show that the cardinality of the shared set can further be reduced to 4 as well as the
condition on ramification index can be replaced by weaker one to obtain the same conclusion
as A. Banerjee ([4]).

A. Capkap. Hexomopoie pe3yavmamo, eOUHCMEERHOCTNY MEPOMOPHHBIT GYyHKUUT, pasddessro-
wuz muootcecmsa // Mar. Crynil. — 2014. — T.41, Nel. — C.53-61.

IIycts f u g — nBe MepoMOpPQHBIE B OTKPBITON ILIOCKOCTH (DYHKIMH, HE PaBHBbIE TOXK-
nmecreenno nocrosiauoil. B 2011 1. A. Banmepmxu ([4]), orBewas ma Bompoc ®@. I'pocca ([9]),
B. K. Jlun u T. X. Vu ([18]), yroummm pesymsrar 1. Jlaxupa ([14]) yMenbmus MomtmocTs
MHOKECTBa DPO3JIeJIEHHBIX 3HavdeHuit f u g ¢ 7 70 6 npu Oojiee caabbIX YCIOBHAX HA HUHIEKC
BeTsienus. B 3Toil cTaThe OKA3aHO, YTO MOIHOCTD MHOYKECTBA PO3IETCHHBIX 3HATEHUH MOKET
ObITH YMEHBIIEHA J0 4, & YCJIOBHS Ha MHICKC BETJICHUSA MOTYT OBITh OCIAGJIEHBI, IIPH 3TOM
COXPAHSETCS TO 2Ke 3aKJouenus:, Kak u'y A. Banepmxu ([4]).

1. Introduction, definitions and results. Let f and g be two non constant meromorphic
functions defined in the open complex plane C. If for some a € CU {00}, f and g have the
same set of a-points with the same multiplicities, we say that f and g share the value a CM
(Counting Multiplicities) and if we do not consider the multiplicities, then f and g are said
to share the value a IM (Ignoring Multiplicities). We do not explain the standard notations
and definitions of the value distribution theory as these are available in [11]|. Let S be a set
of distinct elements of C U {oo} and E¢(S) = U,csiz @ f(2) — a = 0}, where each zero is
counted according to its multiplicity. If we do not count the multiplicity then we replace the
above set by E(S). If Ef(S) = E,(S) we say that f and g share the set S CM. On the
other hand if E;(S) = E,(S), we say that f and g share the set S IM.
In 1976 F. Gross([9]) raised the following question.

Question A. Can one find finite sets S;, j € {1,2} such that any two nonconstant entire
functions f and g satisfying E¢(S;) = E4(S;) for j € {1,2} must be identical?
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As a natural outcome of the above question W. C. Lin and H. X. Yi([18]) raised the
following question in 2003.

Question B. Can one find finite sets S;, j € {1,2} such that any two nonconstant meromor-
phic functions f and g satistying E¢(S;) = E,(S;) for j € {1,2} must be identical?

During last couple of years a great deal of works has been directed by researchers to
answer the above questions ([1]-[8], [10], [14], [16]-[18], [20]-[26]).

In 2003, M. Fang and I. Lahiri exhibited a unique range set with smaller cardinalities
than that obtained some previously imposing restrictions on the poles of f and ¢ in the
following result.

Theorem A([6]). Let S = {z: 2"+ az""' + b= 0} where n(>7) be an integer and a and
b be two nonzero constants such that 2™ + az"~' + b = 0 has no multiple root. If f and g be
two nonconstant meromorphic functions having no simple poles such that E¢(S) = E,(S5)

and E¢({oc}) = Ey({oo}) then f = g.

In 2001 I. Lahiri introduced an idea of gradation of sharing of values and sets known as
weighted sharing as follows.

Definition 1 ([12, 13]). Let k be a nonnegative integer or infinity. For a € C U {o0} we
denote by Ej(a; f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m < k and k+1 times if m > k. If Fx(a; f) = Fx(a; g), we say that f and g share
the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z is a zero of f —a
with multiplicity m(< k) if and only if it is a zero of ¢ — a with multiplicity m(< k) and zg
is a zero of f — a of multiplicity m(> k) if and only if it is a zero of g — a with multiplicity
n(> k) where m is not necessarily equal to n.

We write f,g share (a,k) to mean f, g share the value a with weight k. Clearly if f, g
share (a, k) then f, g share (a,p) for all integers p, 0 < p < k. Also we note that f, g share
a value a IM or CM if and only if f, g share (a,0) or (a,c0) respectively.

Definition 2 ([13]). Let S be a set of distinct elements of C U {oo} and k be a positive
integer or co. We denote by Ef(S, k) the set | J,.q Er(a; f).

With the notion of weighted sharing of sets improving Theorem A, I. Lahiri ([14]) proved
the following theorem.

Theorem B([14]). Let S be defined as in Theorem A. If f and g are two nonconstant
meromorphic functions such that E¢(S,2) = E,(S,2) and E¢({o0}, 00) = E,({o0}, 00) and
O(oc0; f) +©(oc0;9) > 1 then f = g.

Suppose that the polynomial P(w) is defined by
P(w) = aw™ — n(n — Dw? + 2n(n — 2)bw — (n — 1)(n — 2)b? (1)

where n > 3 is an integer and a and b are two nonzero complex numbers satisfying ab” =2 # 2.
We also define

aw™

R(w) =

(2)

where a1, oy are two distinct roots of n(n — 1)w? — 2n(n — 2)bw + (n — 1)(n — 2)b? = 0. Tt
can be shown that P(w) has only simple roots([25]).

n(n —1)(w — ay)(w — as)’
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In 2011 A. Banerjee improved Theorem B in the following result by lowering the cardi-
nality of the shared set replacing it by a new one in the following theorem.
Theorem C([4]). Let S = {w | P(w) = 0}, where P(w) is given by (1) and n(> 6). Suppose
that f and g are two nonconstant meromorphic functions satisfying E¢(S,2) = E,(S,2) and
E¢({o0},00) = E,({o0},00) and ©f + O, + min{O(b, ),O(b,g)} > 8 — n, where O =
2000; f) + ©(b; f) + O(o0; f) and ©, is defined similarly. Then f = g.

Before proceeding further we need the following definitions.

Definition 3. For a € C U {co} and a positive integer m we denote by N(r,a; f |> m) the
reduced counting function of those a-points of f whose multiplicity is greater than or equal
to m.

Definition 4. We put No(r,a; f)=N(r,a; f)+N(r,a; f |> 2) and 6(a; f)=1— lim %
r—00 )

The aim of this paper is to improve Theorem C in the following way.
1. By replacing n > 7 in Theorem C with n > 4.
2. By replacing the condition on ramification index by weaker one.
Note that in the definition of the polynomial P(w), we require ab”~2 # 2. For our purpose,
in addition to it we assume ab"~2 # 1, by which the polynomial P(w) will not lose any of its

properties mentioned above. Thus from now on our set S is given by S = {w | P(w) = 0}
where P(w) is given by (1) with ab"~2 # 2, 1. We state below our theorem.

Theorem 1. Let S = {w | P(w) = 0}, where P(w) is given by (1) and n (> 4) and
ab®? # 2, 1. If f and g be two nonconstant meromorphic functions such that E;(S,2) =
E,(5,2) and Ey({o0},00) = Ey({oc}, oc) and

@f+@9+min{@(bv f)7@<b7g)}+mln{ Z 52(&, f)a Z 52<a7g)}> 8§—n (3>
agSU{0,b,00} agSU{0,b,00}

then f = g, where Oy = 20(0; f) + O(b; f) + O(o0; f) and O, is defined similarly.
Following Corollaries are the easy consequences of the above theorem.

Corollary 1. Let S = {w | P(w) = 0}, where P(w) is given by (1) and n (> 7) and
ab™ 2 #2,1. If f and g are two nonconstant entire functions such that E¢(S,2) = E,(S,2),
then f = g.

Corollary 2. Let S = {w | P(w) = 0}, where P(w) is given by (1) and n (> 7) and
ab" 2 # 2, 1. If f and g are two nonconstant meromorphic functions having no simple zeros
and satisfying E;(S,2) = E,(S,2) and E;({oo}, 00) = E,;({o0}, 00), then f = g.

We conclude this section with the definition of a few more notations.

Definition 5 (|4, 13|). Let f and g be two nonconstant meromorphic functions such that f
and g share (a,0) for a € CU{oo}. Let 2z be an a-point of f with multiplicity p, and an a-point
of g of multiplicity ¢. We denote by N (r,a; f)(NL(r,a; g)) the reduced counting function of
those a-points of fand g where p > q(q > p). We denote by N, (r, a; f, g) the reduced counting
function of those a-points of f whose multiplicities differ from the corresponding a-points
of g. Clearly N,(r,a; f,g9) = N.(r,a;g, f) and N,(r,a; f,g) = Np(r,a; f) + Np(r,a;g). We
also denote by NV ]{3) (r,1; f) the counting function of those 1-points of f and g where p = g = 1.
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2. Lemmas. In this section we present some lemmas which will be required to establish our

results. In the lemmas several times we use the function H defined by H = £ — 2F° _ %/,/—l—é—cjll

P F—1
where F' and G are two non-constant meromorphic functions.
Let f and g be two nonconstant meromorphic functions and

FZR(f)’ G:R(g)v (4)

where R(w) is given by (2). From (2) and (5) it is clear that
T(r, ) = T( F) + S(r. ), T(r,9) = - T(r,G) + S(r.9). )

Lemma 1 (|2]). Let F,G be given by (4) and H # 0. If F,G share (1,m) and f, g share
(00, k), then

NP (r, 1, F) < Np(r,1; F) + No(r, 1;G) + N(r,0; f) + N(r,b; f) + N(r,0; g) + N(r,b; )+
+N*<T7 Q3 f7 g) +N0(T7 07 f/> +NO(T7 079/)7

where No(r,0; f') denotes the reduced counting function corresponding to the zeros of I
which are not the zeros of f(f —b) and F' — 1. No(r,0;¢’) is defined similarly.

= Freielr be
an irreducible rational function in f with constant coefficients {ay} and {b;} where a,, # 0,
by, # 0. Then T(r, R(f)) =dT(r, f) + S(r, f), where d = max{m,n}.

Lemma 3 (|2]|). Let F and G be given by (4) and H # 0. If F' and G share (1,m) and f,g
share (00, k), where 0 < 'm < 00, 0 < k < oo, then

Lemma 2 ([19]). Let f be a non-constant meromorphic function and let R(f)

[(n—2)k+n—=3]N(r,o0; f|>k+1)=[(n—2)k+n—3]N(r,oo;g|>k+1) <
< N(r,0; f) + N(r,0;9) + N.(r,1; F,G) + S(r, f) + S(r, 9).

Lemma 4 ([4]). Let f,g be two non-constant meromorphic functions sharing (oo, 0) and
suppose that «y and ay are two distinct roots of the equation n(n — 1)w? — 2n(n — 2)bw +

(n—1)(n —2)b* = 0. Then (f—a1€?f—a2) . (g_alg)?g_m) * "2(22_1)2, where n > 3 is an integer.

Lemma 5 ([§]). Let Q(w) = (n — 1)*(w™ — 1)(w" 2 — 1) — n(n — 2)(w" ! — 1)?, then
Qw) = (w—1)*w—PF1)(w—PBs) ... (w—Pan—g) where 8; € C\{0,1}, (j € {1,2,...,2n—6})

which are pairwise distinct.

Lemma 6. Let F,G be given by (5), where n > 4 is an integer. If f, g share (cc,0) then
F=G=f=y.

n n

.. — f =
Proof. From the definitions of F, G we observe that F' = G = Foan (=) = = )=as)"

Therefore f, g share (0,00) and (00,00). Then from above and in view of the definitions of
R(w) we obtain

n(n—1)f2¢*(f* 7 —g" %) = 2n(n=2)bfg(f" =" )+ (n—1)(n=2)0*(f" — g") = 0. (6)

Let h = g, that is f = gh which on substitution in (6) yields

n(n — 1)h*g*(h"2 — 1) — 2n(n — 2)bhg(h" ' — 1)+ (n — 1)(n — 2)b*(A" —1) = 0.  (7)
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Note that since f and g share (0,00) and (00, c0), (0,00) are the exceptional values of
Picard of h. If h is non-constant then from Lemma 6 and (7) we have

{n(n — Dh(h" 2 = 1)g —n(n — 2)b(h" ' — 1)}? = —n(n — 2)b’Q(h) (8)

where Q(h) = (h —1)*(h — B1)(h— B2) ... (h— Ban—s), B; € C\{0,1}, j € {1,2,...,2n — 6}
which are pairwise distinct. From (8)we observe that each zero of h—f;, j € {1,2,...,2n—6}
is of order at least two. Therefore by the second main theorem we obtain

(2n—6)T'(r, h) < N(r, 00; h)+N(r,0; h)+nz_ N(r,B;;h)+S(r,h) <

=1

(2n—6)T'(r,h)+S(r, h),

N —

which is a contradiction for n > 4. Thus h must be a constant. From (8) it follows that
h"=2 —1 =0 and A" ! — 1 = 0 which implies that h = 1. Therefore f = g. O

Lemma 7 (|4]). Let F,G be given by (4) and S be defined as in Theorem 1, where n > 4.
If E¢(S,0) = E,(S,0) then S(r, f) = S(r,g).

Lemma 8 ([15]). If N(r,0; f*) | f # 0) denotes the counting function of those zeros of f*)
which are not the zeros of f, where a zero of f*) is counted according to its multiplicity
then N(r,0; f*®) | f #0) < kN(r,00; f) + N(r,0; f |< k) + kN(r,0; f |> k) + S(r, f) where
N(r,0; f |< k) is the counting function of the zeros of f with multiplicity < k each zero
being counted according to its multiplicity.

3. Proof of Theorem 1. Let F G be given by (4). Suppose first that H # 0. Let p be
any positive integer and a; ¢ S U{0,b,00}, 7 € {1,2,...,p} be distinct complex numbers.
We denote by N,(r,0; f') the counting function of the zeros of f’ which are not the zeros of
f(f=b)1I}-,(f —a;) and F'— 1. Similarly may we define N, (r,0;g’) and the corresponding
reduced counting functions N, (r,0; f') and N,(r,0; ¢'). Note that No(r, 0; f') = N.(r,0; f')+

;’Zlﬁ(r, aj, f |>2). Since E¢(S,2) = E,(S,2), it follows that F', G share (1,2). Also since
Et({oo}, 00) = E,({o0}, 00) we see that N, (r, o0; f,g) = 0. We denote the elements of S by
Wy, Wy, . .., w,. By Lemma 8 we note that No(r,0;¢') + N(r,1;G |> 2) + N.(r,1; F,G) <
No(r,0¢') + N(r, 1;G |> 2) + N(r, ;G [> 3) < No(r,0;¢') + 35 {N(r,wj;9 |= 2) +
2N(r,wjig |2 3)} < N(r,059" | g # 0) + S(r, g) < N(r,0;9) + N(r,00;9) + S(r. g).

Hence by above and the second main theorem we obtain for € > 0 using Lemma 1 and

Lemma 2,

(n+p+ DT(r, f) <N 1 F)+ N(r,0; f) + N(r,b; f) + N(r, 00; f) —i—ZNra],f)—

“N(r, 03 )+ S(r, f) = N(r, L F |= 1) + N(r, 1 F |2 2) + N(r,0; f) + N(r,bi )+

M=

+N(r,00; f)+ Y N(r,az f) — Nu(r,0; f) + S(r, f) <

J

=

< 2{N(r,0; f) + N(r,b; f)} + N(r,00; f) + N(r,0;g) + N(r,b;g) + N(r,1;G |> 2)+

+N.(r,1; F,G) + No(r,0;¢') + No(r,0; ')

|| M*@

Taju N*(T,O,f’)+5(r,g)+
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+S(r, f) < 2{N(r,0; f) + N(r,b; /)} + N(r,00; f) + N(r,0;9) + N(r,b; g)+

p
+N(r, ;G [> 2) + No(r, 1; F,G) + No(r,0,¢) + N.(r,0; ') + Y _N(r,a;, f |> 2)+

j=1
+D N(r,a55f) = Nor, 0 ') + 5(r,9) + S(r, f) <
=1
< 2{N(r,0;f) + N(r,b; )} + N(r,00; /) + N(r,0:9) + N(r,b;9) + N(r, G [ 2)+
+N.(r,1; F,G) + No(r,0;¢') + N.(r,0; f') + Zﬁ(r, aj, f1>2)+ ZN(T, aj; f)—
P =1

—N.(r,0; ')+ S(r,g) + S(r, f) < 2{N(r,0; ) + N(r,b; ) + N(r,0; g) }+

+N(r,00; f) + N(r,b; g) + N(r,00; g) + ZNQ(T, aj; f)+S(r,g)+ S(r, f),

and hence
(n+p+T(r, f) < (94— 20(0: f) — 26(0; g) — O(c0; f) — O(c0: g) — 20(b: f)—
—9®w)—§:%wpﬂ+fﬂWﬂ+5@% (9)

where T'(r) = max{T'(r, f),T(r,g)} and S(r) = o(T(r)) as r — oo, r ¢ E. Similarly we
obtain

(n+p+1)T(r,g) < (9+p—20(0; f) —20(0; g) — O(o0; f) — O(00; g) —20(b; g)—

—O(b; f) = ) da(az,9) + )T(r) + S(r). (10)

j=1

Combining (9) and (10) we obtain

(n+p+1)T(r) < [9 +p—20(0; f) — 20(0; g) — O(00; f) — O(00; g) — O(b; f) — O(b; 9)—

—min{@(b; 1), 0(; g)}—min{i 52(aj,f),ié?(&j,g)}_‘_e}T(T) + S(r) = [@f + O,+

+min{ ©(; f), O g>}+mm{i 2(ay, f), i(sz(aj,g)}—@ —n) = €|T(r) < S(r).

Since p is arbitrary we have from above,
(05 + 6, +min{O(b: £), 00 )+
+mm{ EACE DY 5xmm}—@—ny—4T@ygam,

agSU{0,b,00} agSU{0,b,00}

but this contradicts (3). Hence H = 0. Then

_ AG+B
~CG+D (11)
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where A, B, C, D are constants such that AD — BC # 0. Also T'(r, F') = T'(r,G) + O(1), and
hence from (5)

T(r,f) =T(r,g) + O(1). (12)
Since R(w) — ¢ = n(g( 1)(13 %1‘)‘;5 zm), where ¢ = %~ 2 41,1 1 and Q,_3(w) is a polynomial

in w of degree n — 3, in view of the definitions of F' and G We notice that

S (TL—2)T(’I“,f)—|—S(’I“,f),
< (n—2)T(r,g) + S(r,g). (13)

Now we consider the following cases.

Case 1. C' # 0.
Since f, g share (0o, 00) it follows from (11) that oo is an exceptional value of Picard of
f and g. Therefore from (2) and (4) it follows that

N(T, S N F) = N(ﬁ aq; f) —|—N(7’, Qg; f)7 N(T, ;3 G) = N(T? @1;9) —FN(?", Qg; g) (14>

Subcase 1.1. A # 0.
Suppose B # 0. Then from (11) it follows that N(r, —Z;G) = N(r,0; F'). Thus from the
second main theorem and (13) we have

_ — — B
WT(r,g) < N(r,0:G) + N(r,00:G) + N(r,—: G) + 507, G) <

< N(r,0;9) + N(r,a1;9) + N(r,a2;9) + N(r, 0; ) + S(r, 9). (15)

Clearly (14) leads to a contradiction if n > 5. Let n = 4. Note that if either N(r,0;g) <
T(r,g) + S(r,g) or N(r,0; f) < T(r, f) + S(r, f) then also above leads to a contradiction.
So let N(r,0;9) ~ T(r,g) + S(r,g) and N(r,0; f) ~ T(r, f) + S(r, f) that is ©(0,g) = 0
and ©(0, f) = 0. Since O(oc0,g) = 1, and O(oo, f) = 1, from (3) we obtain with n = 4,
(b, f)+O(b, g)—l—mln{zagsu{“m} 62( 215D ags0(0b.00) 62(a g)} > 2, which is not possible.

Therefore B = 0. Then F = Gjr 5 and therefore N(r, =2:G) = N(r,00; F). We also note
C

that ¢ = % # 0. If possible suppose ¢ = ’7. Also suppose that F' has no 1-points.

This amounts to saying that f has no w;-points where w; € S and i € {1,2,...,n(> 4)},

which is not possible. Therefore F' must have some 1-points. Since F,G share 1-points,

we have A = C + D = C — ¢C and hence F = (gac_(’;)CG = (IG_f)CG, since C' # 0 by our
assumption. Then since ¢ # %, from above N(r,c; F) = N(r,%;G) and since ¢ # 1,
(13) we have 2nT(r,g) < N(r,0;G) +
N(r,00:0) + (1, 6:6) + (13251 G) +5(r,9) < N(r0:9) + Wi g) + N, ) +
N(rs00; )+ (7,031 ) + (0= 2T(r, ) +5(1,9) < (541 —2)T(r, )+ (1, 9), which leads
to a contradiction for n > 4. Next let ¢ # = c . Hence as before by the second main theorem
and (13) we have 2nT'(r, g) < N(r,0; G) + N(r,00; G) + N(r, 2, G) + N(r,¢; G) + S(r, G) <
N(r,0;9) + N(r,a1;9) + N(r,a0;9) + N(r,oq; f) + N(r, a0; f) + (n — 2)T(r, g) + S(r,g) <
(54+n—2)T(r,g) + S(r,g), which leads to a contradiction for n > 4.

Subcase 1.2. A =0.

7C7

C
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Yy 9

theorem and (13) we have

m Suppose v # 1. If 7& ¢ then by second main

2nT(r, f) < N(r,0; F) + N(r, i)+ N(r,¢; F) + N(r,00; F) + S(r, F) <

(r,an; f) + S(r, f)
<T7052;f)+8(7a7f)7
then F' = m If ¢ # ﬁ, then by the

N

"1—7
<N(r,0; f) + (n = 2)T(r, f) + N(r,0; 9) + N(r,a1; f) +
+

N
= (n+2)T(r, f) < N(r,0; f) + N(r,0,9) + N(r,a1; f) + N

which is a contradiction for n > 4. If ¢ = ﬁ,
second main theorem and (13) we obtain

T >—|—N(rooG)+S(r g) <

< N(r,0;9) + (n —2)T(r,g) + N(r,00; F) + (T a1;9) + N(r,as;9) + S(r, g) <
< N(r,0;9) + (n—2)T(r,9) + N(r,aq; f) + N(r,ag; f) + N(r,a1; 9) + N(r, a0; ) +S(r, g).

Thus (n+2)T(r,g) < N(r,0;9) + N(r,cu; f) + N(r,a9; f) + N(r,a159) + N(r, az; 9) +
S(r,g), Which leads to a contradiction for n > 4.

If c = — then G = C(F ) and by the second main theorem we obtain nT'(r, f) <
N(T,O;F) —l— N(T,C,F) + N(r,oo,F) + S(r, f) < N(r,0;f) + N(r,0;9) + N(r,as; f)+
N(r,ay; f) + S(r, f). Above leads to a contradiction for n > 5. Let n = 4. If either
N(r,0;f) < T(r,f) + S(r, f) or N(r,0;9) < T(r,g) + S(r,g) then also above leads to
a contradiction. Therefore suppose N(r,0;f) ~ T(r,f) and N(r,0;9) ~ T(r,g) that is
©(0, f) =0 and ©(0,¢g) = 0.

Since O(o0, f) = O(00,g) = 1, from (3) we get for n = 4 and O(b, f) + O(b,g) +
min{O(b, f),0(b, 9)} + min{>_, 5010500} 92(a, [)s D agsufopee) 92(a, 9)} > 2, which is not
possible. Therefore we must have v = 1 and hence F'G = 1, which is again impossible by
Lemma 4.

Case 2. C =0.

Clearly A # 0 and F = aG + 3, where a = D,B . Since F' and G must have some
l-points, o+ =1 and so F' = aG + 1 — a. Suppose « 7& 1. If 1 — a # ¢, then by the second
main theorem and (13) we obtain

2nT(r, f) < N(r,0; F) + N(r,c; F) + N(r,00; F) + N(r,1 —a; F) + S(r, f) < N(r,0; f)+
+N(r,00; f) + N(r,o1; f) + N(r,ag; f) + (n — 2)T(r, f) + N(r,0; G) + S(r, f).
Thus (n+2)T(r, f) < N(r,0; f)+ N(r,00; f)+ N(r,ay; f) + N(r,aq; f) + N(r,0; 9) +S(r, f)

which leads to a contradiction for n > 4. If 1 — a = ¢, then F = (1 — ¢)G + ¢. Since ¢ # 1
we obtain from the second main theorem and (13)

2nT(r,g) < N(r,0;G) + N(r,c; G) +N<r,
)

2nT(r,g) < (rOG)—i—N(rcG’)—i—N(rooG)—l—N( %;G)—FS(T,g)g
< N(r,0;9) + (n—2)T(r,g) + N(r,00;9) + N(r,a1; 9) + N(r,aq;9) + N(r,0; F) + S(r, ).

Thus (n+2)T(r,g) < N(r,0;9) + N(r, 15 g) + N(r, a9; g) + N(r,00; g) + N(r,0; f) +S(r, f)
which leads to a contradiction for n > 4.
So a = 1. Hence F' = G and therefore by Lemma 6, f = g.
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