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If a proper subharmonic function of infinite order has the full measure at the finite system
of rays in the upper half-plane, then its lower order also equals infinity.

К. Г. Малютин, Т. И. Малютин, И. И. Козлова. Субгармонические функции в полуплос-
кости бесконечного порядка с радиально распределенной мерой // Мат. Студiї. – 2014. –
Т.41, №2. – C.179–183.

Если полная мера истинно субгармонической функции бесконечного порядка распре-
делена на конечной системе лучей в верхней полуплоскости, то ее нижний порядок также
равен бесконечности.

1. In this paper we use the Fourier series method to study the properties of subharmonic
functions. This method was introduced by L. A. Rubel and B. A. Taylor ([1]). Further the
Fourier series method was used by J. B. Miles ([2]), A. A. Kondratyuk ([3, 4, 5]) and others.

Let v be a subharmonic function in the complex plane C, M(v, r) = max0≤θ≤2π v(reiθ).
The order and lower order of the function v are defined to be the values

β[γ] = lim
r→∞

lnM(v, r)

ln r
, α[γ] = lim

r→∞

lnM(v, r)

ln r
.

The order and lower order of an entire function f are defined as the order and lower order
of the subharmonic function ln |f |, respectively.

In [6] the author considered the entire functions which zeros lie on the finite system of
rays. In particular, it was proved that if f is an entire function of infinite order with positive
zeros then its lower order equals infinity as well. This result is easily generalized to the
subharmonic functions in the complex plane: if the Riesz measure of a subharmonic function
in the entire complex plane v of infinite order is located on a positive half-axis then its lower
order also equals infinity. We prove a similar result for functions which are subharmonic in
the half-plane. The special case, where the measure is distributed on the imaginary axis, was
considered in [7].

2. Let C+ = {z : Im z > 0} be the upper half-plane of the complex variable z. We denote by
C(a, r) the open disc of radius r with center at a, and by Ω+ the intersection of a set Ω with
the half-plane C+ : Ω+ = Ω ∩ C+; G means closure of a set G. If 0 < r1 < r2 then D+(r1, r2)
= C+(0, r2)\C+(0, r1) means a closed half-ring.
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Let SK be the class of subharmonic functions in C+ prossessing a positive harmonic
majorant in each bounded subdomain of C+. Functions v(z) from SK have the following
properties ([8]):

a) v(z) has non-tangential limits v(t) almost everywhere on the real axis and v(t) ∈
L1
loc(−∞,∞);

b) there exists a measure of variable sign ν on the real axis such that

lim
y→+0

∫ b

a

v(t+ iy)dt = ν([a, b])− 1

2
ν({a})− 1

2
ν({b}).

The measure ν is called the boundary measure of v;

c) dν(t) = v(t)dt + dσ(t), where σ is a singular measure with respect to the Lebesgue
measure.

For a function v ∈ SK, following [8], we define the full measure λ by setting

λ(K) = 2π

∫
C+∩K

Im ζdµ(ζ)− ν(K),

where µ is the Riesz measure of v.
A subharmonic in C+ function v is said to be proper subharmonic if lim supz→t v(z) ≤ 0

for all real numbers t ∈ R. Denote the class of proper subharmonic functions by JS. The
full measure of the function v ∈ JS is a positive measure, which explains the term “proper
subharmonic function”.

The class of delta-subharmonic functions Jδ is defined to be the difference Jδ = JS−JS.
For a function v ∈ Jδ the representation in a disc z ∈ C+(0, R) is well defined

v(z) = − 1

2π

∫∫
C+(0,R)

G(z, ζ)

Im ζ
dλ(ζ) +

R

2π

∫ π

0

∂G(z, Reiϕ)

∂τ
v(Reiϕ)dϕ, (1)

where G(z, ζ) is the Green function of the half-disc, ∂G
∂τ

means the derivative in the inward
normal direction, and the kernel of double integral is extended by continuity to the real axis
for |t| ≤ R.

For the measure λ denote λ(t) = λ(C(0, t)). Let v ∈ Jδ, v = v+ − v−, λ be the full
measure of v, λ = λ+ − λ− be the Jordan decomposition of measure λ. Let us introduce the
following characteristics of the function v

m(r, v) :=
1

r

∫ π

0

v+(reiϕ) sinϕdϕ, N(r, v, r0) :=

∫ r

r0

λ−(t)

t3
dt,

T (r, v, r0) := m(r, v) +N(r, v, r0) +m(r0,−v), r > r0,

where r0 is an arbitrary fixed positive number (one may as well take r0 = 1) which in
designations (if it does not cause a misunderstanding) we will not write (for example, instead
of T (r, v, r0) will write T (r, v) and so on).

Let λk(r) = λk(C(0, r)) where dλk(τe
iϕ) = sin kϕ

sinϕ
τ k−1dλ(τeiϕ), k ∈ N (the function

sin kϕ/ sinϕ is defined for ϕ = 0, π, by continuity).
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Note the Carleman’s formula in Grishin’s notation
1

rk

∫ π

0

v(reiϕ) sin kϕdϕ =

∫ r

r0

λk(t)

t2k+1
dt+

1

rk0

∫ π

0

v(r0e
iϕ) sin kϕdϕ, k ∈ N,

In particular for k = 1

1

r

∫ π

0

v(reiϕ) sinϕdϕ =

∫ r

r0

λ(t)

t3
dt+

1

r0

∫ π

0

v(r0e
iϕ) sinϕdϕ. (2)

Formula (2) can be written as
T (r, v) = T (r,−v). (3)

Definition 1. The order and lower order of a growth function γ are defined to be the values:

β[γ] = lim
r→∞

ln γ(r)

ln r
, α[γ] = lim

r→∞

ln γ(r)

ln r
.

Definition 2. The order and lower order of a function v ∈ Jδ are defined to be the values
β[rT (r, v)] and α[rT (r, v)].

The Fourier coefficients of a function v ∈ Jδ are defined by the formula ([9]) ck(r, v) =
2
π

∫ π
0
v(reiθ) sin kθdθ, k ∈ N.

Let λ be the full measure of v ∈ Jδ, then ([9])

ck(r, v) = αkr
k +

2rk

π

∫ r

r0

λk(t)

t2k+1
dt, k ∈ N, (4)

where αk = r−k0 ck(r0, v), and

ck(r, v) = αkr
k+

+
rk

πkr2k0

∫∫
C+(0,r0)

sin kϕ

Im ζ
τ kdλ(ζ) +

rk

πk

∫∫
D+(r0,r)

sin kϕ

τ k Im ζ
dλ(ζ)− 1

rkπk

∫∫
C+(0,r)

sin kϕ

Im ζ
τ kdλ(ζ), (5)

where ζ = τeiϕ.
By the definition of ck(r, v) one has |ck(r, v)| ≤ 2k

π

∫ π
0
|v(reiϕ)| sinϕdϕ, k ∈ N. Taking into

account (3) we obtain
rT (r, v) ≥ π

2k
|ck(r, v)|, k ∈ N. (6)

3. The main result of this paper is the following theorem.

Theorem 1. If v ∈ SK is a subharmonic function on C+ of infinite order with the full
measure λ on the finite system of rays Lk = {z : arg z = eiθk , θk = πpk

qk
}; k ∈ 1, N0;

pk, qk, N0 ∈ N; pk < qk; then its lower order equals infinity.

Proof. We assume that 0 /∈ supp v. By formulae (5) for Fourier coefficients of the function v
we obtain

cn(r, v) = αnr
n +

N0∑
k=1

rn sin(θkn)

πnr2n0

∫ r0

0

tn−1dλ(t)+

+

N0∑
k=1

rn sin(θkn)

πn

∫ r

r0

dλ(t)

tn+1
−

N0∑
k=1

sin(θkn)

rnπn

∫ r

0

tn−1dλ(t), n ∈ N.
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Assume r0 satisfies C(0, r0) /∈ supp v. Then we obtain

cn(r, v) = αnr
n +

N0∑
k=1

sin(θkn)

πn

∫ r

r0

1

t

[(r
t

)n
−
(
t

r

)n]
dλ(t), n ∈ N. (7)

Applying twice the integration by parts in (7), we obtain

cn(r, v) = αnr
n +

2

π

N0∑
k=1

sin(θkn)

(
Ñ(r) + rn

∫ r

r0

Ñ(r)

tn+1
dt

)
+

+
n− 1

π

N0∑
k=1

sin(θkn)

∫ r

r0

1

t

[(r
t

)n
−
(
t

r

)n]
Ñ(r)dt, n ∈ N,

(8)

where Ñ(r) =
∫ r
r0

λ(t)
t2
dt.

Denote by C =
∑N0

k=1 sin θk. It is clear that C > 0. From (8) with n = nl = 1+2l
∏N0

k=1 qk,
l ∈ N, we obtain

|cn(r, v)|
rn

≥ 2C

π

(Ñ(r)

rn
+

∫ r

r0

Ñ(r)

tn+1
dt
)
− |αn|, n ∈ N. (9)

If the function Ñ(r) has infinite order then the integral from the right hand side of the
latter inequality is unbounded as r → ∞ because

∫∞
r

Ñ(t)
tn+1dt ≥ Ñ(r)

nrn
, n ∈ N, and the right-

hand side of this inequality can be made arbitrarily large by a suitable choice of r. By this
inequality and inequality (6), from (9) we obtain the required statement.

If Ñ(r) has finite order then there exist positive numbers K > 0 and ρ > 0 such that
Ñ(r) ≤ Krρ for all r > 0. It is possible to consider non-integer ρ. Then

K2ρrρ ≥ Ñ(2r) ≥
∫ 2r

r

λ(t)

t2
dt ≥ λ(r)

∫ 2r

r

dt

t2
=
λ(r)

2r
,

i.e. λ(r) ≤ K2ρ+1rρ+1.
In this case one can deduce from [8] that there exists a function g ∈ JS of order ρ and

with full measure λ. Then G = v−g ∈ Jδ and λG ≡ 0. Further we need the following lemma.

Lemma 1. If G ∈ JS and λG ≡ 0, then G(z) = Im f(z), where f(z) is an entire real
function.

Proof. Remind [10] that an entire function is said to be real if f(R) ⊂ R.
As the full measure of the function G equals zero then from (1) it follows that for any

R > 0 G(z) = R
2π

∫ π
0

∂G(z,Reiϕ)
∂n

G(Reiϕ)dϕ, z ∈ C+(0, R).
The right-hand side is a harmonic function in the half-disc C+(0, R), which is extended

by the continuity as zero on the interval (−R,R). Since R is an arbitrary positive number,
the function G(z) is harmonic on the half-plane C+, which is extended by continuity as zero
on the real axis. By the symmetry principle, this function is extended as a harmonic function
to the bottom half-plane. Then there exists a harmonic function h(z) on the complex plane
such that f(R) = 0 and G(z) = h(z) for Im z > 0.

Let −h1(z) be a function which is harmoniously conjugated to the function h(z). Then
f(z) = h1(z) + ih(z) is an entire function, real on the real axis and h(z) = Im f(z).
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According to Lemma 1, G(z) = Im f(z), where f(z) is an entire real function f(z) =∑∞
n=0 anz

n. If only a finite number an 6= 0, then f(z) is a polynomial, hence G and v have
a finite order, which contradicts the assumption.

As cn(r,G) = anr
n, n ∈ N, the inequality

rT (r, v) ≥ rT (r,G)− rT (r, g) ≥ π

2n

∣∣cn(r,G)
∣∣+O(rρ) ≥ 1

2

∣∣an∣∣rn +O(rρ), r →∞, n ∈ N,

implies that α[rT (r, v)] =∞.
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