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We find natural sufficient conditions on a subset D of a vector lattice E under which every
orthogonally additive operator T0 : D → X, where X is a vector space, can be extended to an
orthogonally additive operator T : E → X. Two theorems on the extension from lateral ideals
and lateral bands, respectively, are obtained.

А. В. Гуменчук, М. А. Плиев, М. М. Попов. Продолжения ортогонально аддитивных
операторов // Мат. Студiї. – 2014. – Т.41, №2. – C.214–219.

Устанавливаются естественные достаточные условия на подмножествоD векторной ре-
шетки E, при которых каждый ортогонально аддитивный оператор T0 : D → X, где X —
линейное пространство, продолжается до ортогонально аддитивного оператора T : E → X.
Доказаны две теоремы о продолжении с латерального идеала и латеральной полосы, со-
ответственно.

1. Introduction. Orthogonally additive operators (OAOs, in short) natural generalize li-
near operators acting from some general structure to a linear space (see, for instance, [12]).
An essential contribution to OAOs on vector lattices were made by Mazón and Segura de
León in [6] and [7]. OAOs defined on lattice normed spaces was studied in [4], [5], [10] and
on spaces with a mixed norm in [9]. Some known results on narrow linear operators were
generalized to OAOs in [11], and new results for both linear and OAOs were obtained in [8].
A new approach to the study of OAOs was recently proposed in [2] based on the lateral
order on vector lattices.

The present paper is devoted to a study of extensions of OAOs from reasonable subsets
to entire vector lattice.

1.1. Preliminaries on orthogonally additive operators. We use the standard termi-
nology and notation on vector lattices as in [1]. Let E be a vector lattice (which is assumed
to be Archimedean). For elements x, y the notation x v y means that x is a fragment of y,
that is, x ⊥ (y − x). The relation v is a partial order on E. By Fx we denote the initial
closed segment with respect to this partial order by an element x ∈ E, that is, the set of all
fragments of x.

Definition 1. Let E be a vector lattice and X a vector space. A function T : E → X is
called an OAO if for every x, y ∈ E the relation x ⊥ y implies T (x+ y) = T (x) + T (y).
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Observe that the composition of OAOs need not be an OAO. More precisely, if T : E → F
is an OAO between vector lattices and S : F → X is an OAO, where X is a vector space
then the composition S ◦ T : E → X may fail to be an OAO, even for a linear T . Indeed,
consider the linear operator T : L1[0, 1]→ L1[0, 1] defined by

T (x) =
(∫

[0,1]

x dµ
)
· 1[0,1]

for all x ∈ L1[0, 1], where 1A denotes the characteristic function of a set A ⊆ [0, 1]. Next
consider the OAO S : L1[0, 1]→ L1[0, 1] defined by S(x) = µ(suppx)·1[0,1] for all x ∈ L1[0, 1].
Then the composition S ◦ T : L1[0, 1]→ L1[0, 1] is not an OAO, because 1[0, 1

2
) ⊥ 1[ 1

2
,1] and

S ◦ T (1[0, 1
2
) + 1[ 1

2
,1]) = S ◦ T (1[0,1]) = 1[0,1],

however
S ◦ T (1[0, 1

2
)) + S ◦ T (1[ 1

2
,1]) = 1[0,1] + 1[0,1] = 2 · 1[0,1].

If, in addition, an OAO T preserves disjointness then obviously S ◦ T is an OAO for
every OAO S such that the composition is well defined (a function T : E → F between vector
lattices E,F is said to be disjointness preserving if for all x, y ∈ E with x ⊥ y one has that
T (x) ⊥ T (y).

An OAO T : E → F between vector lattices E,F is said to be positive provided T (x) ≥ 0
for all x ∈ E. Remark that the notion of positivity for OAOs is completely different from
the notion of positivity for linear operators (it would be much more wise if linear positive
operators were called monotone operators). Indeed, the only linear operator which is positive
in the sense of positivity for OAOs is zero. To avoid misunderstandings, we write T : E → F+

to introduce a positive OAO T : E → F .
Let E be a vector lattice. Following [2], the partial order v on E is called the lateral

order on E. A subset G ⊆ E is said to be laterally bounded in E if G ⊆ Fx for some
x ∈ E. We do not mention here “from above” because every subset is automatically laterally
bounded from below by zero. The lateral supremum and infimum are defined as usual in
a partially ordered set, using the order v on E. Given a nonempty subset G ⊆ E, the v-
supremum and the v-infimum of G in E we denote by

⋃⋃⋃
G and

⋂⋂⋂
G respectively. We also

use the notation x∪∪∪y instead of
⋃⋃⋃
{x, y},

⋃⋃⋃
m
k=1xk instead of

⋃⋃⋃
{x1, . . . , xm}, and similarly for

infimums using the symbols ∩∩∩ and
⋂⋂⋂
. This notation is natural due to the following reasons.

Firstly, if we deal with a function lattice then the graph of the lateral supremum equals the
union of the graphs, in their nonzero parts. Secondly, given an element e of a vector lattice
E, the set Fe of all fragments of e is a Boolean algebra with respect to the lateral order ([1,
Theorem 3.15]). Then by Stone’s representation theorem ([3, Theorem 7.11]), Fe is Boolean
isomorphic to an algebra of subsets of some set. Such a Boolean isomorphism sends the
lateral supremum to the union, and the lateral infimum to the intersection. To distinguish
the lateral supremum from the set-theoretical union, the reader just has to check whether
the symbol concerns elements or sets of elements of a vector lattice. Another thing which
differs the lateral supremum from the set-theoretical union is the bold style

⋃⋃⋃
for lateral

suprema against the usual style
⋃

for unions, and the same with
⋂⋂⋂

and
⋂
.

For a laterally bounded subset G of E the lateral supremum and infimum are reduced
to the usual ones as follows. Set G+ = {f+ : f ∈ G} and G− = {f− : f ∈ G}. Then⋃⋃⋃
G = supG+ − supG− and

⋂⋂⋂
G = inf G+ − inf G− with simultaneous existence of the left
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and right hand sides of the equalities (in particular, they all exist if E is Dedeking complete),
see [2]. Although any two-point subset {x, y} ⊆ E is laterally bounded from below by zero, it
need not have the lateral infimum x∩∩∩y. However, if E has the principal projection property,
then x∩∩∩ y exists for any x, y ∈ E. If for given x, y ∈ E the lateral infimum x∩∩∩ y exists, we
define the difference x \\\ y by setting x \\\ y = x − (x ∩∩∩ y). In particular, the set-theoretical
difference x\\\ y is well defined for every elements x, y of a vector lattice with the intersection
property (e.g., of a vector lattice with the principal projection property).

It is interesting to note that, for any vector lattices E,F an OAO T : E → F is laterally
monotone (that is, for all x, y ∈ E the lateral inequality x v y implies T (x) v T (y)) if and
only if T preserves disjointness.

Definition 2. A nonempty subset G of a vector lattice E is called:

• finitely laterally closed if for every laterally bounded two-point subset {x, y} of E the
condition {x, y} ⊆ G implies x∪∪∪ y ∈ G;

• a lateral field if it is finitely laterally closed, and for every two-point subset {x, y} of G
the existence of x∩∩∩ y implies x∩∩∩ y ∈ G and x \\\ y ∈ G;

• laterally solid if for each x ∈ P and y ∈ G the relation x v y implies x ∈ G;

• a lateral ideal if it is laterally solid and finitely laterally closed;

• laterally closed if for each subset G1 ⊆ G the existence of f =
⋃⋃⋃
G1 in E implies that

f ∈ G;

• a lateral band if it is laterally solid and laterally closed.

It is immediate that a lateral band is a lateral ideal, and a lateral ideal is a lateral field,
but the converse assertions are not true. It is a technical exercise to check that the kernel of
a positive OAO is a lateral ideal (see [2] for the details).

Following [6], a net (xα) in a vector lattice laterally converges to an element x ∈ E if
xα v xβ v x for all indices α ≤ β and (xα) order converges to x. In this case we write
xα

lat−→ x. Obviously, xα
lat−→ x holds if and only if (xα) is laterally increasing and

⋃⋃⋃
α xα = x.

A function f : E → F between vector lattices is called laterally continuous at a point x ∈ E
if for every net (xα) in E with xα

lat−→ x in E one has f(xα)
lat−→ f(x) in F . f is said to be

laterally continuous provided f is laterally continuous at every point x ∈ E.

1.2. From what sets to extend? One can consider an OAO defined on an arbitrary subset
of a vector lattice. More precisely, let E be a vector lattice, X a vector space and D ⊆ E.
A function T : D → X is called an OAO if for any x, y ∈ D with x ⊥ y and x + y ∈ D one
has T (x+ y) = T (x) + T (y).

Observe that the very general extension problem of whether every OAO defined on
an arbitrary subset D of a vector lattice E has an extension to an OAO on E, has a negative
answer, even for “good lattices” E. Indeed, let E denote the vector lattice R5 with the usual
coordinate-wise order. Denote by e1, . . . , e5 be the unit vector basis of E. Let D consists
of all sums

∑
k∈A ek over three-point subsets A ⊂ {1, . . . , 5}. Since D consists of C3

5 = 10
elements, the set F of all functions T : D → R is a 10-dimensional vector space with respect
to the coordinate-wise operations. Since D contains no orthogonal elements, every element
of F is an OAO. On the other hand, the set of all OAOs defined on the set Fe of all fragments
of e = e1 + . . . + e5 is a 5-dimensional vector space. Hence, not every OAO defined on D
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can be extended to an OAO on E. Clearly, such an example exists for every vector lattice E
with dimE ≥ 5.

Next is the main question which motivates our investigation.

Problem 1. Let E be a vector lattice and X a vector space. For what subsets D of E every
OAO T0 : D → X can be extended to an OAO T : E → X?

Our results here concern extensions from lateral fields, lateral ideals and lateral bands.

2. Extensions from lateral ideals. Recall that an order bounded OAO T : E → F between
vector lattices E and F is called an abstract Uryson operator. The set of all abstract Uryson
operators from E to F is denoted by U(E,F ). Remark that U(E,F ) is an ordered vector
space with respect to the point-wise order. Moreover, if F is Dedekind complete then U(E,F )
is a Dedekind complete vector lattice ([6]). The following theorem concerns extensions of
positive abstract Uryson operators.

Theorem 1. Let E,F be vector lattices with F Dedekind complete, D a lateral ideal in E
and T0 : D → F+ an OAO so that T0(D) is an order bounded set in F . Then there exists
T ∈ U+(E,F ) which extends T0.

Proof. Define a map T : E → F by setting T (x) = supT0(D ∩ Fx) for every x ∈ E. We
show that T is a positive abstract Uryson operator from E to F . Fix any elements x, y ∈ E
with x⊥y. Then for each f ∈ D ∩ Fx+y, by the Riesz decomposition property, there exist
f1, f2 ∈ E such that f1 + f2 = f , f1 v x and f2 v y. Since D is a lateral ideal, f1, f2 ∈ D.
Thus,

T0(f) = T0(f1 + f2) = T0(f1) + T0(f2) ≤ T (x) + T (y).

By the arbitrariness of f ∈ D ∩ Fx+y,

T (x+ y) ≤ T (x) + T (y).

On the other hand, if f1 ∈ D ∩ Fx and f2 ∈ D ∩ Fy then f1 + f2 ∈ D ∩ Fx+y. Therefore,

T0(f1) + T0(f2) = T0(f1 + f2) ≤ sup(D ∩ Fx+y) = T (x+ y).

Passing to the supremum first over f1 ∈ D ∩ Fx and then over f2 ∈ D ∩ Fy, one gets

T (x) + T (y) ≤ T (x+ y).

So, T : E → F is an OAO. If x ∈ D then D∩Fx = Fx by the definition of a lateral ideal and
hence, T (x) = supT0(Fx) = T0(x) by the positivity and orthogonal additivity of T0. So, T is
an extension of T0. Since T0(D) is order bounded in F , we have that T ∈ U+(E,F ).

3. Extensions from lateral bands.

Theorem 2. Let E,F be vector lattices with E Dedekind complete, E0 a lateral band of E
and T0 : E0 → F an OAO. Then there is an OAO extension T : E → F of T0. If, moreover,
T0 is positive (laterally bounded, preserves disjointness or laterally continuous) then so is T .

Theorem 2 is a consequence of the following result.
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Theorem 3. Let E0 be a lateral band of a Dedeking complete vector lattice E. Then the
function PE0 : E → E defined by setting for every x ∈ E

PE0(x) =
⋃⋃⋃

(Fx ∩ E0),

is a disjointness preserving laterally continuous projection of E onto E0.

Proof of Theorem 3. Since the set Fx ∩ E0 is laterally bounded by x and E is Dedekind
complete, the function is well defined. It is immediate that PE0 preserves disjointness. Given
any x ∈ E0, one has Fx ∩ E0 = Fx and hence PE0(x) = x.

Assume PE0(x) = x. Since the lateral supremum of the set Fx ∩E0 is x, there is a net in
Fx ∩ E0 laterally converging to x. And since E0 is laterally closed, x ∈ Fx ∩ E0 and hence
x ∈ E0.

It remains to prove the lateral continuity of PE0 . Fix any x ∈ E and assume (xα) is a net
in E with xα

lat−→ x. Our goal is to prove that PE0(xα)
lat−→ PE0(x), that is,⋃⋃⋃

α PE0(xα) = PE0(x).

Observe that if x ∈ E0 then xα ∈ E0, and by the above,

PE0(xα) = xα
lat−→ x = PE0(x).

So, assume now x /∈ E0. First we obtain an upper lateral estimate⋃⋃⋃
α

PE0(xα) =
⋃⋃⋃
α

⋃⋃⋃
(Fxα ∩ E0) =

⋃⋃⋃{
z ∈ E0 : (∃α)(∃y v xα) (z v y)

}
. (1)

Since{
z ∈ E0 : (∃α)(∃y v xα) (z v y)

}
⊆
{
z ∈ E0 : (∃y v x) (z v y)

}
= Fx ∩ E0,

we can continue (1) as follows

v
⋃⋃⋃

(Fx ∩ E0) = PE0(x).

To prove the lower lateral estimate, fix any y ∈ Fx ∩ E0. Then

y = x∩∩∩ y =
⋃⋃⋃
α

(xα ∩ y) v
⋃⋃⋃
α

PE0(xα).

Passing to the supremum over y, we obtain PE0(x) v
⋃⋃⋃
α PE0(xα).

Proof of Theorem 2. Obviously, the composition operator T = T0 ◦ PE0 of the lateral band
projection PE0 by T0 possesses the desired properties.

Problem 2. Let F be a lateral field in a vector lattice E, X a linear space. Whether every
OAO T0 : F → X can be extended to an OAO T : E → X?
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