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Let K ∈ N,K ≥ 3. Let CK = RK
0 be the Cartesian product of K copies of R0, where R0

denotes the set of all nonnegative real numbers. We equip this set with arithmetic operations
and show that under the condition of the so-called Cancelation Law, the space CK is arith-
metically isomorphic with the standard field C of complex numbers. Distinct K ∈ N determine
distinct lexicographical orderings on C.

Т. Грегор, Я. Галушка. Лексикографический порядок и операции поля на комплексной
площади // Мат. Студiї. – 2014. – Т.41, №2. – C.123–133.

Пусть K ∈ N,K ≥ 3. Пусть CK = RK
0 является декартовым произведением K ко-

пий множества R0, где R0 — множество всех неотрицательных вещественных чисел. Мы
снабдим это множество арифметическими операциями и покажем, что при условии так
называемого “сокращающего закона”, пространство CK арифметически изоморфно стан-
дартному полю C комплексных чисел. Разные K ∈ N определяют разные лексикографи-
ческие порядки на C.

1. Introduction. Concerning terminology. We use mixed algebraic-geometrical-analytical
terminology similarly as it is commonly accepted in the books on analytical geometry. We
hope this will not lead to any misunderstanding or ambiguity. For instance, we use terms:
“point — vector — number” or “line — real numbers”, etc., as synonyms and the using of
a term depends on the situation, where it is the most apt for the best understanding or
illumination.

Let R0 = (0,∞) ∪ {0} = [0,∞) be the real half-line with all structures heredited from
the real line R. The set R0 will be considered as the non-polar, or equivalently, the 1-polar
set of objects. We speak about elements of R0 also as about the absolute values.

The standard geometrical model of the set of all real numbers R is a line. Among many
constructions, R can be described starting with two distinct points. We model the system
of (standard) complex numbers C as a plane starting with three points not lying on a line.
In the following sections we give this construction for which the three points are apexes of
an equally sided triangle, hence we call this structure to be the 3-polar complex plane. Then
we generalize the construction of the 3-polar complex plane from triangle to the K-equally
sided planar polygon, where K is an arbitrary natural number K ≥ 3. Thus we obtain the
K-polar representations CK of the field C. All these representations CK (and the set C) are
isomorphic concerning to arithmetic operations of addition, subtraction, multiplication, and
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division. In other words, each given complex number a+ bi ∈ C can be written in the same
time as a sequence of K-tuples of non-negative numbers, K ≥ 3, i.e., a+bi = (x′1, x

′
2, x
′
3)C3 =

(x′′1, x
′′
2, x

′′
3, x

′′
4)C4 = (x′′′1 , x

′′′
2 , x

′′′
3 , x

′′′
4 , x

′′′
5 )C5 = . . . for suitable x-s in R0. However stress this

already in the introduction, that these K-tuples are representatives of classes of equivalence
with a congruence given with the so-called Cancellation law.

The crucial fact for construction of CK , K ∈ N, K ≥ 3 is that R0 is a semi-field with
zero. A semi-field X is an algebraic structure with binary operations of addition (+) and
multiplication (·), where (X,+) is a commutative semi group, (X, ·, 1) is a multiplicative
group with the unit 1, and multiplication is distributive with respect to addition from both
sides. An ordered (semi) field is a (semi) field together with a total ordering ≤ of its elements
that is compatible with the (semi) field operations, i.e., for a, b, c ∈ X,

(i) if a ≤ b then a+ c ≤ b+ c, and

(ii) if 0 ≤ a and b ≤ c then a · b ≤ a · c.
The spaces CK are lexicographically ordered. The lexicographical ordering of K-tuples is
defined as usually. For a review of semi-fields, c.f. ([4]).

2. A tripolar complex space C3.
2.1. The algebra of polar operators (poles). Let K = [1, 2, . . . , K] be a sequence of
indexes. In Sections 2, 3, and 4, K = 3. Let AK = [A

(k)
K | k ∈ K] be a sequence of three

points creating an equal-sided triangle. We introduce three operations on the set AK .
(a) Nullary operation. We put I = A

(1)
K .

(b) Orbit. AK contains the cycled monounary function (a cycled orbit):

τ : A
(1)
K → A

(2)
K → A

(3)
K → A

(1)
K .

(c) ⊗-multiplication. The binary operation is defined by the following Latin square table.

⊗ A
(1)
K A

(2)
K A

(3)
K

A
(1)
K A

(1)
K A

(2)
K A

(3)
K

A
(2)
K A

(2)
K A

(3)
K A

(1)
K

A
(3)
K A

(3)
K A

(1)
K A

(2)
K

This way the set of poles becomes an algebra, we write (AK , I, τ,⊗), or simply AK .
Remark that (A, τ) is a monounary algebra called a 3-element cycle, cf., e.g., ([1]).

In subsection 2.4 we will extend these structures to the whole plane Π.

Remark 1. No addition-like operation is defined on AK .

We have introduced the algebra AK of poles, a structure over three given points. We “fill
in the rest territory” of the plane Π with the help of (a) polarized elements, and (b) operation
of addition, i.e. via linear-like envelope [the notion “linear envelope” is not suitable since we
are dealing with the semi-field R0 which is not a vector space (field)].

2.2. Polarized elements.

Definition 1. Denote by θ the center of gravity of the triangle [A1
K , A

2
K , A

3
K ]. We say that

the point z ∈ Π, z 6= θ, is A(k)
K -polarized, k ∈ K, if the points: {θ, z, A(k)

K }, lie on a half line
with θ as the first point. We write this z = A

(k)
K (x), where x ∈ R0 is an absolute value
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measuring the length from the point z to θ. The length x of the point z = A
(k)
K is one (the

unit length) for every k ∈ K. For every k ∈ K, we put A(k)
K (0) = θ and θ ∈ Π is a non-polar

element.
In other words, z is A(k)

K -polarized, if there exists x ∈ R0 \ {0} such that z = A
(k)
K (x) =

x · A(k)
K (1) = x · A(k)

K , k ∈ K.

Note that A(k)
K in A(k)

K (x) is mentioned as an operator (=sign) applied to a non-negative
number while, in the expression x ·A(k)

K , we have the multiplication of a non-negative number
and the complex number.

Remark 2. In the case of the real line(K = 2), the algebra of poles is very simple τ : A
(1)
K →

A
(2)
K → A

(1)
K ,

⊗ A
(1)
K A

(2)
K

A
(1)
K A

(1)
K A

(2)
K

A
(2)
K A

(2)
K A

(1)
K .

Instead of A(1)
2 and A

(2)
2 , we use the terms (+) and (−), respectively, and speak about

bipolarity. So, the poles in the cases K ≥ 3 could be called and understand also to be
“generalized signs.”

2.3. Addition in Π. Let A(1)
K (R0) = I(R0) ⊂ C denote the image of R0 under its natural

embedding, i.e. A(1)
K (R0) = {x + iy ∈ C | x ∈ R0, y = 0}. Therefore, every z = a + bi ∈ C,

z 6= 0, can be represented as a sum of 3-polarized elements (vectors) in the form (and vice
versa):

z = a+ bi = xAK
= A

(1)
K (x1) + A

(2)
K (x2) + A

(3)
K (x3) =

∑
k∈K

A
(k)
K (xk), (1)

where a, b ∈ R, i is the imaginary unit; xAK
= (x1, x2, x3)AK

∈ R3
0 is the vector of three

projections (three 3-polar coordinates) of the point z along the three half-lines given with
the origin point and the second points are (1, 0), (−1

2
,
√
3
2

), and (−1
2
,−
√
3
2

).
The addition of elements in C3 is defined coordinatewisely, x ⊕ y = A

(1)
K (x1 + y1) +

A
(2)
K (x2 + y2) + A

(3)
K (x3 + y3).

2.4. Extension of the algebra of poles to the whole plane. For every z ∈ Π,
(a) Iz = A

(1)
K z = z.

(b) The orbit functions can be depicted as the 0, 2π/3, and 4π/3 radian anti-clockwise
rotations of any element z ∈ Π around the centre of gravity of our equally-sided triangle,
respectively.

Knowing the elementary properties of complex numbers, rotations A(1)
K , A(2)

K , and A(3)
K are

equivalently nothing else than the multiplications of any complex number z ∈ C by complex
numbers (1, 0), (−1

2
,
√
3
2

), and (−1
2
,−
√
3
2

), respectively.
(c) For every i, j ∈ K,

(A
(i)
K ⊗ A

(j)
K )(z) := A

(i)
K [A

(j)
K (z)].

This way, we extended the acting of the the algebra (AK , I, τ,⊗) from the set of three
points to the whole plane Π, we write (AK ,R0, I, τ,⊗,⊕). We preserve for the new algebra
the same short denotation, AK . Our following aim will be to introduce the subtraction and
division on this algebra isomorphically satisfying the usual properties of the complex field.
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3. The 3-cancelation law, classes of equivalence. Instead of the numbers we will deal
with classes of equivalences. As the congruence we will use the so-called 3-cancelation law.
The 3-cancelation law enables us to introduce all field (arithmetic) operations (addition,
subtraction, multiplication, and division), c.f. Section 4.

Definition 2. (The 3-cancelation law) For every z ∈ Π, A(1)
K z + A

(2)
K z + A

(3)
K z = θ =

(0, 0, 0).

According to the 3-cancelation law, the triple of coordinates (x1, x2, x3) ∈ R3
0 is ambiguous

in (1) since for any arbitrary y ∈ R0,
∑

k∈KA
(k)
K (xk + y) =

∑
k∈KA

(k)
K xk. To make represen-

tation of elements in (1) and operations with them unique, it is needed the 3-cancellation
law. In short, we are working with classes of equivalences (representatives of these classes).
The congruence is given with the 3-cancellation law.

In short, we are working with classes of equivalences (representatives of these classes).
The congruence is given with the 3-cancelation law.

Lemma 1. If the 3-cancelation law holds, then the results of the operations of addition and
multiplication over theses equivalence classes does not depend on the choice of representatives
of the equivalence classes.

Remark 3. The lemma holds also for subtraction and division.

Proof. Let x1, x2, x3 ∈ R0, a, b, c ∈ R0.
Then

A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3 = A

(1)
K (x1 + a) + A

(2)
K (x2 + a) + A

(3)
K (x3 + a) =

= [A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3]⊕ [A

(1)
K a+ A

(2)
K a+ A

(3)
K a].

Also,

[A
(1)
K (x1 + a) + A

(2)
K (x2 + a) + A

(3)
K (x3 + a)]⊕ [A

(1)
K (y1 + b) + A

(2)
K (y2 + b) + A

(3)
K (y3 + b)] =

= A
(1)
K (x1 + y1 + c) + A

(2)
K (x1 + y2 + c) + A

(3)
K (x1 + y3 + b).

For the multiplication,

[A
(1)
K (x1 + a) + A

(2)
K (x2 + a) + A

(3)
K (x3 + a)]� [A

(1)
K (y1 + b) + A

(2)
K (y2 + b) + A

(3)
K (y3 + b)] =

= [A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3]� [A

(1)
K y1 + A

(2)
K y2 + A

(3)
K y3].

3.1. The bijection between the standard C and C3. In this section we prove the
existence of a bijection between the standard C and C3 of equivalence classes with the
3-cancellation law. We choose representatives of equivalence classes with the condition that
at least one 3-polar coordinate is equal to zero.

The 3-polarity axes be given with vectors A(1)
K = (1, 0), A(2)

K = (−1
2
,+
√
3
2

), and A
(3)
K =

(−1
2
,−
√
3
2

), i.e.

z = (1, 0)x1 +
(
− 1

2
,+

√
3

2

)
x2 +

(
− 1

2
,−
√

3

2

)
x3 = (x1, x2, x3)AK

.

Let us split the complex plane C into three parts:

P1 = {(a, b) ∈ C | (a, b) = (0, x2, x3)AK
, x2 > 0, x3 ≥ 0},
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P2 = {(a, b) ∈ C | (a, b) = (x1, 0, x3)AK
, x3 > 0, x1 ≥ 0},

P3 = {(a, b) ∈ C | (a, b) = (x1, x2, 0)AK
, x1 > 0, x2 ≥ 0}.

Here P1, P2, P3 are written when z ∈ C are expressed in the trigonometric form:

P3 = {(x, ϕ) ∈ C | (x, ϕ) = (x1, ϕ), ϕ ∈ [0, 2π/3)},
P1 = {(x, ϕ) ∈ C | (x, ϕ) = (x2, ϕ), ϕ ∈ [2π/3, 4π/3)},

P2 = {(x, ϕ) ∈ C | (x, ϕ) = (x3, ϕ), ϕ ∈ [4π/3, 6π/3 = 2π)}.

(A) Direction (a+ bi)→ (x1, x2, x3)AK
.

After doing some exercises in the elementary analytical geometry, we obtain the following
explicit expressions between the standard algebraic and the 3-polarity vector representation
(1) of a number (a, b) ∈ C:
• if z = (a, b) ∈ P1, then

xAK
= A

(2)
K

∣∣∣(a
2
− b

2
√

3
,
b

2
− a
√

3

2

)∣∣∣+ A
(3)
K

∣∣∣(a
2

+
b

2
√

3
,
b

2
+
a
√

3

2

)∣∣∣ =

= A
(2)
K

(
− a+

b√
3

)
+ A

(3)
K

(
− a− b√

3

)
;

• if z = (a, b) ∈ P2, then

xAK
= A

(1)
K

∣∣∣(a− b√
3
, 0
)∣∣∣+ A

(3)
K

∣∣∣( b√
3
, b
)∣∣∣ = A

(1)
K

(
a− b√

3

)
+ A

(3)
K

(
− 2b√

3

)
;

• if z = (a, b) ∈ P3, then

xAK
= A

(1)
K

∣∣∣(a+
b√
3
, 0
)∣∣∣+ A

(2)
K

∣∣∣(− b√
3
, b
)∣∣∣ = A

(1)
K

(
a+

b√
3

)
+ A

(2)
K

( 2b√
3

)
.

where within the absolute value signs, there are projection points of (a, b) to the corre-
sponding coordinate 3-polarity coordinate axes described above.
(B) Direction (x1, x2, x3)AK

→ (a+ bi).

(x1, x2, x3)AK
= (1, 0)x1+

(
− 1

2
,

√
3

2

)
x2+

(
− 1

2
,−
√

3

2

)
x3 =

(
x1−

1

2
x2−

1

2
x3,

√
3

2
x2−
√

3

2
x3

)
.

4. Operations in C3 in detail. Again, in addition to the 3-cancelation law, we suppose
that at least one of the 3-polar coordinates is zero.

4.1. Addition ⊕. This operation is coordinate-wise like in Euclidean spaces. We define

xAK
⊕ yAK

= (A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3)⊕ (A

(1)
K y1 + A

(2)
K y2 + A

(3)
K y3) :=

:= A
(1)
K (x1 + y2) + A

(2)
K (x2 + y2) + A

(3)
K (x3 + y3),

where xAK
= (x1, x2, x3)AK

;x1, x2, x3 ∈ R0; yAK
= (y1, y2, y3)AK

; y1, y2, y3 ∈ R0.

4.2. Subtraction 	. For every x ∈ R0 we have by the 3-cancelation law

−A(1)
K x = A

(2)
K x+ A

(3)
K x, −A(2)

K x = A
(1)
K x+ A

(3)
K x, −A(3)

K x = A
(1)
K x+ A

(2)
K x.
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We define the operation of subtraction in C3 as follows:

(A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3)	 (A

(1)
K y1 + A

(2)
K y2 + A

(3)
K y3) :=

:= (A
(1)
K x1 + A

(2)
K x2 + A

(3)
K x3)⊕ (A

(2)
K y1 + A

(3)
K y1)⊕ (A

(1)
K y2 + A

(3)
K y2)⊕ (A

(1)
K y3 + A

(2)
K y3) =

= A
(1)
K (x1 + y2 + y3) + A

(2)
K (x2 + y1 + y3) + A

(3)
K (x3 + y1 + y2).

4.3. Multiplication �. This operation of multiplication on C3 is defined in accordance with
both the table of the operation ⊗ for the algebra AK of polarities, and the multiplication
in R0. Namely,

xAK
� yAK

=
(∑
i∈K

A
(i)
K xi

)
�
(∑
j∈K

A
(j)
K yj

)
:=
∑
i∈K

∑
j∈K

[
A

(i)
K ⊗ A

(j)
K

]
(xi · yj),

where A(i)
K , A

(j)
K ∈ AK ;xi, xj = R0; i, j ∈ K. Taking into the account the distributive law, we

can say that the behavior of the multiplication xAK
⊗ yAK

is “polynomial-like.”
As a particular case we pick out the multiplication of elements a ∈ R0 by xAK

a� xAK
= (A(1)a) ·

(∑
k∈K

A
(k)
K xk

)
=
∑
k∈K

A
(k)
K (a · xk).

4.4. Conjugation ∗. The unary operation of conjugation enables us to introduce the ope-
ration of division on Let x = A

(1)
K x1 + A

(2)
K x2 + A

(3)
K x3, where (x1, x2, x3) ∈ R3

0. We define
x∗ := A

(1)
K x1 + A

(2)
K x3 + A

(3)
K x2.

Lemma 2. Let x = A
(1)
K x1+A

(2)
K x2+A

(3)
K x3, (x1, x2, x3) ∈ R3

0. Let y = A
(1)
K y1+A

(2)
K y2+A

(3)
K y3,

(y1, y2, y3) ∈ R3
0. Then

1. (x∗)∗ = x,

2. (x⊕ y)∗ = x∗ ⊕ y∗,

3. (x� y)∗ = x∗ � y∗,

4. y � y∗ = A
(1)
K

[
(y1−y2)2+(y1−y3)2+(y2−y3)2

2

]
.

Proof. The proofs of items 1, 2, 3 are exercises in algebra, we let them to the reader. Prove the
last statement 4. Suppose without loss of generality that y1 ≥ y2 ≥ y3 (the other possibilities
can be proved similarly). We have

yAK
� (A

(1)
K y1 + A

(2)
K y3 + A

(3)
K y2) = (A

(1)
K y1 + A

(2)
K y2 + A

(3)
K y3)� (A

(1)
K y1 + A

(2)
K y3 + A

(3)
K y2) =

using the multiplication table and the distributive law, we obtain after some elementary
calculation

= A
(1)
K (y21 + y22 + y23) + A

(2)
K (y1y2 + y1y3 + y2y3) + A

(3)
K (y1y2 + y1y3 + y2y3).

If
0 ≤ y21 + y22 + y23 − y1y2 − y2y3 − y3y1, (2)

then by the cancellation law,

yAK
� (A

(1)
K y1 + A

(2)
K y3 + A

(3)
K y2) = A

(1)
K

[
(y21 + y22 + y23)− (y1y2 + y1y3 + y2y3)

]
.
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Indeed,

y21 + y22 + y23 − y1y2 − y2y3 − y3y1 =

=

(
1

2
y21 − y1y2 +

1

2
y22

)
+

(
1

2
y21 − y1y3 +

1

2
y23

)
+

(
1

2
y22 − y2y3 +

1

2
y23

)
=

=
1

2

[
(y1 − y2)2 + (y1 − y3)2 + (y2 − y3)2

]
∈ R0. (3)

4.5. Division �. Let xAK
∈ C3,yAK

∈ C3,xAK
6= θ. Division is defined by xAK

� yAK
:=

(xAK
� A(1)

K (1))� yAK
= xAK

� (A
(1)
K (1)� yAK

). We find this element.

Theorem 1. Let yAK
= A

(1)
K y1 + A

(2)
K y2 + A

(3)
K y3 6= (0, 0, 0). Then

(A
(1)
K (1)� yAK

) =
y∗AK

yAK
� y∗AK

=
A

(1)
K y1 + A

(2)
K y3 + A

(3)
K y2

y21 + y22 + y23 − y1y2 − y2y3 − y3y1
.

Proof. Applying the point 4. of the previous lemma, we obtain the assertion.
The condition yAK

6= (0, 0, 0)AK
means that one of the elements y1, y2, y3 is positive, what

is equivalent to the condition y21+y22+y23 > 0. The equality y21+y22+y23−y1y2−y2y3−y3y1 = 0 is
possible if and only if y1 = y2 = y3. Using the cancelation law, we obtain that yAK

= (0, 0, 0),
which is in the contradiction with the assumption yAK

6= (0, 0, 0)AK
.

Definition 3. Let the plane Π be equipped with the operation of addition and multiplication
as above. The system of all equivalence classes (A3,R0, I, τ,⊕,�) with the congruence given
with the 3-cancellation law is called the 3-polar complex plane, we write C3.

Theorem 2. For elements (a, b) → (x1, x2, x3) ∈ C3, (c, d) → (y1, y2, y3) ∈ C3, where
(a, b) ∈ C, (c, d) ∈ C, there is an isomorphism (C, ·)→ (C3,�) : (a, b)·(c, d)→ (x1, x2, x3)A3�
(y1, y2, y3)A3 .

Proof. Let (a, b) ∈ P3, (c, d) ∈ P3 and (a, b) = (x1, x2, x3) ∈ C3, (c, d) = (y1, y2, y3) ∈ C3. We
have

(x1, x2, x3)AK
� (y1, y2, y3)AK

=

=
[
A

(1)
K

(
a+

b√
3

)
+ A

(2)
K

( 2b√
3

)]
·
[
A

(1)
K

(
c+

d√
3

)
+ A

(2)
K

( 2d√
3

)]
=

= A
(1)
K ⊗ A

(1)
K

(
a+

b√
3

)(
c+

d√
3

)
+ A

(1)
K ⊗ A

(2)
K

(
a+

b√
3

)( 2d√
3

)
+

+A
(2)
K ⊗ A

(1)
K

( 2b√
3

)(
c+

d√
3

)
+ A

(2)
K ⊗ A

(2)
K

( 2b√
3

)( 2d√
3

)
=

= A
(1)
K

(
ac+

cb√
3

+
ad√

3
+

bd
√

3
2

)
+ A

(2)
K

(2ad√
3

+
2bd
√

3
2 +

2bc√
3

+
2bd
√

3
2

)
+

+A
(3)
K

( 4bd
√

3
2

)
= (1, 0)

(
ac+

cb+ ad√
3

+
bd

3

)
+ (−1/2,

√
3/2)

(2ad+ 2bc√
3

+
4bd

3

)
+

+(−1/2,−
√

3/2)
(4bd

3

)
= (ac− bd, ad+ bc) = (a, b) · (b, d).



130 T. GREGOR, J. HALUŠKA

The other combinations (P1, P1), (P1, P2), (P2, P1), (P1, P3), (P3, P1), (P2, P2), (P2, P3),
(P3, P2) can be verified analogously.

The proof of the previous theorem was based on the fact that the operators A(k)
K , k ∈ K,

can be explicitly expressed as a multiplication of complex numbers. In other words, the
(“classical”) complex numbers are “translators” between various “dimensions:” K → 2 →
H,K 6= H;K,H ∈ N.

The isomorphisms of operations ⊕ → +,	 → −,� →: can be verified similarly.
Subsumed, we proved the following theorem.

Theorem 3. The 3-polarized space of complex numbers C3 is equipped with the algebraic
operations of addition, subtraction, multiplication, and division. The operations of the stan-
dard complex field C and these operations over C3 are isomorphic.

5. The space C4. Passing to the case K = 4 (the square), the ⊗-multiplication table is
defined by the following Latin square

⊗ A
(1)
4 A

(2)
4 A

(3)
4 A

(4)
4

A
(1)
4 A

(1)
4 A

(2)
4 A

(3)
4 A

(4)
4

A
(2)
4 A

(2)
4 A

(3)
4 A

(4)
4 A

(1)
4

A
(3)
4 A

(3)
4 A

(4)
4 A

(1)
4 A

(2)
4

A
(4)
4 A

(4)
4 A

(1)
4 A

(2)
4 A

(3)
4

So, every z = a+ bi ∈ C, z 6= 0, can be represented in the form

z = a+ bi = A
(1)
4 x1 + A

(2)
4 x2 + A

(3)
4 x3 + A

(4)
4 x4, (4)

where x1, x2, x3, x4 ∈ R0 are obtained as parallel planar projection similarly as in the
3-polarity model C3 of C. However, the situation is analogous to the case K = 3 only
for the planar case. The spacial (tetrahedral) case for K = 4 is not considered in this paper.

In the following section 6, we bring the formulae for arbitrary planar models CK , K ≥ 3.
In the usual denotation, the table of multiplication of polarities for C4 (Latin square) in

the planar case is as follows:
⊗ 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

which well coincide with the table of multiplication for the classical model of the complex
plane C. We see here that the poles {1, i,−1,−i} form a square in a plane.

In the (planar) case of C4, the condition of uniqueness may sound as follows: at least
two of elements x1, x2, x3, x4 ∈ R0 are zeros in the expression (4). It cannot be obtained
with the 4-Cancellation Law, so this rule is replaced with the following two conditions: for
every x, y ∈ R0, A

(1)
4 x+A

(3)
4 x = 0, and A(2)

4 y+A
(4)
4 y = 0, which both, of course, implies the

4-Cancellation Law: for every x ∈ R0,

A
(1)
4 x+ A

(2)
4 x+ A

(3)
4 x+ A

(4)
4 x = (0, 0, 0, 0).

In short, we write z = (x1, x2, x3, x4)A4 = xA4 and (4) is a 4-polarity expression of
z ∈ C, z 6= (0, 0, 0, 0)AK

as an element of C4.
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We can rewrite all the results from the case for K = 3 to the case K = 4, in particular,
that C4 is also isomorphic to C. The conjugate to the element z = (x1, x2, x3, x4)A4 is
z∗ = (x1, x4, x3, x2)A4 and

z � z∗ = A(1)(x21 + x22 + x23 + x24 − 2x1x3 − 2x2x4) = A(1)[(x1 − x3)2 + (x2 − x4)2],

where we choose those (x1−x3) or (x3−x1) which are in R0. Then the operation of division
is well defined and the analogue of Theorem 3 holds for C4, i.e. the set of all equivalence
classes C4 is arithmetically isomorphic to C.

Definition 4. Let the plane Π be equipped with the operation of addition and multiplication
as above. Let the 4-cancelation law hold. The system (A4,R0,⊕,�) is called the 4-polar
complex plane, we write C4.

6. Multi-polar complex space.
6.1. The notion of multi polar complex space. This process can be extended for
K = 4, 5, . . . , and not immersing ourself into details the following definition has a sense.

Definition 5. Let a plane Π be equipped with the operation of multiplication given by the
table below. Let the K-cancelation law hold. The system (AK ,R0,⊕,�) is called the K-polar
complex plane, we write CK , K ∈ N, K ≥ 3.

Definition 6. Let R0 be the space of 1-polar elements for all spaces C3,C4, . . . ,CK , . . . . Let
the multiplication tables of polarity operators are Latin squares

⊗ A
(1)
K A

(2)
K A

(3)
K . . . A

(K)
K

A
(1)
K A

(1)
K A

(2)
K A

(3)
K . . . A

(K)
K

A
(2)
K A

(2)
K A

(3)
K . . . A

(K)
K A

(1)
K

A
(3)
K A

(3)
K . . . A

(K)
K A

(1)
K A

(2)
K

. . . . . . . . . . . . . . . . . .

A
(K)
K A

(K)
K A

(1)
K A

(2)
K . . . A

(K−1)
K ,

for every K ≥ 3.
Then the sequence of spaces [C3,C4,C5, . . . ,CK , . . . ] each isomorphic to C, is said to be

the multipolar complex space and is denoted byMC.
For z = a + bi ∈ C, an element of MC (M from the word “multipolar”) is a sequence

[xA3 ,xA4 , . . . ,xAK
, . . . ] ∈MC, where xAK

∈ CK and xA3 = xA4 = · · · = xAK
= · · · = a+bi ∈

C in the sense of isomorphisms of spaces C3,C4,C5, . . . ,CK , . . . .
In particular, in this sense (0, 0, 0)C3 = (0, 0, 0, 0)C4 = · · · = (0, 0, . . . , 0)CK

= . . . ,

Θ = [(0, 0, 0)C3 , (0, 0, 0, 0)C4 , . . . , (0, 0, . . . , 0)CK
, . . . ] ∈MC

and we will call this object theMC-null. According to the K-cancelation laws,

Θ = [(r3, r3, r3)C3 , (r4, r4, r4, r4)C4 , . . . , (rK , rK , . . . , rK)CK
, . . . ],

rk ∈ R0, k ≥ 3, k ∈ N.

6.2. Evaluation of coordinates, K ≥ 3. Now we evaluate the coordinates for K ≥ 3 in the
planar case. Supposing that all but two K-polar coordinates are zero, an arbitrary complex
number a + bi = (ρ, ϕ) ∈ C, (algebraic and polar forms, respectively), ϕ = arctan b

a
, ρ =
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2kπ/K

2(k + 1)π/K

(01, 02, . . . , 0K)

ψ

σ

χ

-

xk

xk+1

ϕ

ρ

Fig. 1: Evaluation of coordinates.

2
√
a2 + b2, can be unambiguously expressed (a representative of the equivalence class) in the

form (0, 0, . . . , 0, xk, xk+1, 0, . . . , 0) or (x1, 0, 0, . . . , 0, 0, xK), where xk ∈ R0, k = 1, 2, . . . K,
K = 3, 4, . . . , see Fig. 1.

Here the angles satisfy σ + ψ = 2π
K

and χ = π − (σ + ψ).
Clearly, for a given complex number (ρ, ϕ), there exists a natural k = 0, 1, 2, . . . , K − 1,

such that 2kπ
K
≤ ϕ < 2(k+1)π

K
and ϕ = 2kπ

K
+ σ, σ = ϕ− 2kπ

K
, ψ = 2π(k+1)

K
− ϕ.

Using the sine theorem we obtain ρ
sinψ

= 2R, where R is the radius of the circle inscribed
into the triangle (not important for our consideration now). By the sine theorem again we
obtain 2R = xk

sinψ
= xk+1

sinσ
, which implies

xk =
ρ sinψ

2 sin
(
π − 2π

K

) =
2
√
a2 + b2 sin

(
ϕ− 2kπ

K

)
2 sinπ

(
1− 2

K

) ,

xk+1 =
ρ sinσ

2 sin
(
π − 2π

K

) =

2
√
a2 + b2 sin

(
2(k+1)π

K
− ϕ

)
2 sinπ

(
1− 2

K

) ,

(and xh = 0 when h 6= k, h 6= k + 1, k, h,= 0, 1, 2, . . . K − 1, K = 3, 4, . . . ).

7. Applications. As far as the authors know, the idea about polarity (sets equipped with
the arithmetic operations and lexicographical orderings with arbitrary number of “poles”)
goes from V. Lenski, cf. [2]. However, up to the present days, there is no explanation of the
multi polarity idea in the mathematical literature, i.e., a description of a vector-space-like
structure with a chosen number of poles K ∈ N (the term “dimension” is not apt since
we deal with semi-fields). However, there are material application of K-polar vector spaces
to electricity and magnetism, e.g. we know the 3-phase, K-phase electric streams, K-polar
oscillators, receivers, magnets, microscopes, telescopes, etc., ([3]).

Other possible applications are implied from the using of semi-fields in general, i.e. to
automata theory, optimization theory, discrete event dynamical systems, algebra of formal
processes, generalized fuzzy computation, combinatorial optimizations, Bayesian networks
and belief propagation (including turbo decoding), algebraic geometry over the optimization
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algebra, dequantizations and amoebas, cf. [5]. Following the aim of this paper, we dealt only
with the semi-field R0.
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