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We consider tilings of limit spaces of self-similar groups and discuss the following problem:

when does the tile of a self-similar group admit a tiling of the limit space under the action of
a (self-similar) subgroup?

Е. В. Бондаренко. Замощения граничных пространств самоподобных групп // Мат. Сту-
дiї. – 2014. – Т.41, №2. – C.134–138.

Рассматриваются замощения граничных пространств самоподобных групп и обсужда-
ется следующий вопрос: когда плитка самоподобной группы допускает замощение гранич-
ного пространства под действием (самоподобной) подгруппы.

1. Introduction. A tiling of a space X is a collection of compact sets with disjoint interiors
whose union is X . The most interesting case is when all sets in a tiling are congruent copies
of just one tile. The second part of the Hilbert’s eighteenth problem asks whether there exists
a polyhedron whose congruent copies can tile R3 but which is not the fundamental domain
of any group. Positive answer to this question inspired intensive research in understanding
which compact sets admit a tiling by a group of motions, and which one admit only aperiodic
tilings, i.e., tilings with trivial/finite symmetry group.

In this note we consider tilings of limit spaces of self-similar groups. Every contracting
self-similar group acts properly and co-compactly on its limit space. We discuss the following
question: when does the tile of a group admit a tiling of the limit space by the action of
a (self-similar) subgroup (subgroup tiling)?

2. Self-similar groups and their limit spaces. Let us recall basic notions from the theory
of self-similar groups and their limit spaces developed by V. Nekrashevych ([7]). Self-similar
group actions are specific actions on the space X∗ of all finite words over an alphabet X.
A faithful action of a group G on the space X∗ is called self-similar if for every g ∈ G and
x ∈ X there exist h ∈ H and y ∈ X such that g(xw) = yh(w) for all w ∈ X∗. Iterating we
get that for every g ∈ G and v ∈ X∗ there exist u ∈ X∗ of the same length as v and h ∈ G
such that g(vw) = uh(w) for all w ∈ X∗; the pair (g, v) uniquely determines the element h,
which is denoted by g|v.

A self-similar action (G,X∗) is contracting if there exists a finite set N with the property
that for every g ∈ G there exists n ∈ N such that g|v ∈ N for all words v ∈ X∗ of length
≥ n. The smallest set N with this property is called the nucleus of the action. Note that
N = N−1 and g|v ∈ N for all g ∈ N and v ∈ X∗. Nucleus can be treated as a finite directed

labeled graph with edges g
(x,g(x))−−−−→ g|x for all g ∈ N and x ∈ X.
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Let (G,X∗) be a contracting action with nucleus N . Consider the space X−ω × G of
all pairs (. . . x2x1, g), xi ∈ X and g ∈ G, with the product topology of discrete sets X
and G. The limit space XG of the action (G,X∗) is defined as the quotient of the space
X−ω×G by the equivalence relation, where two elements (w1, g1) and (w2, g2) are equivalent
if g2g−11 ∈ N and the pair (w1, w2) is read along a left-infinite path in the nucleus N ending
in the vertex g2g−11

(. . . x2x1, g1) ∼ (. . . y2y1, g2) ⇔ . . .
(x3|y3)−−−−→ h3

(x2|y2)−−−−→ h2
(x1,y1)−−−−→ h1 = g2g

−1
1 in N .

The space XG is locally compact and Hausdorff. The group G acts properly and co-compactly
on XG by multiplication from the right: [(w, g)] · h = [(w, gh)].

3. Tiles. The image of X−ω × {e} in the space XG is called the tile TG of the action. It
follows directly from the definition that TG is compact and covers the limit space under the
action of G

XG =
⋃
g∈G

TG · g; (1)

the sets TG · g are homeomorphic to TG and will be called tiles as well. Tiles in this union
may have an essential intersection, and generally the collection {TG · g}g∈G is not a tiling
of XG.

Two tiles TG · g1 and TG · g2 have a nonempty intersection if and only if g2g−11 = η ∈ N .
Every point from the intersection can be represented by an element from Fη×{g1}, where Fη
is the set of all sequences . . . x2x1 ∈ X−ω that are read from the left labels along a left-infinite
path in the nucleus N ending in the vertex η. The complete preimage of the intersection
TG · g1 ∩ TG · g2 in X−ω ×G can be described as⋃

η1, η2 ∈ N
η−1
1 g1 = η−1

2 g2

(Fη1 ∩ Fη2)× {η−11 g1}.

Note that the intersection Fη1 ∩ Fη2 for any η1, η2 ∈ N can be described as the set Fv for
a vertex v in certain finite labeled directed graph, namely the labeled product of two copies
of the nucleus, which can be effectively constructed from N (see the remark after Corollary 7
in [1]). Therefore it is decidable whether Fη1 ∩ Fη2 contains an interior point. Note also that
the word problem in contracting groups is solvable in polynomial time. Therefore we can
distinguish all η1, η2 ∈ N that satisfy η−11 g1 = η−12 g2 from the union above. This gives us a
method to check whether two tiles have a common interior point.

A few other observations. If there exists η′ ∈ N such that η′|v 6= e for all v ∈ X∗, then
Fη = X−ω for some η = η′|v ∈ N , and the intersection TG∩TG ·η has an interior point. If for
every η ∈ N there exists a word v such that η|v = e, then Fη has empty interior for every
nontrivial η ∈ N , and distinct tiles have disjoint interiors. Hence equality (1) defines a tiling
of the limit space if and only if every element of the nucleus is connected with the trivial
element by a directed path (equivalently, the tile TG has measure one with respect to the
uniform measure on the limit space, see [1, Theorem 11]). If the nucleus does not satisfy this
condition, then TG is covered by the tiles TG · g for g ∈ N \ {e} (see [7, Proposition 3.3.7]).

4. Subgroup tilings of limit spaces. We pose the following problem.

Problem 1. When does the tile TG tile the limit space XG with a (self-similar) subgroup
H < G, i.e., the collection of tiles {TG · h}h∈H forms a tiling of XG?
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Let us concentrate on the case where the contracting action (G,X∗) is self-replicating,
i.e., G acts transitively on X and the homomorphism φG : StG(x)→ G, g 7→ g|x is surjective.
In this case, the nucleus is a generating set of the group, and the limit space XG is connected.
Then, if there exists a subgroup H < G such that {TG · h}h∈H is a tiling of XG, it is finitely
generated and has finite index in G. Indeed, let us show that the set S = N ∩ H = {h ∈
H : TG∩TG ·h 6= ∅} ⊂ N generates H. Let H1 = 〈S〉 and consider the sets Ω1 = TG ·H1 and
Ω2 = TG · (H \H1). Then Ω1,Ω2 are closed sets, Ω1 ∪ Ω2 = XG, and therefore Ω1 ∩ Ω2 6= ∅,
because the space XG is connected. Hence there exist h1 ∈ H1 and h ∈ H \ H1 such that
TG · h1 ∩ TG · h 6= ∅. Then hh−11 ∈ S and h ∈ H1, a contradiction. Hence H = 〈S〉. Since
every pair (w, g) is equivalent to a pair (w′, h) for h ∈ H, we get hg−1 ∈ N ; hence G = N ·H
and H has finite index.

Therefore we can look for such a subgroup H among subgroups generated by subsets
S ⊂ N . One can check whether {TG · h}h∈H is a tiling of XG as follows. Let N ′ ⊂ N be
the set of all η ∈ N such that TG ∩ TG · η has empty interior, which can be found as shown
above. Given S ⊂ N , compute S ′ = 〈S〉 ∩ N . Then TG · h1 ∩ TG · h2 has empty interior for
all h1, h2 ∈ H = 〈S〉, h1 6= h2, if and only if S ′ ⊂ N ′. It is left to check that {TG · h}h∈H
covers XG, which is equivalent to TG · N ⊂ TG ·H, because TG ·G = (TG · N ) ·H. Note that
if TG · h ∩ TG · η 6= ∅ for η ∈ N then h ∈ N · N . Then the tile TG · η is covered by the tiles
TG · h for h ∈ H if ⋃

hη−1 ∈ N
h ∈ H ∩N · N

Fhη−1 = X−ω,

which is decidable (if we know H ∩N · N ).
Concerning tilings with a self-similar subgroup, the situation is more clear. As discussed

above, if g|v 6= e for all v ∈ X∗, then TG ∩ TG · g|v contains an interior point for some word
v; therefore such elements g cannot belong to a self-similar subgroup H that yields tiling of
XG. Let H ⊂ G be the subset of all elements g ∈ G such that for any word v ∈ X∗ there
exists a word u ∈ X∗ with g|vu = 1. Now every self-similar subgroup that gives a tiling of
the limit space is contained in H. But H itself is a self-similar subgroup. Indeed, for any
g, h ∈ H and v ∈ X∗ there exist u,w ∈ X∗ such that h|vu = e and g|h(vuw) = e; then
gh|vuw = g|h(vuw)h|vuw = e and gh ∈ H. Since tiles TG · g for g ∈ H have disjoint interiors, it
is left to check that they cover the limit space, that can be done as above.

5. Tilings of limit spaces of abelian and nilpotent groups. We have discussed how
to answer Problem 1 for a given contracting group. The question can be asked in a different
form: for a given group or class of groups, is it true that for every contracting action the tile
of the action tiles the limit space with a (self-similar) subgroup? Maybe an interesting result
can be obtained if we fix a group and its virtual endomorphism φG. For example, for every
contracting action given by a bounded automaton covering (1) is a tiling of XG, in other
words, the answer is positive for post-critically finite limit spaces.

The question is difficult even for the abelian case. Every contracting self-replicating action
of the free abelian group Zn can be described as follows (see [7, Section 6.2]). Let A ∈Mn(Z)
be an integer matrix with all eigenvalues greater than one in modulus. The lattice Zn is
invariant under A; let D = {dx, x ∈ X} be a set of coset representatives for A(Zn) in Zn
(here X is just an index set treated as alphabet, |X| = |D| = | det(A)|). For every x ∈ X
and v ∈ X∗ the action of an element a ∈ Zn is defined recursively by the rule

a(xv) = yb(v) and b = a|x := A−1(a+ dx − dy),
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where y ∈ X is uniquely defined by the condition a + dx − dy ∈ A(Zn). This action
(Zn, X∗) is self-similar, contracting, and self-replicating. The limit space XG of the action
is homeomorphic and Zn-equivariant to Rn with the natural action of Zn by shifts. Under
the homeomorphism, the tile TG is mapped to the set

T (A,D) =

{
∞∑
k=1

A−kdk : dk ∈ D

}
⊂ Rn,

which is known as the self-affine tile associated with the pair (A,D). Tiling properties of
self-affine tiles were considered in [4], motivated by construction of orthonormal wavelet
bases in Rn, and it was conjectured that every self-affine tile gives a lattice tiling of Rn with
some lattice Γ < Zn. The conjecture was confirmed in [5] and [2]; the proof is complicated
and based on a partial case of Hyperplane Zeros Conjecture (completely proved later in [6])
about the zero set of real analytic periodic functions. This result is our initial motivation
for posing Problem 1. We think that self-similar actions are the right settings for a natural
generalization. The analysis we made in the previous section basically generalizes the main
result from [3], which gives a method for determining all possible lattice tilings for a given
self-affine tile.

Interestingly, not every self-affine tile gives a tiling with a self-similar lattice. Consider
the example from [5, p. 85]

A =

(
2 1
0 2

)
, D = {(0, 0), (3, 0), (0, 1), (3, 1)}.

The associated self-similar action of Z2 = 〈a = (1, 0), b = (0, 1)〉 over the alphabet X =
{1, 2, 3, 4} is given by

a(1v) = 2a−1(v) a(2v) = 1a2(v) a(3v) = 4a−1(v) a(4v) = 3a2(v)

b(1v) = 3v b(2v) = 4v b(3v) = 2(a−2b)(v) b(4v) = 1(ab)(v)

(we use multiplicative notations). The nucleus of the action is

N = {(0, 0), (±1, 0), (0,±1), (±2, 0), (±3, 0),±(±1, 1),±(±2, 1),±(−3, 1),±(−4, 1)}.

The elements η ∈ N with the property that for every v ∈ X∗ there exists u ∈ X∗ such
that η|vu = e constitute the set N0 = {(0, 0), (±3, 0)}. The space R2 is not covered by the
self-affine tile T (A,D) under the action of 〈N0〉. Therefore T (A,D) does not tile R2 with any
self-similar lattice as we discussed in the previous section. Nevertheless, T (A,D) possesses
a lattice tiling for the lattice 〈(3, 0), (0, 1)〉.

It is interesting how far can be generalized the result about lattice tilings of self-affine
tiles. I think one can hope for a positive result dealing with nilpotent groups.

Conjecture 1 (Lattice tiling conjecture for nilpotent groups). Let (G,X) be a contracting
self-replicating self-similar action of a finitely generated torsion-free nilpotent group G. There
exists a subgroup H < G such that the collection of tiles {TG · h}h∈H forms a tiling of the
limit space XG.

Under the conditions of the conjecture, the limit space XG is homeomorphic to the unique
real nilpotent, connected and simply connected Lie group L, Mal’cev completion of G. In
order to prove the conjecture, one can try to follow the path laid in [5, 2]; this requires
a generalization of certain results from functional analysis to nilpotent Lie groups.
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