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With the aid of weighted sharing of sets we study the uniqueness problem of meromor-
phic functions having the same pole sharing of a finite set. The result of the paper improves,
generalizes and extends a recent result of S. S. Bhoosnurmath and R. Davanal ([1]).

А. Бенерджи, С. Маллик. Единственность мероморфных функций, разделяющих два мно-
жества, содержащих дефектные значения // Мат. Студiї. – 2014. – Т.41, №2. – C.168–178.

С помощью весовых множеств разделенных значений мы изучаем проблему единствен-
ности мероморфных функций с общими полюсами, разделяющих конечное множество.
Результат статьи улучшает, обобщает и расширяет недавний результат из [1].

1. Introduction definitions and results. In this paper, by meromorphic functions we will
always mean meromorphic functions in the whole complex plane. We adopt the standard
notations of the Nevanlinna theory of meromorphic functions as explained in [6]. For a ∈
C ∪ {∞}, we define

Θ(a; f) = 1− lim
r→∞

N(r, a; f)

T (r, f)
.

It will be convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For any non-constant meromorphic
function h(z) we denote by S(r, h) any quantity satisfying S(r, h) = o(T (r, h)) (r → ∞,
r 6∈ E).

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes any
quantity satisfying S(r) = o(T (r)) as r →∞, r 6∈ E.

Let f and g be two non-constant meromorphic functions and let a be a finite complex
number. We say that f and g share a CM, provided that f − a and g − a have the same
zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that
f − a and g− a have the same zeros ignoring multiplicities. In addition, we say that f and g
share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and
1/g share 0 IM.

Let S be a subset of C ∪ {∞} and Ef (S) =
⋃
a∈S{z : f(z) = a}, where each point

is counted according to its multiplicity. If we do not count the multiplicity then the set⋃
a∈S{z : f(z) = a} is denoted by Ef (S). If Ef (S) = Eg(S) then we say that f and g share
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the set S CM. On the other hand, if Ef (S) = Eg(S) then we say that f and g share the set
S IM. Evidently, if S contains only one element then it coincides with the usual definition
of CM (respectively, IM) shared values.

During the last few decades the uniqueness theory of entire or meromorphic functions has
been grown up as an active subfield of the value distribution theory. The main intention of
the uniqueness theory is to determine an entire or meromorphic function uniquely satisfying
some prescribed condition. The remarkable five value theorem and four value theorem by
Nevanlinna can be considered as the inception of this extensive theory. Later, the study
of the relationship between two meromorphic functions via the pre-image sets of several
distinct values in the range has also got the priority over value sharing. In this respect one
cannot deny the contribution of F. Gross. In 1970 F. Gross and C. C. Yang started to study
the similar but more general questions of two functions that share sets of distinct elements
instead of values.

In [5] F. Gross asked the following question which is known as Gross’s question in the
literature.

Can one find two finite sets Sj (j ∈ {1, 2}) such that any two non-constant entire functi-
ons f and g satisfying Ef (Sj) = Eg(Sj) for j ∈ {1, 2} must be identical?

In course of time researchers became more involved to deal with the above question in
case of meromorphic functions under weaker hypothesis. Later the investigations has been
shifted to determine a set S of n elements and to make n as small as possible such that any
meromorphic functions f and g that share the value ∞ and the set S must be equal. (cf.
[1]–[2], [4], [7], [11], [16]–[18]).

In connection with the question of F. Gross, for entire functions, H. X. Yi ([15]) proved
the following result.

Theorem A ([15]). Let S = {z : z7 − z6 − 1 = 0}. If f and g are non-constant entire
functions satisfying Ef (S) = Eg(S) then f ≡ g.

M. Fang and X. Hua ([3]) further extended Theorem A to meromorphic functions impo-
sing on the ramification indexes of f and g. M. Fang and X. Hua proved the following
theorem.

Theorem B ([3]). Let S = {z : z7− z6− 1 = 0}. If meromorphic functions f and g are such
that Θ(∞; f) > 11

12
, Θ(∞; g) > 11

12
and Ef (S) = Eg(S) then f ≡ g.

In 1995 H. X. Yi proved for meromorphic functions the following result.

Theorem C ([16]). Let S = {z : zn + azn−m + b = 0}, where n and m are positive integers
such that m ≥ 2, n ≥ 2m + 7 with n and m having no common factor, a and b be nonzero
constants such that zn + azn−m + b = 0 has no multiple root. If f and g are non-constant
meromorphic functions satisfying Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) then f ≡ g.

The case where m = 1 is also studied by H. X. Yi ([16]) in the same paper. Below we
state the result.

Theorem D ([16]). Let S = {z : zn +azn−1 + b = 0}, where n(≥ 9) be an integer and a and
b be nonzero constants such that zn + azn−1 + b = 0 has no multiple root. If f and g be non-
constant meromorphic functions such that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) then
either f ≡ g or f ≡ −ah(hn−1−1)

hn−1 and g ≡ −a(hn−1−1)
hn−1 , where h is a non-constant meromorphic

function.
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To find under which condition f ≡ g in Theorem D, I. Lahiri obtained the following
result.

Theorem E ([7]). Let S be defined as in Theorem D and n(≥ 8) be an integer. If f and
g be non-constant meromorphic functions having no simple poles such that Ef (S) = Eg(S)
and Ef ({∞}) = Eg({∞}) then f ≡ g.

M. Fang and I. Lahiri ([4]) further reduced the cardinality of the range set and proved
the following theorem.

Theorem F ([4]). Let S be defined as in Theorem D and n(≥ 7) be an integer. If f and
g be non-constant meromorphic functions having no simple poles such that Ef (S) = Eg(S)
and Ef ({∞}) = Eg({∞}) then f ≡ g.

In the mid of 2001 the notion of weighted sharing of values and sets appeared in the
uniqueness theory which renders a useful tool for the purpose of relaxation of the nature of
sharing the sets.

Definition 1 ([9, 10]). Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share
the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if
f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g
share a value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 2 ([9]). Let S be a subset of C∪ {∞} and k be a nonnegative integer or ∞. We
denote by Ef (S, k) the set Ef (S) =

⋃
a∈S{z : f(z)− a = 0}. Clearly Ef (S) = Ef (S,∞) and

Ef (S) = Ef (S, 0).

Next the following definition is required.

Definition 3 ([8]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of
simple a-points of f . For a positive integer m we denote by N(r, a; f ≤ m)(N(r, a; f ≥ m))
the counting function of those a-points of f whose multiplicities are not greater(less) than
m where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the a-points of
f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined
analogously.

Improving Theorem F, I. Lahiri ([11]) proved the following theorem.

Theorem G ([11]). Let S be defined as in Theorem D and n(≥ 7) be an integer. If for
non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > 1, Ef (S, 2) = Eg(S, 2)
and Ef ({∞},∞) = Eg({∞},∞) then f ≡ g.

In 2006 to deal with a question of F. Gross, H. X. Yi and W. C. Lin have proved the
following results.
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Theorem H ([17]). Let S be defined as in Theorem D and n(≥ 7) be an integer. If for
non-constant meromorphic functions f and g, Θ(∞; f) > 1

2
. Ef (S,∞) = Eg(S,∞) and

Ef ({∞},∞) = Eg({∞},∞) then f ≡ g.

Theorem I ([17]). Let S be defined as in Theorem D and n(≥ 8) be an integer. If for
non-constant meromorphic functions f and g, Θ(∞; f) > 2

n−1 . Ef (S,∞) = Eg(S,∞) and
Ef ({∞},∞) = Eg({∞},∞) then f ≡ g.

It is ought to be noted that I. Lahiri ([11]) obtained the smallest cardinality n = 7
corresponding to the set S described so far. The following example establishes the fact that
the set S in Theorems D-I cannot be replaced with any arbitrary set containing six elements.

Example 1. Let f(z) =
√
αβγez, g(z) =

√
αβγe−z and S = {α

√
β, α
√
γ, β
√
α, β
√
γ, γ
√
α,

γ
√
β}, where α, β and γ are nonzero distinct complex numbers. Clearly Ef (S,∞) = Eg(S,∞)

but f 6≡ g.

So it remains an open problem for investigations whether the degree of the equation
defining S can be reduced to six and at the same time the conditions over ramification
indexes can be weakened further?

In this direction S. S. Bhoosnurmath and R. Dyavanal ([1]) recently proved the following.

Theorem J ([1]). Let S be defined as in Theorem D and n(≥ 5) be an integer. If for non-
constant meromorphic functions f and g, Θ(∞; f) > 2

n−1 and Θ(∞; g) > 2
n−1 , Ef (S,∞) =

Eg(S,∞) and Ef ({∞},∞) = Eg({∞},∞) and N(r, 0; f |= 1) = S(r, f), N(r, 0; g |= 1) =
S(r, g) then f ≡ g.

In the paper we continue the investigations and obtain the following result which impro-
ves, generalizes and extends Theorem J. Our result also supplements Theorem G to a large
extent. For a ∈ C ∪ {∞}, we define

δ(2(a; f) = 1− lim
r→∞

N(r, a; f |≥ 2)

T (r, f)
.

The following theorem is the main result of the paper.

Theorem 1. Let S be given as in Theorem D. Suppose that f and g are non-constant
meromorphic functions satisfying Ef (S,m) = Eg(S,m), Ef ({∞},∞) = Eg({∞},∞),
N(r, 0; f |= 1) = S(r, f), N(r, 0; g |= 1) = S(r, g) and Θf + Θg >

4
n−1 . If

(i) m ≥ 2 and n ≥ 5;

(ii) or if m = 1 and n ≥ 6;

(iii) or if m = 0 and n ≥ 10

then f ≡ g, where Θf = δ(2(0; f) + Θ(−an−1
n

; f) + Θ(∞; f) and Θg is similarly defined.

We now explain some definitions and notation which are used in the paper.

Definition 4. Let f and g be non-constant meromorphic functions such that f and g share
(a, 0). Let z0 be an a-point of f with multiplicity p, an a-point of g with multiplicity q.
We denote by NL(r, a; f) the reduced counting function of those a-points of f and g where
p > q, by N1)

E (r, a; f) the counting function of those a-points of f and g where p = q = 1,
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by N (2

E (r, a; f) the reduced counting function of those a-points of f and g where p = q ≥ 2.
In the same way we can define NL(r, a; g), N

1)
E (r, a; g), N

(2

E (r, a; g). In a similar manner we
can define NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}. If f and g share (a,m), m ≥ 1 then
N

1)
E (r, a; f) = N(r, a; f |= 1).

Definition 5. We denote by N(r, a; f |= k) the reduced counting function of those a-points
of f whose multiplicities is exactly k, where k ≥ 2 is an integer.

Definition 6 ([9, 10]). Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplicities of
the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. Lemmas. In this section we present some lemmas which will be needed in the sequel.
Let F and G be non-constant meromorphic functions defined as follows.

F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
. (1)

Henceforth we shall denote by H the following function

H =
(F ′′
F ′
− 2F

′

F − 1

)
−
(G′′
G′
− 2G

′

G− 1

)
. (2)

Lemma 1 ([14]). Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where an 6= 0
and bm 6= 0 Then T (r, R(f)) = dT (r, f) + S(r, f), where d = max{n,m}.

Lemma 2 ([18]). If F , G are non-constant meromorphic functions such that they share
(1,0) and H 6≡ 0 then N1)

E (r, 1;F |= 1) = N
1)
E (r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 3. Let S = {z : zn + azn−1 + b = 0}, where a, b are nonzero constants such
that zn + azn−1 + b = 0 has no repeated root, n(≥ 3) be an integer and F , G be given
by (1). If for non-constant meromorphic functions f and g one has Ef (S, 0) = Eg(S, 0),
Ef (∞, 0) = Eg(∞, 0) and H 6≡ 0 then

N(r,H) ≤ N(r, 0, f) +N(r, 0; g) +N∗(r,∞; f, g) +N(r, 0;nf + a(n− 1))+

+N(r, 0;ng + a(n− 1)) +N∗(r, 1;F,G) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f ′ which are not the

zeros of f and (F − 1) and N0(r, 0; g
′
) is similarly defined.

Proof. Since Ef (S, 0) = Eg(S, 0) and Ef (∞, 0) = Eg(∞, 0) it follows that F and G share
(1, 0) and (∞, 0). We have from (1) that F ′ = [nf+(n−1)a]fn−2f

′

−b and G
′

= [ng+(n−1)a]gn−2g
′

−b .
We can easily verify that possible poles of H occur at (i) zeros of f and g, (ii) zeros of
nf + a(n− 1) and ng+ a(n− 1), (iii) common poles of f and g with different multiplicities,
(iv) common 1-points of F and G with different multiplicities, (v) zeros of f ′ which are not
the zeros of f(F − 1), (v) zeros of g′ which are not the zeros of g(G− 1). Since H has only
simple poles, the lemma follows from the above.
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Lemma 4 ([11], Lemma 5). If f , g share (∞, 0) then for n(≥ 2) fn−1(f+a)gn−1(g+a) 6≡ b2,
where a,b are finite nonzero constants.

Lemma 5. Let f , g be non-constant meromorphic functions such that N(r, 0; f |= 1) =
S(r, f), N(r, 0; g |= 1) = S(r, g) and Θf + Θg >

4
n−1 , where Θf and Θg have the same

meaning as in Theorem 1. Then fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, where n(≥ 2) is
an integer and a is a nonzero finite constant.

Proof. Let

fn−1(f + a) ≡ gn−1(g + a) (3)

and suppose f 6≡ g. We consider two cases.
Case I. Let y = g

f
be a constant. Then from (3) it follows that y 6= 1, yn−1 6= 1, yn 6= 1 and

f ≡ −a1−yn−1

1−yn , a constant, which is impossible.
Case II. Let y = g

f
be non-constant. Then

f ≡ −a1− yn−1

1− yn
≡ a
( yn−1

1 + y + y2 + . . .+ yn−1
− 1
)
, (4)

f + a
(n− 1)

n
≡ −a1− yn−1

1− yn
+ a

(n− 1)

n
≡ −a(n− 1)yn − nyn−1 + 1

n(1− yn)
. (5)

If we assume p(z) = (n − 1)zn − nzn−1 + 1, then p(0) 6= 0 and p(1) = p
′
(1) = 0. So we

observe that the polynomial p(z) has double zero at the point z = 1. Consequently it has
n − 1 distinct zeros which we denote by ui, i ∈ {1, . . . , n − 1}. Hence from (5) we see that∑n−1

i=1 N(r, ui; y) ≤ N(r,−an−1
n

; f).
From (4) we see by Lemma 1 that T (r, f) = (n − 1)T (r, y) + S(r, y), T (r, g) = (n −

1)T (r, y) + S(r, y) and so S(r, f) and S(r, g) can both be replaced with S(r, y).
We first note that the zeros of 1 + y + y2 + . . .+ yn−2 contributes to the zeros of both f

and g. In addition to this the poles of y contributes to the zeros of f and since g = fy the
zeros of y contributes to the zeros of g. So from (4) we see that

n−2∑
j=1

N(r, vj; y) +N(r,∞; y) ≤ N(r, 0; f),
n−1∑
k=1

N(r, wk; y) ≤ N(r,∞; f)

where vj = exp(2jπi
n−1) for j ∈ {1, 2, . . . , n− 2} and wk = exp(2kπi

n
) for k ∈ {1, 2, . . . , n− 1}.

By the second fundamental theorem we get

(3n− 5)T (r, y) ≤

≤ N(r,∞; y) +
n−1∑
i=1

N(r, ui; y) +
n−2∑
j=1

N(r, vj; y) +
n−1∑
k=1

N(r, wk; y) +N(r, 0; y) + S(r, y) ≤

≤ N(r, 0; f) +N
(
r,−an− 1

n
; f
)

+N(r,∞; f) +N(r, 0; g) + S(r, y) ≤

≤
(5

2
− 1

2
δ(2(0; f)−Θ

(
− an− 1

n
; f
)
−Θ(∞; f) +

ε

2

)
T (r, f)+

+
(1

2
− 1

2
δ(2(0; g) +

ε

2

)
T (r, g) + S(r, y) =

= (n− 1)
(

3− 1

2
δ(2(0; f)− 1

2
δ(2(0; g)−Θ

(
− an− 1

n
; f
)
−Θ(∞; f) + ε

)
T (r, y) + S(r, y)
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i.e.,

3n− 5

n− 1
T (r, y) ≤

(
3−Θf +

1

2
δ(2(0; f)− 1

2
δ(2(0; g) + ε

)
T (r, y) + S(r, y), (6)

where 0 < 2ε < Θf + Θg − 4
n−1 .

Again putting y1 = 1
y
, noting that T (r, y) = T (r, y1) +O(1) and proceeding as above we

get that

3n− 5

n− 1
T (r, y) ≤

(
3−Θg +

1

2
δ(2(0; g)− 1

2
δ(2(0; f) + ε

)
T (r, y) + S(r, y). (7)

Adding (6) and (7) we get
(
6n−10
n−1 − 6 + Θf + Θg − 2ε

)
T (r, y) ≤ S(r, y), which is a contradi-

ction.
Hence f ≡ g and this proves the lemma.

Lemma 6 ([13]). If N(r, 0; f (k)f 6= 0) denotes the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to its multiplicity
then N(r, 0; f (k)f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f < k) + kN(r, 0; f ≥ k) + S(r, f).

3. Proofs of the theorems.

Proof of Theorem 1. We know from the assumption that the zeros of zn + azn−1 + b are
simple and we denote them by wj, j ∈ {1, 2, . . . , n}. Let F , G be given by (1) and (2).
Since Ef (S,m) = Eg(S,m) and Ef (∞,∞) = Eg(∞,∞) it follows that F , G share (1,m)
and (∞,∞) and so N∗(r,∞; f, g) = 0. Also we note that by the assumption of the theorem
2N(r, 0; f) ≤ N(r, 0; f |≥ 2) + S(r, f) and 2N(r, 0; g) ≤ N(r, 0; g |≥ 2) + S(r, g).
Case 1. Suppose that H 6≡ 0.
Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 6 we note that

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) ≤ N0(r, 0; g

′
) +N(r, 1;G |≥ 2)+ (8)

+N(r, 1;G |≥ 3) ≤ N0(r, 0; g
′
) +

n∑
j=1

{N(r, ωj; g |= 2) + 2N(r, ωj; g |≥ 3)} ≤

≤ N(r, 0; g
′
g 6= 0) + S(r, g) ≤ N(r, 0; g) +N(r,∞; g) + S(r, g).

Hence using (8), Lemmas 1, 2 and 3 we get from the second fundamental theorem for
ε > 0 that

nT (r, f) ≤ (9)

≤ N(r, 0; f) +N(r,∞; f) +N(r, 1;F |= 1) +N(r, 1;F |≥ 2)−N0(r, 0; f
′
) + S(r, f) ≤

≤ 2N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r, 0;nf + a(n− 1))+

+N(r, 0;ng + a(n− 1)) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g
′
)+

+S(r, f) + S(r, g) ≤ 2
{
N(r, 0; f) +N(r, 0; g)

}
+N(r,∞; f) +N(r,∞; g)+

+N
(
r,−an− 1

n
; f
)

+N
(
r,−an− 1

n
; g
)

+ S(r, f) + S(r, g) ≤

≤ N(r, 0; f |≥ 2) +N(r, 0; g |≥ 2) +N(r,∞; f) +N(r,∞; g) +N
(
r,−an− 1

n
; f
)

+

+N
(
r,−an− 1

n
; g
)

+ S(r, f) + S(r, g) ≤
(

6−Θf −Θg + ε
)
T (r) + S(r).
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In a similar way we can obtain

T (r, g) ≤ (6−Θf −Θg + ε)T (r) + S(r). (10)

Combining (9) and (10) we see that

(n− 6 + Θf + Θg + ε)T (r) ≤ S(r). (11)

Since ε > 0 is arbitrary, (11) leads to a contradiction for n ≥ 5.
While m = 1, using Lemma 6, (8) changes to

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) ≤ (12)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) +N(r, 1;F |≥ 3) ≤

≤ N(r, 0; g) +N(r,∞; g) +
1

2

n∑
j=1

{N(r, ωj; f)−N(r, ωj; f)} ≤

≤ N(r, 0; g) +N(r,∞; g) +
1

2
{N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g).

So using (12), Lemmas 2 and 3 and proceeding as in (9) we get from the second funda-
mental theorem for ε > 0 that

nT (r, f) ≤ 2N(r, 0; f) +N(r,∞; f) + 2N(r, 0; g) +N(r,∞; g)+ (13)

+N
(
r,−an− 1

n
; f
)

+N
(
r,−an− 1

n
; g
)

+
3

4
T (r, f) + S(r, f) + S(r, g) ≤

≤ N(r, 0; f |≥ 2) +N(r,∞; f) +N(r,∞; g) +N(r, 0; g |≥ 2) +N

(
r,−an− 1

n
; f

)
+

+N
(
r,−an− 1

n
; g
)

+
3

4
T (r, f) + S(r, f) + S(r, g) ≤

(
6

3

4
−Θf −Θg + ε

)
T (r) + S(r).

Similarly we can obtain

nT (r, g) ≤
(

6
3

4
−Θf −Θg + ε

)
T (r) + S(r). (14)

Combining (13) and (14) we see that(
n− 6

3

4
+ Θf + Θg − ε

)
T (r) ≤ S(r). (15)

Since ε > 0 is arbitrary, (15) leads to a contradiction for n ≥ 6.
Case 2. m = 0. Observe that, −an−1

n
cannot be a member of S. So

N(r, 1;G |≥ 2) ≤ N
(
r, 0; g

′ | g 6= 0,−an− 1

n

)
≤ N

(
r,∞;

g(g + an−1
n

)

g′

)
≤

≤ N
(
r,∞;

g
′

g(g + an−1
n

)

)
+ S(r, g) ≤ N(r, 0; g) +N

(
r,−an− 1

n
; g
)

+ S(r, g).
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Similar argument holds for F also. Hence using Lemma 6 we note that

N0(r, 0; g
′
) +N

(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) ≤ (16)

≤ N0(r, 0; g
′
) +N

(2

E (r, 1;G) +NL(r, 1;G) +NL(r, 1;G) + 2NL(r, 1;F ) ≤
≤ N0(r, 0; g

′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) + 2NL(r, 1;F ) ≤

≤ N(r, 0; g
′ | g 6= 0) +N(r, 1;G |≥ 2) + 2N(r, 1;F |≥ 2) ≤

≤ N(r, 0; g) +N(r,∞; g) +N
(
r, 0; g

′ | g 6= 0,−an− 1

n

)
+N(r, 0; f)+

+N(r,∞; f) +N
(
r, 0; f

′ | f 6= 0,−an− 1

n

)
+ S(r, f) + S(r, g) ≤

≤ 2N(r, 0; f) +N(r,∞; f) +N
(
r,−an− 1

n
; f
)

+ 2N(r, 0; g) +N(r,∞; g)+

+N
(
r,−an− 1

n
; g
)

+ S(r, f) + S(r, g).

Hence using (16), Lemmas 2 and 3 we get from the second fundamental theorem for ε > 0
that

nT (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N
1)
E (r, 1;F )+ (17)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )−N0(r, 0; f
′
) + S(r, f) ≤

≤ 2N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N
(
r,−an− 1

n
; f
)

+N
(
r,−an− 1

n
; g
)

+

+N
(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) +N0(r, 0; g
′
) + S(r, f) + S(r, g) ≤

≤ 4N(r, 0; f) + 2N(r,∞; f) + 3N(r, 0; g) +N(r,∞; g) + 2N
(
r,−an− 1

n
; f
)

+

+2N
(
r,−an− 1

n
; g
)

+ S(r, f) + S(r, g) ≤ 3

2

{
N(r, 0; f |≥ 2) +N(r,∞; f)+

+N
(
r,−an− 1

n
; f
)

+N(r, 0; g |≥ 2) +N(r,∞; g) +N
(
r,−an− 1

n
; g
)}

+

+T (r, f) +
1

2
T (r, g) + S(r, f) + S(r, g) ≤

{
10

1

2
− 3

2

(
Θf + Θg

)
+ ε
}
T (r) + S(r).

In a similar manner we can obtain

nT (r, g) ≤
{

10
1

2
− 3

2
(Θf + Θg) + ε

}
T (r) + S(r). (18)

Combining (17) and (18) we see that{
n− 10

1

2
+

3

2

(
Θf + Θg

)
− ε
}
T (r) ≤ S(r). (19)

Since ε > 0 is arbitrary, (19) leads to a contradiction for n ≥ 10.
Case 2. H ≡ 0. On integration we get from (2)

1

F − 1
≡ A

G− 1
+B, (20)
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where A, B are constants and A 6= 0. From (20) we obtain

F ≡ (B + 1)G+ A−B − 1

BG+ A−B
. (21)

Clearly (21) together with Lemma 1 yields

T (r, f) = T (r, g) +O(1). (22)

Subcase 2.1. Suppose that B 6= 0,−1. Since F and G share (∞,∞), it follows from (20)
and (21) that ∞ is a Picard exceptional value of both f and g.

If A − B − 1 6= 0, from (21) we obtain N(r, B+1−A
B+1

;G) = N(r, 0;F ). From the above,
Lemma 1 and the second fundamental theorem we obtain

nT (r, g) < N(r,∞;G) +N(r, 0;G) +N
(
r,
B + 1− A
B + 1

;G
)

+ S(r, g) ≤ N(r, 0; g)+

+N(r, 0; g + a) +N(r, 0; f) +N(r, 0; f + a) + S(r, g) ≤ 2T (r, f) + 2T (r, g) + S(r, g),

which in view of (22) implies a contradiction as n ≥ 5. Thus A−B − 1 = 0 and hence (22)
reduces to F ≡ (B+1)G

BG+1
. From this we have N(r, −1

B
;G) = N(r,∞; f).

Again by Lemma 1, (22) and the second fundamental theorem we have

nT (r, g) < N(r,∞;G) +N(r, 0;G) +N
(
r,
−1

B
;G
)

+ S(r, g) ≤

≤ N(r, 0; g) +N(r, 0; g + a) + S(r, g) ≤ 2T (r, g) + S(r, g),

which in view of (22) leads to a contradiction since n ≥ 5.
Subcase 2.2. Suppose that B = −1.
From (21) we obtain F ≡ A

−G+A+1
. If A+1 6= 0, then we obtain N(r, A+1;G) = N(r,∞; f).

So using the same argument as used in the above subcase we can again obtain a contradiction.
Hence A + 1 = 0 and we have FG ≡ 1 that means fn−1(f + a)gn−1(g + a) ≡ b2, which is
impossible by Lemma 4.
Subcase 2.3. Suppose that B = 0.
From (21) we obtain F ≡ G+A−1

A
.

If A− 1 6= 0, then we obtain N(r, 1− A;G) = N(r, 0;F ). Using (22), Lemma 1 and the
second fundamental theorem we obtain

nT (r, g) < N(r,∞;G) +N(r, 0;G) +N(r, 1− A;G) + S(r, g) ≤
≤ N(r,∞; g) +N(r, 0; g) +N(r, 0; g + a) +N(r, 0; f) +N(r, 0; f + a) + S(r, g) ≤

≤ 1

2
{N(r, 0; f) +N(r, 0; g)}+N(r, 0; g + a) +N(r, 0; f + a) + S(r, f) + S(r, g) ≤

≤ 3

2
T (r, f) +

3

2
T (r, g) + S(r, g) ≤ 3T (r, g) + S(r, g),

which is a contradiction for n ≥ 5. So A = 1 and hence F ≡ G that is fn−1(f + a) ≡
gn−1(g + a). Now the theorem follows from Lemma 5.
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