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Let RT be the class of functions f univalent in the unit disk E = {z : |z| < 1} such that
Re f ′(z) > 0, (z ∈ E) and H3(1) the third Hankel determinant for inverse function to f ∈ RT.
In the paper obtained the upper bound for H3(1) in the terms of Toeplitz determinants.

Д. Вамше Кришна, Б. Венкатесварлу, Т. РамРеди. Определитель Ганкеля третього по-
рядка для обратной функции к функции, производная которой имеет положительную
действительную часть // Мат. Студiї. – 2014. – Т.42, №1. – C.54–60.

Пусть RT — класс однолистых в единичном круге E = {z : |z| < 1} функций такых, что
Re f ′(z) > 0, (z ∈ E), а H3(1) — определитель Ганкеля третьего порядка для функции,
обратной к функции f ∈ RT. В статье получены оценки сверху определителя H3(1) в
терминах определителя Тёплиця.

1. Introduction. Let A denote the class of analytic functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n (1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of univalent
functions. For a univalent function in the class A, it is well known that the nth coefficient
is bounded by n. The bounds for the coefficients give information about the geometric
properties of these functions. For example, the bound for the second coefficient of normalized
univalent function readily yields the growth and distortion properties for univalent functions.

The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by Ch. Pommerenke ([20,
21]) as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ .
This determinant has been considered by several authors in the literature. For example,
J. W. Noonan and D. K. Thomas ([17]) studied about the second Hankel determinant of
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areally mean p-valent functions. K. I. Noor ([18]) determined the rate of growth of Hq(n)
as n → ∞ for the functions in S with a bounded boundary. R. Ehrenborg ([7]) studied
the Hankel determinant of exponential polynomials. The Hankel transform of an integer
sequence and some of its properties were discussed by J. W. Layman in [13]. One can easily
observe that the Fekete-Szegő functional is H2(1). Fekete-Szegő then further generalized the
estimate |a3 − µa22| with µ real and f ∈ S. R. M. Ali ([2]) found sharp bounds for the first
four coefficients and sharp estimate for the Fekete-Szegő functional |γ3− tγ22 |, where t is real,
for the inverse function of f defined as f−1(w) = w +

∑∞
n=2 γnw

n, when it belongs to the
class of strongly starlike functions of order α (0 < α ≤ 1) denoted by S̃T (α). Further sharp
bounds for the functional |a2a4−a23|, the Hankel determinant in the case of q = 2 and n = 2,
known as the second Hankel determinant, given by

H2(2) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23,

were obtained by the authors ([1], [5], [10–12], [22], [24–27]) for various subclasses of univalent
and multivalent analytic functions. For our discussion in this paper, we consider the Hankel
determinant in the case of q = 3 and n = 1, denoted by H3(1), given by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ .
For f ∈ A, a1 = 1, so that, we have H3(1) = a3(a2a4− a23)− a4(a4− a2a3) + a5(a3− a22) and
by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (2)

Incidentally, all of the functionals on the right hand side of the inequality (2) have known
(and sharp) upper bounds except |a2a3 − a4|. The sharp upper bound to the second Hankel
functional H2(2) for the subclass RT of S, consisting of functions whose derivative has a
positive real part, studied by T. H. MacGregor ([16]) was obtained by A. Janteng ([12]). It
was known that if f ∈ RT then |ak| ≤ 2

k
, for k ∈ {2, 3, . . .}. Also the sharp upper bound

for the functional |a3 − a22| was 2
3
, stated in [4], for the class RT . Further, the best possible

sharp upper bound for the functional |a2a3 − a4| was obtained by K. O. Babalola ([3]) and
hence the sharp inequality for |H3(1)|, for the class RT .

Motivated by the result obtained by K. O. Babalola ([3]) in finding the sharp upper
bound to the third Hankel determinant |H3(1)| for the class RT , in the present paper, we
obtain an upper bound to the functional |t2t3 − t4| and hence for |H3(1)|, for the inverse of
the function of f given in (1), when it belongs to the class RT , defined as follows.

Definition 1. A function f(z) ∈ A is said to be in the class RT, consisting of functions
whose derivative have a positive real part, if it satisfies the condition

(∀ z ∈ E) : Re {f ′(z)} > 0.

Some preliminary lemmas required for proving our result are as follows.

2. Preliminary Results. Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + . . . = 1 +
∞∑
n=1

cnz
n, (3)
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which are regular in the open unit disc E and satisfy Re{p(z)} > 0 for any z ∈ E. Here p(z)
is called the Caratheòdory function ([6]).

Lemma 1 ([19, 23]). If p ∈P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is sharp for
the function

(
1+z
1−z

)
.

Lemma 2 ([9]). The power series for p(z) = 1 +
∑∞

n=1 cnz
n given in (3) converges in the

open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣∣∣

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N, c−k = ck,

are all non-negative. They are strictly positive except for p(z) =
∑m

k=1 ρkP0(e
itkz), ρk > 0,

tk real and tk 6= tj, for k 6= j, where P0(z) =
(
1+z
1−z

)
; in this case Dn > 0 for n < (m− 1) and

Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [9] is due to Caratheòdory and Toeplitz.
We may assume without restriction that c1 > 0. On using Lemma 2, for n = 2, we have

D2 =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣ = [8 + 2 Re {c21c2} − 2|c2|2 − 4|c1|2] ≥ 0,

which is equivalent to
2c2 = {c21 + x(4− c21)} (4)

for some x, |x| ≤ 1. For n = 3,

D3 =

∣∣∣∣∣∣∣∣
2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

∣∣∣∣∣∣∣∣ ≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (5)

Simplifying the relations (4) and (5), we get

4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z} (6)

with |z| ≤ 1. To obtain our results, we refer to the classical method initiated by R. J. Libera
and E. J. Zlotkiewicz ([14], [15]) and used by several authors in the literature.

3. Main Result.

Theorem 1. If f(z) = z +
∑∞

n=2 anz
n ∈ RT and f−1(w) = w +

∑∞
n=2 tnw

n near w = 0 is
the inverse function of f , then

|t2t3 − t4| ≤
1

3

(
13

6

) 3
2

.
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Proof. Since f(z) = z+
∑∞

n=2 anz
n ∈ RT , from Definition 1, there exists an analytic function

p ∈P in the open unit disc E with p(0) = 1 and Re[p(z)] > 0 such that

f ′(z) = p(z). (7)

Replacing f ′(z) and p(z) with their equivalent series expressions in (7), we have

1 +
∞∑
n=2

nanz
n−1 = 1 +

∞∑
n=1

cnz
n.

Upon simplification, we obtain

2a2 + 3a3z + 4a4z
2 + 5a5z

3 + . . . = c1 + c2z + c3z
2 + c4z

3 + . . . . (8)

Equating the coefficients of like powers of z0, z, z2 and z3 respectively on both sides of (8),
we have

a2 =
c1
2

; a3 =
c2
3

; a4 =
c3
4

; a5 =
c4
5
. (9)

Since f(z) = z +
∑∞

n=2 anz
n ∈ RT , from the definition of inverse function of f , we have

w = f
(
f−1(w)

)
= f−1(w)+

∞∑
n=2

an
(
f−1(w)

)n ⇔ w = w+
∞∑
n=2

tnw
n+

∞∑
n=2

an

(
w+

∞∑
n=2

tnw
n
)n
.

After simplifying, we get

(t2 + a2)w
2 + (t3 + 2a2t2 + a3)w

3 + (t4 + 2a2t3 + a2t
2
2 + 3a3t2 + a4)w

4+

+(t5 + 2a2t4 + 2a2t2t3 + 3a3t3 + 3a3t
2
2 + 4a4t2 + a5)w

5 + . . . = 0. (10)

Equating the coefficients of like powers of w2, w3, w4 and w5 on both sides of (10), respecti-
vely, further simplification gives

t2 = −a2; t3 = {−a3 + 2a22}; t4 = {−a4 + 5a2a3 − 5a32};
t5 = {−a5 + 6a2a4 − 21a22a3 + 3a23 + 14a42}. (11)

Using the values of a2, a3, a4 and a5 in (9) along with (11), upon simplification, we obtain

t2 =
−c1

2
; t3 =

1

6
{−2c2 + 3c21}; t4 =

1

24
{−6c3 + 20c1c2 − 15c31};

t5 =
1

120
{−24c5 + 90c1c3 − 210c21c2 + 40c22 + 105c41}. (12)

Substituting the values of t2, t3 and t4 from (12) in the functional |t2t3 − t4| for the inverse
function of f ∈ RT , after simplifying, we get

|t2t3 − t4| =
1

24
× |6c3 − 16c1c2 + 9c31|. (13)

Substituting the values of c2 and c3 from (4) and (6) respectively from Lemma 2 on the
right-hand side of (13), we have

|6c3 − 16c1c2 + 9c31| =
∣∣∣6× 1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}−
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−16c1 ×
1

2
{c21 + x(4− c21)}+ 9c31

∣∣∣.
Using the facts |z| < 1 and |pa + qb| ≤ |p||a| + |q||b|, where p, q, a and b are real numbers,
on the right-hand side of the above expression, after simplifying, we get

2|6c3 − 16c1c2 + 9c31| ≤ |5c31 + 6(4− c21)− 10(4− c21)|x| − 3(c1 + 2)(4− c21)|x|2|.

Choosing c1 = c ∈ [0, 2], applying triangle inequality, using the property (c + a) ≥ (c − a),
where a ≥ 0 and replacing |x| by µ on the right-hand side of the above inequality, we have

2|6c3 − 16c1c2 + 9c31| ≤ [5c3 + 6(4− c2) + 10c(4− c2)µ+ 3(c− 2)(4− c2)µ2] =

= F (c, µ), for 0 ≤ µ = |x| ≤ 1, (14)

where
F (c, µ) = [5c3 + 6(4− c2) + 10c(4− c2)µ+ 3(c− 2)(4− c2)µ2]. (15)

We next maximize the function F (c, µ) given in the left hand side of (14) on the closed region
[0, 2]× [0, 1]. Differentiating F (c, µ) in (15) partially with respect to µ, we get

∂F

∂µ
= [10c+ 6(c− 2)µ]× (4− c2). (16)

For 0 < µ < 1, fixed c with 0 < c < 2, from (16), we observe that ∂F
∂µ

> 0. This implies that
F (c, µ) is an increasing function of µ and hence it cannot have a maximum value at any
point in the interior of the closed region [0, 2]× [0, 1]. Further, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (17)

Therefore, simplifying the relations (15) and (17), we obtain

G(c) = −8c3 + 52c, (18)
G′(c) = −24c2 + 52, (19)
G′′(c) = −48c. (20)

For extreme values of G(c), consider G′(c) = 0. From (19), we have

−24c2 + 52 = 0⇔ c2 =
13

6
∈ [0, 2]. (21)

Substituting the value of c2 from (21) in (20), which simplifies to G′′(c) = −104 < 0. By
the second derivative test, G(c) has maximum value at c, where c2 given in (21). Using the
obtained value of c2 in (18), after simplifying, we get

max
0≤c≤2

G(c) =
104

3

√
13

6
. (22)

Considering, the maximum value of G(c) only at c2, simplifying the relations (14) and (22),
we obtain

|6c3 − 16c1c2 + 9c31| ≤
52

3

√
13

6
. (23)

From (13) and (23), after simplifying, we get |t2t3 − t4| ≤ 1
3

(
13
6

) 3
2 .
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The following theorems are straight forward verification on applying the same procedure
as described in Theorem 1.

Theorem 2. If f(z) ∈ RT and f−1(w) = w+
∑∞

n=2 tnw
n near w = 0 is the inverse function

of f , then |t2t3 − t4| ≤ 137
288
.

Theorem 3. If f(z) ∈ RT and f−1(w) = w+
∑∞

n=2 tnw
n near w = 0 is the inverse function

of f , then |t3 − t22| ≤ 2
3

and is sharp for the values c1 = c = 0, c2 = 2 and x = 1.

Theorem 4. If f(z) ∈ RT and f−1(w) = w+
∑∞

n=2 tnw
n near w = 0 is the inverse function

of f , then we have the following inequalities: (i) |t2| ≤ 1; (ii) |t3| ≤ 4
3
; (iii) |t4| ≤ 13

6
; (iv)

|t5| ≤ 59
15
.

Proof. Using the fact that |cn| ≤ 2, n ∈ N, with the help of c2 and c3 values given in
(4) and (6) respectively together with the values in (12), we at once obtain all the above
inequalities.

Using the results of Theorems 1, 2, 3 and 4 in (2), we obtain the following corollary.

Corollary 1. If f(z) ∈ RT and f−1(w) = w+
∑∞

n=2 tnw
n near w = 0 is the inverse function

of f , then

|H3(1)| ≤ 1

3

[
181

40
+

(
13

6

) 5
2

]
.
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9. U. Grenander, G. Szegő, Toeplitz forms and their applications, Second edition, Chelsea Publishing Co.,

New York, 1984.
10. W.K. Hayman, On the Second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc.,

3 (1968), 77–94.



60 D. Vamshee KRISHNA, B. VENKATESWARLU, T. RAMREDDY

11. A. Janteng, S.A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math.
Anal. (Ruse), 1 (2007), №13, 619–625.

12. A. Janteng, S.A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive
real part, J. Inequal. Pure Appl. Math., 7 (2006), №2, 1–5.

13. J.W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4 (2001), №1, 1–11.
14. R.J. Libera, E.J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc.

Amer. Math. Soc., 87 (1983), 251–257.
15. R.J. Libera, E.J. Z lotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer.

Math. Soc., 85 (1982), 225–230.
16. T.H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104

(1962), №3, 532–537.
17. J.W. Noonan, D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions,

Trans. Amer. Math. Soc., 223 (1976), №2, 337–346.
18. K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev.

Roumaine Math. Pures Appl., 28 (1983), №8, 731–739.
19. Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
20. Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112.
21. Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math.

Soc., 41 (1966), 111–122.
22. T. RamReddy, D. Vamshee Krishna, Hankel determinant for starlike and convex functions with respect

to symmetric points, J. Indian Math. Soc., 79 (2012)(N. S.), №1–4, 161–171.
23. B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, American Mathematical

Society Colloquium Publications, 54, Part 1, American Mathematical Society, Providence, RI, 2005.
24. D. Vamshee Krishna, T. RamReddy, An upper bound to the non-linear functional for certain subclasses

of analytic functions associated with Hankel determinant, Asian-European J. Math., 7 (2014), №2, 1–14.
25. D. Vamshee Krishna, T. RamReddy, An upper bound to the second Hankel determinant for certain

subclass of analytic functions, Proc. Jangeon Math. Soc., 16 (2013), №4, 559–568.
26. D. Vamshee Krishna, T. RamReddy, Coefficient inequality for certain subclasses of analytic functions,

New Zealand J. Math., 42 (2012), 217–228.
27. S. Verma, S. Gupta, S. Singh, Bounds of Hankel determinant for a class of univalent functions, Int. J.

Math. Sci., 2012, Article ID 147842, 6 p.

D. Vamshee Krishna1, B. Venkateswarlu2
Department of Mathematics, GIT, GITAM University
Visakhapatnam-530 045, A.P., India
vamsheekrishna1972@gmail.com1

bvlmaths@gmail.com2

T. RamReddy
Department of Mathematics, Kakatiya University
Warangal-506 009, A.P., India
reddytr2@gmail.com

Received 29.06.2014
Revised 12.11.2014


