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We consider a convolution type equation for the Smirnov spaces in a semi-strip. An esti-
mation of a solution in terms of analytic extension is obtained.
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PaCCManHBaeTCH YpaBHEHUNE THUIIa CBEPTKU [JIsI IPOCTPAHCTB CMI/IpHOBa B TOJIyIIOJIOCE.
Honyqua OII€HKa pelIeHud B TEPMHHAX aHAJIATUYICCKOT'O IIPOJOJIZKCHUA.

Let H?(C,),1 < p < 400, be the Hardy space of analytic in the half-plane C, =
{z: Rez > 0} functions with the condition

1/p

+oo
1Al =sup s [ 1re+ipdyp <o
x>

Properties of these spaces are described in details in [1]. There it is shown, particularly, that
each H?(C,),1 < p < 400, is a Banach space with respect to the above norm.
The following result is very famous (see [2, 3]).

Theorem A. Let ¢ € Ly(—00;0) and Q(z) = fi)oo q(t)e*dt. Then the following conditions
are equivalent:

1) the equation
0
[ vt naar=o, <o, 1)

has a nontrivial solution in ¢ € Ly(—00;0);
2) the system {Q(z)e™: 7 < 0} is not complete in H*(C,);
3) Q is not outer for H*(C,).
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A function Q € H?*(C,) is said to be outer for H*(C,) if G(z) # 0 for all z € C,
— 1
Q@I
T—r—400 €T

and the singular boundary function of () is constant.
The necessity part of above theorem is based on the following result.

Theorem B. Suppose g € Ly(—00;0), Q(2) = fi)oo q(t)et*dt. A function v € Ly(—00;0) is a
solution of equation (1) if and only if the function Q(iy)W¥ (iy), where W(z) = ffoo w(t)e =dt
is an angular boundary function on iR of some function P € H'(C,).

Let H?(C,),0 > 0,1 < p < 400, be the space of analytic functions in C, with

1/p

+oo
| f]| := sup / \f(rew)|pe_pm|sm‘p|dr < 400.
0

—g<p<3

Let EP[D,] and E¥[D,],1 < p < +00,0 > 0, be the spaces of analytic functions respectively
in the domains D, = {z: |Imz| < 0,Rez < 0} and D = C\D,, for which

1/p

sup /|f(z)|p|dz| < foo,
v

where supremum is taken over all segments v, that lay in D, and D}, respectively. The
spaces EP[D,| and E?[D,] are studied in [4], where it has been shown that the functions f
that belong to these spaces have a. e. on 9D, the angular boundary values which will be
denoted by f(z) and f € LP[OD,].

In [5, 6] the following equation is considered

/ flw+P)gw)dw =0, <0, g€ E2D,]. (@)
0Dy
In [7] the following analogue of Theorem A is obtained.
Theorem C. Let g € E?[D,]. Then the following conditions are equivalent:
1) equation (2) has a nontrivial solution f € E*[D,];
2) the system {G(z)e™: 7 < 0}, where G(z) = ﬁfam g(w)e *"dw, is not complete
in H3(Cy);

3) the function G has zero in C, or the singular boundary function of G is not constant

or
) 1 1 1 4 o
T‘ETOO <% / <z§ — ﬁ) In |G(it)|dt — ;1nr> > —00.

1<|t|<r
The singular boundary function h of G € H?(C, ) is uniquely defined (up to a constant)
at points of continuity ¢y, s by the equality

to to

h(ts) — h(t) = lim [ In|G(x + iy)|dy — / In|G(iy)|dy.

z—0+
t1 t1
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The aim of this article is to obtain the analogue of Theorem B for equation (2). Results
of this type can be used to describe the translation invariant subspaces for weighted Hardy
spaces (see [3], [7]). We denote by Fj, j € {1;2;3} the functions

B2 = o= [ fweran, e {23,
U

where [, (3, and [y are the legs of dD,, respectively the rays laying under and above of
the real axis, and the segment [—ic;ic], and their orientation corresponds to the positive
orientation of D,.

Theorem 1. Suppose f € Ey|[D,] is a solution of equation (2). Then Fi(iy)G(iy)e?? is
an angular boundary function on tR of a function P analytic in C, such that

00
Sup{ / |P(r6itp)| e—orlsingl 7. GRS (_7T/2 + 0; —5) U (5;71’/2 — 5)}< +00 (3)

for each 6 € (0;7/4).
For the proof of Theorem 1 we need some auxiliary results (see [5]).

Theorem D. If g € E2[D,], f € E?|D,], then for all 7 < 0 the equality

+i00 0 +o00
flw+7)g(w)dw = Oy (2)e™dz+ [ P3(2)ePdz+ [ Da(z)e™Fdz, (4)
/ [ [ ]

is valid, where ®,(it) = F;(it)G(it), t € R.

Lemma 1. Suppose f € E?|D,] is a solution of equation (2) and

+ioco 0 +oo
1 1 1 1 1
——— [ & — P __— |9
S(Z) 271 1(w)w — zdw + 271 3(w>w — zdw 211 2<w)w —z
0 —100 0

Then S(z) =0, z € C_.

Proof. Denote by pi(7), pe(7) and us(7) the summands in the right hand side of (4)
respectively. Then by Theorem A py(7) + po(7) + ps(t) = 0, 7 € (—o00;0) and also
fi)oo e " (uy (1) + pa(7) + pus(7))dr = 0, Rez < 0. But by Fubini’s Theorem for Rez < 0

0 0 +o0o +oo 0 +OO(I)
/G_TZ[I,Q(T)CZT: /e_Tz/q)Q(u)eT“dudT: /@2(u)du/67(“_z)d7':—/Mdu.
u—z
—00 —o0 0 0 —oo 0
Analogously,

0 +o00 0 0

Dy (2 Ds(1
/ ey (T)dr = —i / Mdv, / e P pg(T)dT =i / Mdv.
v — 2z v — 2

—00 0 —00 —00
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Hence
+ioco 0 +00
0=— [ oyw)——dw+ —— | Syw)——dw— —— [ dylw)——dw, Rez<0
N 1ww—zw 2mi 3ww—zw 2mi wa—zw’ €z ’
0 _ioo 0

Lemma 2. The function S has the angular boundary values almost everywhere (a. e.) on
OC, from C,. These values are equal to ®,(iv) for v > 0 and —P3(iv) for v < 0.

Proof. By Lemma 1 we have S(—Z) =0, z € C,, that is,

+i00 0 +o00

1 1 1 1 1 1
e — o d — P dw—— [ @ dw = 0.
2mi )zt o (W)t = g | el
0 oo 0
Hence
1 +i00 1
—9() = S(=3) = —— [ @ _ d
S(z) =95(z) —S(—2) " (w) (w—z ” z) w+
1 1 1 1 1
— | _ S _ -
+27m' ' (w) (w—z w+2>dw 2mi (w) (w—z w—l—z) dw
. +Fico ) 0 )
T T
—— [ L dw—
i ) O e ™ ) BT ™
0 —100
L7 2
x
—— | P dw.
270 2(w)(w—z) (w+ 2) v

0

The latter integral ([1]) is equal to zero everywhere on an imaginary axis except for, probably,
point z = 0. Obviously,

+i00 +ico
1 2x 1 T
R == [ @@
i ) 2 e e ™ T 5 / ) =y s
0 0

is the Poisson integral formula, hence has angular boundary values a. e. on dC, from C,
and values of the latter integral is equal to ®;(iv) for v > 0 and 0 for v < 0. Analogously we
can prove that the angular boundary values on 0C, from C, of the function

0

1 2
— [ P3(w) ’ —dw
2mi (w—2)(w+2)
is equal a. e. to —®3(iv) for v < 0 and 0 for v > 0. O

Let EP(D) be the Smirnov space (see [8]) over a domain D.
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Proof of Theorem 1. We claim that the function

P(Z) — e—iaz S(Z), z € C(O;TI‘/2);
S(z) — Py(z), ze€ C(—7/2;0)

is the desired function. Indeed, by Lemma 2 the angular boundary values of the function
S a.e. on 0C, from C, is equal to ®1(iw), v > 0, and —P3(iv), v < 0. But ®,(iv) =
—P3(iv) — Py (iv), v € R, hence the angular boundary values of the function P on dC, from
C a.e. is equal to @4 (iv).

From Lemma 1 we have

S() = $(2)+ S(-2) -

+i0c0 “+o00

/f1 Klwzdw+/f3 Kledw—/fg VK (w; 2)dw, =z € Cy,

—100

where Kj(w;z) =L —u_~ =L (_L 4

i (w—z)(w+z) 2w \w—z w+z

) Also

- t| d
—/’Kl(it;rew)’dr:/ . [t dr _ dr.
2 ) ) V12 — 2trsin g + 124/t + 2tr sin ¢ + 12

If t # 0, then

“+oo

/ |t| dr du
. . dr: . . *
) V12 = 2tr sin g + r2,/t2 + 2trsin ¢ + 12 ) V1 —2using +u2\/1 + 2usin ¢ + u?

For |p| < m/2 — 6 we have

“+o0

du </ du
V1 —2using + u2\/1 +2using +u2 ) 2¢/(1 — 2u|sin ¢| + u?)?

—+00

< 1 / du < ™
~ 2(1 —sin(7r/2 = 9)) J 14+ u? = 4(1 —sin(w/2 —0))

Also

/‘[ﬁt’re ‘d’r—/u_z t+z)’dr:

t
\/t2 + 2tr cos ¢ + 12/t2 — 2tr cos p + r2

dr =

1
VU2 +2ucos o + 1y/u? — 2ucosp + 1

du < 400,
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if p € (—m/2;m/2) \ (—3;0). ,
Therefore by the Fubini theorem f0+oodr foﬂoo 1P, (w) K (w; re'?)| dw < +o0, j € {1,2,3}.
Hence

+o00
sup / |S(re")|dr: ¢ € (—m/2+6;=0) U (6;7/2 —6) p < +o0.
0

Also
+oo
sup / ‘<I>2(7°ew)| e 2SIy o € (= /2 + 85 —0) p < +o0,
0
therefore Theorem 1 is proved. O

We do not know, whether estimation (4) for the case § = 0 is true, P € H}(C,). Remark
that in this case the assumptions of Theorem 1 are sufficient for the existence of a nontrivial
solution of equation (2).

Remark. Analogously we can prove that F3(iy)G(iy)e Y is an angular boundary function
on iR of such analytic in C, function P*, that

400
sup / | P*(re?)| e dr o e (= /246, =8) U (0;71/2 — 8) p < 400
0

for each § € (0;7/4).
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