L. I. Kolyasa, A. Z. Mokhon'ko, V. D. Mokhon'ko

ASYMPTOTIC PROPERTIES OF MEROMORPHIC SOLUTIONS OF DIFFERENTIAL EQUATIONS IN A NEIGHBORHOOD OF A LOGARITHMIC SINGULARITY

L. I. Kolyasa, A. Z. Mokhon'ko, V. D. Mokhon'ko. Asymptotic properties of meromorphic solutions of differential equations in a neighborhood of a logarithmic singularity, Mat. Stud. 42 (2014), 67-83.

We obtain asymptotic estimates of the moduli of meromorphic solutions with a logarithmic singularity at ∞ of the differential equation

$$
\begin{gathered}
\sum_{k+s=m} f^{k} f_{1}^{s} v_{k s}(z) z^{\tau_{k s}} \operatorname{Ln}^{\varkappa_{k s}} z=\sum_{|K|<m} b_{K}(z) f^{k_{0}} f_{1}^{k_{1}} \ldots f_{p}^{k_{p}}, \\
f^{\prime}=f_{1}, \ldots, f^{(p)}=f_{p}, K=\left(k_{0}, k_{1}, \ldots, k_{p}\right),|K|=k_{0}+k_{1}+\ldots+k_{p} ; \\
\tau_{m-s, s}-s \leqslant \tau_{m-n, n}-n, s<n=\max \left\{s: k+s=m, c_{k s} \neq 0\right\} ;
\end{gathered}
$$

where $v_{k s}(z), b_{K}(z)$ are analytic functions such that $\forall \alpha, \beta,-\infty<\alpha<\beta<+\infty$,

$$
\left|b_{K}\left(r e^{i \theta}\right)\right|<r^{\tau_{K}}, v_{k s}\left(r e^{i \theta}\right)=c_{k s}+o(1), r \rightarrow+\infty, \alpha \leqslant \theta \leqslant \beta ; \tau_{k s}, \varkappa_{k s}, \tau_{K} \in \mathbb{R}, c_{k s} \in \mathbb{C}
$$

Л. И. Коляса, А. З. Мохонько, В. Д. Мохонько. Асимптотические свойства мероморфных решений дифференииальных уравнений в окрестности логарифмической особой точки // Мат. Студії. - 2014. - Т.42, №1. - С.67-83.

Получены асимптотические оценки модуля мероморфных с логарифмической особой точкой в ∞ решений дифференциальных уравнений

$$
\begin{gathered}
\sum_{k+s=m} f^{k} f_{1}^{s} v_{k s}(z) z^{\tau_{k s}} \operatorname{Ln}^{\varkappa_{k s}} z=\sum_{|K|<m} b_{K}(z) f^{k_{0}} f_{1}^{k_{1}} \ldots f_{p}^{k_{p}}, \\
f^{\prime}=f_{1}, \ldots, f^{(p)}=f_{p}, K=\left(k_{0}, k_{1}, \ldots, k_{p}\right),|K|=k_{0}+k_{1}+\ldots+k_{p} ; \\
\tau_{m-s, s}-s \leqslant \tau_{m-n, n}-n, s<n=\max \left\{s: k+s=m, c_{k s} \neq 0\right\} ;
\end{gathered}
$$

где $v_{k s}(z), b_{K}(z)$ - аналитические функции, такие что $\forall \alpha, \beta,-\infty<\alpha<\beta<+\infty$,

$$
\left|b_{K}\left(r e^{i \theta}\right)\right|<r^{\tau_{K}}, v_{k s}\left(r e^{i \theta}\right)=c_{k s}+o(1), r \rightarrow+\infty, \alpha \leqslant \theta \leqslant \beta ; \tau_{k s}, \varkappa_{k s}, \tau_{K} \in \mathbb{R}, c_{k s} \in \mathbb{C}
$$

Let us consider the differential equation

$$
\begin{gather*}
\sum_{k+s=m} f^{k} f_{1}^{s} v_{k s}(z) z^{\tau_{k s}} \operatorname{Ln}^{\varkappa_{k s}} z=\sum_{|K|<m} b_{K}(z) f^{k_{0}} f_{1}^{k_{1}} \ldots f_{p}^{k_{p}}, \tag{1}\\
f^{\prime}=f_{1}, \ldots, f^{(p)}=f_{p}, k_{0}, k_{1}, \ldots, k_{p} \in \mathbb{N} \cup\{0\}, K=\left(k_{0}, k_{1}, \ldots, k_{p}\right), \\
|K|=k_{0}+k_{1}+\ldots+k_{p}, \tau_{k s}, \varkappa_{k s} \in \mathbb{R},
\end{gather*}
$$

2010 Mathematics Subject Classification: 34M05, 34M10, 34M35.
Keywords: meromorphic function; logarithmic singularity; differential equation.
where $v_{k s}(z), b_{K}(z), z \in G=\left\{z: r_{0} \leqslant|z|<+\infty\right\}$, such that $\forall \alpha, \beta,-\infty<\alpha<\beta<+\infty$,

$$
\left|b_{K}\left(r e^{i \theta}\right)\right|<r^{\tau_{K}}, v_{k s}\left(r e^{i \theta}\right)=c_{k s}+o(1), r \rightarrow \infty, \alpha \leqslant \theta \leqslant \beta, r \geqslant r_{0}
$$

$\tau_{K} \in \mathbb{R}, c_{k s} \in \mathbb{C} ; v_{k s}(z), b_{K}(z), z \in G$, are analytic functions, for example, for some K,

$$
b_{K}(z)=M_{K} z^{\tau_{K}-\varepsilon} \operatorname{Ln}^{\varkappa_{K}} z, \varepsilon>0, M_{K} \in \mathbb{C} .
$$

We assume that $v_{k s}(z) \equiv 0$ if $c_{k s}=0$ and

$$
\begin{equation*}
\exists k_{*}, s_{*} \in \mathbb{N} \cup\{0\}: k_{*}+s_{*}=m, c_{k_{*} s_{*}} \neq 0 \tag{2}
\end{equation*}
$$

Denote by

$$
\begin{equation*}
n=\max \left\{s: k+s=m, c_{k s} \neq 0\right\}, q=\min \left\{s: k+s=m, c_{k s} \neq 0\right\} . \tag{3}
\end{equation*}
$$

Theorem 1. Suppose that in the differential equation (1) $\tau_{m-s, s}-s \leqslant \tau_{m-n, n}-n, s<n$, or $n=0$. If $f(z), z \in G$, is a meromorphic function with a logarithmic singularity at ∞, has the order of growth $\mu, \mu<+\infty$, (if in (1) $p=1$, then the condition $\mu<+\infty$ is not necessary) and is a solution of the differential equation (1), then $(\forall \varepsilon>0)(\forall \xi, \psi,-\infty<\xi<\psi<+\infty)$ $(\exists d>0)$ one has

$$
\begin{equation*}
(r>d \wedge \xi \leqslant \theta \leqslant \psi) \Rightarrow \ln f\left(r e^{i \theta}\right)=\ln ^{v+1}\left(r e^{i \theta}\right)\left(\frac{y}{v+1}+g\left(r e^{i \theta}\right)\right) \tag{4}
\end{equation*}
$$

where $\left|g\left(r e^{i \theta}\right)\right|<\varepsilon, v>0, \operatorname{Re} y>0, r e^{i \theta} \notin E, E$ is a set of disks with a finite sum of radii, or $\exists \Delta \subset\left(r_{0},+\infty\right)$:

$$
\begin{equation*}
\ln \left|f\left(r e^{i \theta}\right)\right|<\varepsilon \ln ^{v+1} r, r>r(\theta), r \notin \Delta, \tag{5}
\end{equation*}
$$

Δ is a set of segments with a finite sum of lengths.
Example 1. The function $f(z)=e^{\ln ^{2} z}, z \neq 0$, is a solution of the differential equation $z f^{\prime}=2 f \ln z$, and satisfies (4).

Example 2. The Weierstrass elliptic function $\wp(z), z \in \mathbb{C}$, is a meromorphic function which has the order of growth $\mu=2([1, \mathrm{~V} .2$, p. 422]), and the function $\wp(z), z \in \mathbb{C}$, is a solution of the differential equation ([1, V.2, p. 362]) $4 f^{3}=\left(f^{\prime}\right)^{2}+g_{2} f+g_{3}$. This differential equation is an equation of form (1) with $n=0$ (see (3)) (in the left-hand side of this equation only one summand $4 f^{3}$ has degree $m=3$ for the functions f and f^{\prime}, therefore $v_{30}(z) \equiv 4=c_{30}$. Hence, for all other summands we have

$$
f^{k} f_{1}^{s}, k+s=3, s \geqslant 1, v_{k s}(z) \equiv 0=c_{k s}, n=\max \left\{s: k+s=3, c_{k s} \neq 0\right\}=0
$$

is true). For the Weierstrass function a sharper estimate than (5) will be proved

$$
|\wp(z)| \leqslant|z|^{\nu+\varepsilon}, z \in \mathbb{C} \backslash E,|z|>d, \nu=12, \varepsilon>0
$$

where E is the set of disks with a finite sum of radii.
Consider the differential equations of Painlevé $f^{\prime \prime}=6 f^{2}+z$ and $f^{\prime \prime}=2 f^{3}+z f+a$, $a=$ const, $z \in \mathbb{C}$. All solutions of these differential equations $f(z), z \in \mathbb{C}$ are transcendental meromorphic functions (Painlevé a transcendent) ([2, p. 189]) of finite order of growth
$\mu<\infty$ ([3]). Rewrite these equations in the form (1): $6 f^{2}=f^{\prime \prime}-z$ and $2 f^{3}=f^{\prime \prime}-z f-a$ with $n=0$ (see (3)).

For all solutions of the first and second Painlevé's equations we will prove the following estimate

$$
|f(z)| \leqslant|z|^{4 \mu+\varepsilon}, z \in \mathbb{C} \backslash E,|z|>d, \varepsilon>0
$$

where E is a set of disks with a finite sum of radii. According to the above estimate the first and the second Painlevé equations have no entire transcendental solutions.

Let us recall the definition of a meromorphic function with a logarithmic singularity at ∞. By A_{l} we denote the set of analytic functions in $G=\left\{z: r_{0} \leq|z|<\infty\right\}$ for which ∞ is the unique singular point, namely a logarithmic singular point. The set A_{l} is a commutative ring without divisors of zero (complete ring). The field of quotients of the ring A_{l} is denoted by $M_{l}\left(\right.$ each complete ring can be embedded in some field ([4, p. 52, 58])) $A_{l} \subset M_{l}$. If $f \in A_{l}$, then we shall say that $f(z), z \in G$, is an analytic function with an isolated logarithmic singular point at ∞. If $f \in M_{l}$, then the function $f(z), z \in G$, is called a meromorphic function with a logarithmic singularity at ∞.

In ([5, p. 12]) an equivalent definition of a meromorphic function is considered. This definition is based on a concept of analytic extension.

Let $f \in M_{l}$. For any $\alpha, \beta,-\infty<\alpha<\beta<+\infty$ (it is possible that $\beta-\alpha>2 \pi$) we denote by $f(z)$,

$$
\begin{equation*}
z \in g_{\alpha, \beta}=\left\{z=r e^{i \theta}: \alpha \leq \theta \leq \beta, r_{0} \leq r<+\infty\right\} \tag{6}
\end{equation*}
$$

a single-valued branch of the function $f \in M_{l}$ (see [5, p. 12]).
We consider Nevanlinna's characteristics of the function $f(z), z \in g_{\alpha, \beta}$ ([6, p. 40]). Write $\ln ^{+} x=\max (\ln x, 0), x \geq 0 ; k=\pi /(\beta-\alpha)>0$. Let $b_{l}=\left|b_{l}\right| \exp \left(i \theta_{l}\right)$ be the poles of the function $f(z), z \in g_{\alpha, \beta}$. We put

$$
\begin{gather*}
A_{\alpha, \beta}(r, f)=\frac{k}{\pi} \int_{r_{0}}^{r}\left(\frac{1}{t^{k+1}}-\frac{t^{k-1}}{r^{2 k}}\right)\left(\ln ^{+}\left|f\left(t e^{i \alpha}\right)\right|+\ln ^{+}\left|f\left(t e^{i \beta}\right)\right|\right) d t \\
B_{\alpha, \beta}(r, f)=\frac{2 k}{\pi r^{k}} \int_{\alpha}^{\beta} \ln ^{+}\left|f\left(r e^{i \theta}\right)\right| \sin k(\theta-\alpha) d \theta \\
C_{\alpha, \beta}(r, f)=2 k \int_{r_{0}}^{r} c_{\alpha, \beta}(t, f)\left(\frac{1}{t^{k+1}}+\frac{t^{k-1}}{r^{2 k}}\right) d t \tag{7}
\end{gather*}
$$

where

$$
c_{\alpha, \beta}(t, f)=c_{\alpha, \beta}(t, \infty)=\sum_{r_{0}<\left|b_{l}\right| \leq t, \alpha \leq \theta_{l} \leq \beta} \sin k\left(\theta_{l}-\alpha\right),
$$

is the counting function of the poles; each pole is counted according to its multiplicity,

$$
\begin{equation*}
S_{\alpha, \beta}(r, f)=A_{\alpha, \beta}(r, f)+B_{\alpha, \beta}(r, f)+C_{\alpha, \beta}(r, f), \quad r_{0} \leq r<\infty \tag{8}
\end{equation*}
$$

For any single-valued branch $f(z), z \in g_{\alpha, \beta}$ of the function $f \in M_{l}$ we define

$$
\begin{equation*}
\rho_{\alpha, \beta}=\varlimsup_{r \rightarrow+\infty} \frac{\ln ^{+} S_{\alpha, \beta}(r, f)}{\ln r} \tag{9}
\end{equation*}
$$

The value $\mu=\mu[f]=\sup \left\{\rho_{\alpha, \beta}:-\infty<\alpha<\beta<+\infty\right\}$ is called the order of growth of the function $f(z), z \in G$.

In particular if $\rho_{\alpha_{j}, \alpha_{j}+\pi}$ is the order of growth of the single-valued branch $f(z), z \in$ $g_{\alpha_{j}, \alpha_{j}+\pi}=\left\{r e^{i \theta}: r_{0} \leqslant r, \alpha_{j} \leqslant \theta \leqslant \alpha_{j}+\pi\right\}$, of the function $f \in M_{l}$, then $\rho_{\alpha_{j}, \alpha_{j}+\pi} \leqslant \mu$.
Preliminary construction. Let $f \in M_{l}$ be a solution of the differential equation (1); if in (1) $p=1$, then the function f has the order of growth $\mu, 0 \leqslant \mu<+\infty$ ([7]); if $p \geqslant 2$, then (according to the assumption of the theorem) the function f has the order of growth $\mu<+\infty$.

Let $\left\{c_{q}\right\}$ be the set of all zeros and poles of the meromorphic solution $f(z), z \in g_{\alpha, \alpha+\pi}$ of the differential equation (1). For any $\sigma>0$ and for each $c_{q}=\left|c_{q}\right| e^{i \theta_{q}}$ we consider the disk with the center at c_{q} and radius $\delta_{q}=\left|c_{q}\right|^{-\mu-1-\frac{\sigma}{5}} \sin \left(\theta_{q}-\alpha\right) ; \alpha<\theta_{q}<\alpha+\pi, \sigma>0$. Let E_{*} be the set of points that belong to these disks. Then by [8]

$$
\begin{equation*}
\left|\frac{f_{j}(z)}{f(z)}\right|<\frac{K|z|^{2 j\left(\mu+1+\frac{\sigma}{4}\right)}}{\sin ^{2 j}(\theta-\alpha)}, z=r e^{i \theta} \in g_{\alpha, \alpha+\pi} \backslash E_{*}, \sigma>0 ; \sum \delta_{q}<M=\text { const, } c_{q} \in\left\{c_{q}\right\} . \tag{10}
\end{equation*}
$$

For each $c_{q} \in\left\{c_{q}\right\}$ we consider the interval $\left[\left|c_{q}\right|-\delta_{q},\left|c_{q}\right|+\delta_{q}\right]$. Let Δ be the set of points that belong to these intervals. According to (10) E_{*} is the set of disks with a finite sum of radii, $\operatorname{mes} \Delta \leqslant \sum 2 \delta_{q}<+\infty$.

We divide (1) by $f^{m}(z)$. After simple transformations and new notation for coefficients and exponents we may rewrite differential equation (1) in the form $\left(z \in g_{\alpha, \alpha+\pi}\right)$

$$
\begin{gather*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{n}+\sum_{j=1}^{n-q}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{n-j} v_{j}(z) z^{d_{j}} \ln ^{h_{j}} z=\omega(z), v_{j}(z)=c_{j}+o(1), \tag{11}\\
\omega(z)=\sum_{|K| \leqslant m-1} b_{K}(z) z^{n-\tau_{m-n, m}}(\ln z)^{-\varkappa_{m-n, m}} \frac{\left(f_{1} / f\right)^{k_{1}} \ldots\left(f_{p} / f\right)^{k_{p}}}{f^{m-|K|}} \tag{12}
\end{gather*}
$$

$c_{j} \in \mathbb{C}, z \rightarrow \infty$. In particular, in (11)

$$
\begin{equation*}
d_{j}=\tau_{m-n+j, n-j}-\tau_{m-n, n}+j \leqslant 0, j \in\{1,2 \ldots, n-q\}, d_{0} \stackrel{\text { def }}{=} 0 \tag{13}
\end{equation*}
$$

(according to our assumptions $\tau_{m-s, s}-s \leqslant \tau_{m-n, n}-n, s<n, s=n-j$). Set

$$
\begin{gather*}
\Omega=\left\{z=t e^{i \theta}: t>(\sin (\theta-\alpha))^{-\frac{4}{\sigma}}, \alpha<\theta<\alpha+\pi\right\}, \sigma>0 ; \\
\chi=\max \left\{k_{1}+2 k_{2}+\ldots+p k_{p}:|K|<m\right\} . \tag{14}
\end{gather*}
$$

For any $\delta, 0<\delta<\frac{\pi}{2}$, there exists $d=d(\delta)$ such that

$$
Q=\left\{z:|z| \geqslant d, \alpha+\delta \leqslant \arg _{\alpha} z \leqslant \alpha+\pi-\delta\right\} \subset \Omega
$$

Considering (10), (14), we obtain ($c=$ const $)$

$$
\begin{equation*}
\left|\frac{f_{1}(z)}{f(z)}\right|^{k_{1}} \cdots\left|\frac{f_{p}(z)}{f(z)}\right|^{k_{p}}<\frac{c|z|^{\left(2 \mu+2+\frac{\sigma}{2}\right) \chi}}{\sin ^{2 \chi}\left(\arg _{\alpha} z-\alpha\right)}<c|z|^{(2 \mu+2+\sigma) \chi}, z \in \Omega \backslash E_{*} \tag{15}
\end{equation*}
$$

Using the new notation

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=L(z), c_{0}=1, d_{0}=0, h_{0}=0, v_{0}(z) \equiv 1, z \in g_{\alpha, \alpha+\pi} \tag{16}
\end{equation*}
$$

we may rewrite differential equation (11) in the form ($q \geqslant 0$)

$$
\begin{equation*}
L^{n}(z)+\sum_{j=1}^{n-q} L^{n-j}(z) v_{j}(z) z^{d_{j}}(\ln z)^{h_{j}}=\omega(z), c_{n-q} \neq 0 \tag{17}
\end{equation*}
$$

This equation is said to be characteristic for (1). We consider the set

$$
F=\left\{j: v_{j}(z)=c_{j}+o(1) \not \equiv 0, z \in g_{\alpha, \alpha+\pi}, j \in\{1,2, \ldots, n-q\}\right\} .
$$

Suppose that

$$
\begin{equation*}
\exists j \in F: d_{j}>0 \vee d_{j}=0, h_{j}>0 \tag{18}
\end{equation*}
$$

1°. If in equation (17)

$$
q=0 \vee q \geqslant 1, d_{n-q}<\max _{j \in F} d_{j},
$$

then we denote (see (17)) $H=\left\{\left(j, d_{j}\right): j \in F \cup\{0\}\right\}$ which is a subset of the plane.
2°. If in equation (17)

$$
q \geqslant 1, d_{n-q}=\max _{j \in F} d_{j} \stackrel{(18)}{\geqslant} 0,
$$

then we append to the set H the point $\left(n, d_{n}\right), d_{n} \stackrel{\text { def }}{=}-1$, and obtain the set $\widetilde{H}=\left\{\left(j, d_{j}\right): j \in\right.$ $F\} \cup\left\{\left(0, d_{0}\right)\right\} \cup\left\{\left(n, d_{n}\right)\right\}$.

Consider the case 1°. By the points of H, let us construct the Newton diagram (N. D.) of equation (17) (of the set H) and consider the convex hull of the set H. The polygon is the boundary of the hull. The points $\left(0, d_{0}\right)$ and $\left(n-q, d_{n-q}\right)$ divide the polygon into two polygonal lines. The top line is the N. D.. Let the vertices of the N. D. have abscissas

$$
\begin{equation*}
i_{0}, i_{1}, \ldots, i_{T}, 0=i_{0}<i_{1}<\ldots<i_{T}=n-q, \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{s \in\{1, \ldots, T\}}\left(i_{s}-i_{s-1}\right)=i_{T}-i_{0}=n-q, i_{T}=n-q . \tag{20}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\rho_{s}=\frac{d_{i_{s}}-d_{i_{s-1}}}{i_{s}-i_{s-1}}, s \in\{1,2, \ldots, T\}, \tag{21}
\end{equation*}
$$

where ρ_{s} are angular coefficients of the segments of the $N . D ., \rho_{1}>\rho_{2}>\ldots>\rho_{T}$. We set

$$
\begin{equation*}
\rho_{s}(n-j)+d_{j} \stackrel{\text { def }}{=} l_{j, s}, j \in F . \tag{22}
\end{equation*}
$$

The properties of the N. D. imply for the points of the set H

$$
\begin{equation*}
l_{i_{s-1}, s}=l_{i_{s}, s}=\max _{j \in F} l_{j, s} \stackrel{\text { def }}{=} l_{s} . \tag{23}
\end{equation*}
$$

Let a constant A satisfy the condition (see (21), (23))

$$
\begin{equation*}
A>\max \left(0, \max _{s \in\{1,2, \ldots, T\}}-l_{s}\right) . \tag{24}
\end{equation*}
$$

If the conditions in 2° hold then the point $\left(n, d_{n}\right), d_{n} \stackrel{\text { def }}{=}-1$, is added to the set H. As a result, we have the set $\widetilde{H}=\left\{\left(j, d_{j}\right): j \in F \cup\{0\}\right\} \cup\left(n, d_{n}\right)$. In this case we construct the
N. D. by the points of \widetilde{H} of equation (17) and consider the convex hull of \widetilde{H}. The polygon is the boundary of the hull. The points $\left(0, d_{0}\right)$ and $\left(n, d_{n}\right)$ divide the polygon into two polygonal lines. The top line is the N. D. of the set \widetilde{H} (of equation (17)). The vertices of the N. D. of the set \widetilde{H} have abscissas

$$
i_{0}, i_{1}, \ldots, i_{T}, i_{T+1}, 0=i_{0}<i_{1}<\ldots<i_{T}=n-q<i_{T+1}=n
$$

that are different from the abscissas of the N. D. vertices of the set H by just one additional point $i_{T+1}=n$. Similarly to (21) we consider angular coefficients of the edges of the N. D. of the set \widetilde{H}

$$
\begin{equation*}
\rho_{s}=\frac{d_{i_{s}}-d_{i_{s-1}}}{i_{s}-i_{s-1}}, s \in\{1,2, \ldots, T, T+1\}, \rho_{1}>\rho_{2}>\ldots>\rho_{T}>\rho_{T+1} . \tag{25}
\end{equation*}
$$

Due to 2° and the properties of the convex hull we obtain that $\rho_{1}>\rho_{2}>\ldots>\rho_{T} \geqslant 0$; $\rho_{T+1}<0$. Similarly to (22) we set

$$
\begin{equation*}
\rho_{s}(n-j)+d_{j}=l_{j, s}, s \in\{1, \ldots, T, T+1\}, j \in F \tag{26}
\end{equation*}
$$

From the properties of the N. D. we get for the points of the set \widetilde{H} that

$$
\begin{equation*}
l_{i_{s-1}, s}=l_{i_{s}, s}=\max _{j \in F} l_{j, s} \stackrel{\text { def }}{=} l_{s}, s \in\{1, \ldots, T, T+1\} \tag{27}
\end{equation*}
$$

Therefore the estimate of the number $A(24)$ becomes

$$
\begin{equation*}
A>\max \left(0, \max _{s \in\{1, \ldots, T\}+1}-l_{s}\right) . \tag{28}
\end{equation*}
$$

In [9] the following lemma is proved.
Lemma 1. Let the coefficients $\omega(z), v_{j}(z), z \in \Phi \subset g_{\alpha, \beta}, j \in\{1,2, \ldots, n-q\}$, in equation (17) be defined on an unbounded set Φ, such that $|\omega(z)|<|z|^{-A}$, (where the constant A satisfy (24) in the case 1° and (28) in the case 2°), as well as: a) $v_{j}(z) \equiv 0$ if $c_{j}=0$, b) $\forall \varepsilon>0 \exists \sigma=\sigma(\delta) \forall z \in \Phi \cap\left\{z=r e^{i \theta}: r \geqslant \sigma, \alpha \leqslant \theta \leqslant \beta\right\} \Rightarrow$

$$
v_{j}(z)=\left(c_{j}+g_{j}(z)\right), c_{j} \in \mathbb{C},\left|g_{j}(z)\right|<\frac{\delta^{2}}{2 n}
$$

If $\forall j \in F=\left\{j: v_{j}(z) \not \equiv 0, z \in \Phi, j \in\{1,2, \ldots, n-q\}\right\}$ in equation (17): the degrees $d_{j}<0 \vee d_{j}=0, h_{j} \leqslant 0$, then all solutions of equation (17) are bounded in $\Phi \cap\left\{z=r e^{i \theta}: r \geqslant \sigma\right.$, $\alpha \leqslant \theta \leqslant \beta\}$.

Let $\exists j \in F: d_{j}>0 \vee d_{j}=0, h_{j}>0$. Then $\rho_{s}, s \in\{1, \ldots, T\}$, are angular coefficients of the segments of the Newton diagram of the set $H=\left\{\left(j, d_{j}\right): j \in F \cup\{0\}\right\}$. Moreover, there exist integers $\xi_{s, 0}, \xi_{s, 1}, \ldots, \xi_{s, p_{s}}, s \in\{1, \ldots, T\}, 0=\xi_{1,0}<\xi_{1,1}<\ldots<\xi_{1, p_{1}}<\ldots<\xi_{s, 0}<$ $\xi_{s, 1}<\ldots<\xi_{s, p_{s}}<\ldots<\xi_{T, 0}<\xi_{T, 1}<\cdots<\xi_{T, p_{T}}=n-q$, and corresponding numbers $v_{s k}$, defined by the points $\left(j, h_{j}\right), j \in F$, such that there exist $\xi_{s, k}-\xi_{s, k-1}$ solutions

$$
\begin{gather*}
x_{j}(z)=\left(y_{j}+o(1)\right) z^{\rho_{s}}(\ln z)^{v_{s k}}, y_{j} \neq 0, z \in \Phi, z \rightarrow \infty \\
s \in\{1, \ldots, T\}, k \in\left\{1,2, \ldots, p_{s}\right\}, j \in\left\{\xi_{s, k-1}+1, \xi_{s, k-1}+2, \ldots, \xi_{s, k}\right\} \tag{29}
\end{gather*}
$$

of equation (17). The total sum of such solutions is
$\sum_{s \in\{1, \ldots, T\}} \sum_{k \in\left\{1,2, \ldots, p_{s}\right\}}\left(\xi_{s, k}-\xi_{s, k-1}\right)=\sum_{s \in\{1, \ldots, T\}}\left(\xi_{s, p_{s}}-\xi_{s, 0}\right)=\sum_{s \in\{1, \ldots, T\}}\left(i_{s}-i_{s-1}\right)=i_{T}-i_{0}=n-q$
(see (20)). Therefore, if $q=0$, then all n solutions of equation (17) are of form (29). In the case $q \geqslant 1, d_{n-q}<\max _{j \in F} d_{j}, q$ solutions of (17) are of the form

$$
\begin{gather*}
x_{j}(z)=o(1) z^{\rho_{T}}(\ln z)^{v_{T, p_{T}}}, \rho_{T}<0, z \in \Phi, z \rightarrow \infty, \\
j \in\left\{\xi_{T, p_{T}}+1, \xi_{T, p_{T}}+2, \ldots, n\right\} ; \xi_{T, p_{T}}=n-q, \tag{30}
\end{gather*}
$$

and in the case $q \geqslant 1, d_{n-q}=\max _{j \in F} d_{j}, q$ solutions of (17) are of the form

$$
\begin{equation*}
x_{j}(z)=o\left(z^{\rho_{T+1}}\right), z \rightarrow \infty, \rho_{T+1}<0, j \in\{n-q+1, n-q+2, \ldots, n\} . \tag{31}
\end{equation*}
$$

Lemma 2. Let conditions of Lemma 1 hold true and $\Phi \subset g_{\alpha \beta}, \Phi$ be an unbounded closed (open) set. By Φ_{0} we denote the connected component of the set Φ. If $\forall j \in F=\left\{j: g_{j}(z) \not \equiv 0\right.$, $z \in \Phi\}$ in equation (17) the degrees $d_{j}<0 \vee d_{j}=0, h_{j} \leqslant 0$, then all solutions of equation (17) are bounded in $\Phi \cap\left\{z=r e^{i \theta}: r \geqslant \delta, \alpha \leqslant \theta \leqslant \beta\right\}$.
$\exists j \in F: d_{j}>0 \vee d_{j}=0, h_{j}>0$. Let a continuous (analytic) function $x(z), z \in \Phi$ is a solution of equation (17). If in (17) $q=0$, then $\forall \varepsilon>0 \exists r_{0}$

$$
\begin{gather*}
x(z)=(y+u(z)) z^{\rho} \ln ^{v} z, y \neq 0,|u(z)|<\varepsilon, z \in \Phi_{0},|z| \geqslant r_{0}, \\
\rho, v \in \mathbb{R}, y \in \mathbb{C}, y=y\left(\Phi_{0}\right), \rho=\rho\left(\Phi_{0}\right), v=v\left(\Phi_{0}\right), \tag{32}
\end{gather*}
$$

where $u(z)$ is some continuous (analytic) function; y, ρ, v do not change if $z \in \Phi_{0},|z| \geqslant r_{0}$; y, ρ, v are one of the numbers $y_{j}, \rho_{s}, v_{s k}$, respectively, defined in Lemma 1. If $q \geqslant 1$, then statement (32) is true on Φ_{0} or

$$
\begin{equation*}
|x(z)|<|z|^{\zeta+\varepsilon}, \zeta+\varepsilon<0, z \in \Phi_{0},|z| \geqslant r_{0} \tag{33}
\end{equation*}
$$

holds, $\zeta=\rho_{T} \vee \zeta=\rho_{T+1}$ (see (30), (31)), $\varepsilon>0$ is sufficiently small.
Proof of Lemma 2. Let in (17) $q=0$. According to Lemma 1 all the solutions of equation (17) has form (29). The continuous function $x(z), z \in \Phi$, is the solution of equation (17). Hence, at each point $z \in \Phi,|z| \geqslant r_{0}$, the function $x(z), z \in \Phi$, coincides at least with one of the solutions (29)

$$
\begin{equation*}
x(z)=\left(y_{j}+o(1)\right) z^{\rho_{s}}(\ln z)^{v_{s k}}, y_{j} \neq 0, z \in \Phi \tag{34}
\end{equation*}
$$

If $x_{t}(z)=\left(y_{t}+o(1)\right) z^{\rho_{l}}(\ln z)^{v_{l n}}, y_{t} \neq 0, z \in \Phi$, is one of the solutions (29) of equation (17) and r_{0} is sufficiently large, then $x(z) \neq x_{t}(z), z \in \Phi,|z| \geqslant r_{0}$, when $\left|y_{j}-y_{t}\right|+\left|\rho_{s}-\rho_{l}\right|+$ $\left|v_{s k}-v_{l n}\right|>0$. Hence, taking into consideration continuity of $x(z), z \in \Phi$, and connectedness of the component $\Phi_{0}, \Phi_{0} \subset \Phi$, we obtain that (34) is true for all $z \in \Phi_{0},|z| \geqslant r_{0}$. Hence, (32) holds.

The solution $f \in M_{l}$ of equation (1) has the order of growth $\mu, \mu<+\infty$; the angular coefficients ρ_{s} of the segments of the N. D. are defined in (21), (25). Let $\mu_{0}=\max \left(\mu, \rho_{1}\right)$. We denote (see (28) and (24))

$$
\begin{gather*}
l=\max _{s \in\{1, \ldots, T\}}-l_{s} \vee l=\max _{s \in\{1, \ldots, T\}+1}-l_{s}, \\
\nu=\max \left(\mathfrak{y}, \max _{K}\left\{\tau_{K}+n-\tau_{m-n, m}+2\left(\mu_{0}+1\right) \chi+l\right\}\right), \tag{35}
\end{gather*}
$$

where a constant \mathfrak{y} is further determined by the solutions of characteristic equation (see (29), (39)). Let us consider the sets

$$
\begin{equation*}
\Phi=\left\{z: z \in \Omega \backslash E_{*},|f(z)| \geqslant|z|^{\nu+\varepsilon}\right\}, \Phi_{1}=\left\{z: z \in \Omega \backslash E_{*},|f(z)|<|z|^{\nu+\varepsilon}\right\} . \tag{36}
\end{equation*}
$$

On the set Φ the assumptions of Lemma 1 are satisfied $\left(\left|b_{K}(z)\right|<|z|^{\tau_{K}}\right)$

$$
\begin{align*}
|\omega(z)| \stackrel{(12)}{=} & \sum_{|K| \leqslant m-1} \left\lvert\, b_{K}(z) z^{n-\tau_{m-n, m}}(\ln z)^{-\kappa_{m-n, m} \mid} \frac{\left|f_{1} / f\right|^{k_{1}} \ldots\left|f_{p} / f\right|^{k_{p}}}{|f|^{m-|K|}} \leqslant\right. \\
\leqslant & \sum_{|K| \leqslant m-1}|z|^{n-\tau_{m-n, m}+\tau_{K}+\frac{\sigma}{9}} \frac{\left|f_{1} / f\right|^{k_{1}} \ldots\left|f_{p} / f\right|^{k_{p}}}{|f|} \stackrel{(15)}{\leqslant} \\
& \leqslant \sum_{|K| \leqslant m-1} c|z|^{n-\tau_{m-n, m}+\tau_{K}+(2 \mu+2+\sigma) \chi+\frac{\sigma}{9}} \frac{1}{|f|} \stackrel{(36)}{\leqslant} \\
\leqslant & \sum_{|K| \leqslant m-1}|z|^{n-\tau_{m-n, m}+\tau_{K}+\left(2 \mu_{0}+2+\sigma\right) \chi+\frac{\sigma}{8}-\nu-\varepsilon} \stackrel{(35)}{\leqslant}|z|^{-l+\sigma \chi+\frac{\sigma}{7}-\varepsilon} \tag{37}
\end{align*}
$$

(in (10) we assume that $\sigma<\frac{7 \varepsilon}{7 \chi+1}$).
If in equation (1) $n=0$ (see (3)) (hence, corresponding characteristic equation (17) does not depend on L), then in the left-hand side of (1) only one summand $f^{m} v_{m 0}(z) z^{\tau_{m 0}} \operatorname{Ln}^{\varkappa_{m 0}} z$, $v_{m 0}(z)=c_{m 0}+o(1)$, has the degree m in f and f^{\prime}. Then there exists $d>0$ such that $\Phi \cap\{z:|z|>d\}=\varnothing$. If we assume the contrary, then equation (17) has the form $c_{m 0}+o(1)=$ $o(1), z \in \Phi$. From here we obtain that $c_{m 0}=0$ which contradicts the assumption (2). Then from (36) it follows

$$
\begin{equation*}
|f(z)|<|z|^{\nu+\varepsilon}, z \in \Omega \backslash E_{*}, \tag{38}
\end{equation*}
$$

namely, in this case we obtain a sharper estimate than (5). From inequality (38) assertions formulated in example 2 follow.

Let us consider that (17) depend on $L(n \geqslant 1)$.
Let Φ_{0} be an arbitrary connected components of $\Phi, \Phi_{0} \subset \Phi$ (see (36)).
Assume for definiteness in (17) $q=0$. According to Lemma 2 for the continuous function $L(z)=\frac{z f^{\prime}(z)}{f(z)}$ which is a solution of equation (17): $\forall \delta>0 \exists r_{0}$ such that

$$
\begin{align*}
\frac{f^{\prime}(z)}{f(z)}= & (y+u(z)) z^{\rho-1} \ln ^{v} z, y \neq 0,|u(z)|<\frac{\delta}{10}, z \in \Phi_{0},|z| \geqslant r_{0} \\
& \rho, v \in \mathbb{R}, y \in \mathbb{C}, y=y\left(\Phi_{0}\right), \rho=\rho\left(\Phi_{0}\right), v=v\left(\Phi_{0}\right) \tag{39}
\end{align*}
$$

is true, where $u(z)$ is some analytic function; y, ρ, v do not change for $z \in \Phi_{0}, y, \rho, v$ are one from the numbers $y_{j}, \rho_{s}, v_{s k}$ respectively, defined in Lemma 1.

Let \mathfrak{y} be the greatest possible values of $|y|$ in (39) (see (35)).
Proof of Theorem 1. According to (13) inequalities $0 \geqslant \rho_{1}>\rho_{2}>\ldots>\rho_{T}$ hold for angular coefficients of the segments of the N.P.L, defined in (17) (see (21)). Hence, the angular coefficients are not positive. One of the conditions of (39) is true on the set Φ_{0}. We assume $r_{0}>0$ such that $f\left(r_{0} e^{i \theta}\right) \neq 0, \infty, \alpha \leqslant \theta \leqslant \alpha+\pi$. Thus

$$
\begin{equation*}
0<c<\left|f\left(r_{0} e^{i \theta}\right)\right|<C, \alpha \leqslant \theta \leqslant \alpha+\pi, c, C=\text { const. } \tag{40}
\end{equation*}
$$

Choose some $\varphi, \alpha<\varphi<\alpha+\pi$. Suppose that $z_{0}=r_{0} e^{i \varphi} \notin E_{*}$. Let us denote by $S(\varphi)$ the curve obtained when the point z moves from the point z_{0} along the ray $\left\{z: z=r e^{i \varphi}, r \geqslant r_{0}\right\}$ enveloping the disks of the set E_{*}, which are along the $\operatorname{arcs}\left\{z:\left|z-c_{q}\right|=\delta_{q}\right\}$ (see (10)) so that $\arg _{\alpha-\pi} z \geqslant \varphi$, where $\alpha-\pi \leqslant \arg _{\alpha-\pi} z<\alpha+\pi$.

If $\Phi \cap S(\varphi)=\varnothing$, then from (36) it follows

$$
\begin{equation*}
|f(z)|<|z|^{\nu+\varepsilon}, z \in S(\varphi) . \tag{41}
\end{equation*}
$$

Let $\Phi \cap S(\varphi) \neq \varnothing$. The set $\Phi \cap S(\varphi)$ is a union of connected components ω_{t} such that

$$
\begin{equation*}
|f(z)| \geqslant|z|^{\nu+\varepsilon}, \quad z \in \omega_{t} \tag{42}
\end{equation*}
$$

Moreover, if $z_{1 t}$ is the initial point and $z_{2 t}$ is the ending point of ω_{t} and $\left|z_{1 t}\right|>r_{0}$, $\left|z_{2 t}\right|<+\infty$, then

$$
\begin{equation*}
\left|f\left(z_{1 t}\right)\right|=\left|z_{1 t}\right|^{\nu+\varepsilon},\left|f\left(z_{2 t}\right)\right|=\left|z_{2 t}\right|^{\nu+\varepsilon} . \tag{43}
\end{equation*}
$$

For $z \in \omega_{t}(39)$ holds, $y=y(t), \rho=\rho(t), v=v(t)$. We denote by $\left\{\omega_{t}\right\}$ the set of all ω_{t} on $S(\varphi)$.

By w_{t}^{-}, w_{t}^{0} we denote such segments $w_{t} \in\left\{w_{t}\right\}$, for which equality (39) holds true with $\rho<0, \rho=0$, respectively.

Let $\omega_{\left[z_{1 t}, z_{2 t}\right]}$ be a parameterization of the "segment" ω_{t} from $z_{1 t}$ to $z_{2 t}, \omega_{\left[z_{1 t}, z_{2 t}\right]}: z=\lambda(s)$, $0 \leqslant s \leqslant 1, z_{1 t}=\lambda(0), z_{2 t}=\lambda(1) ;\left[\omega_{\left[z_{1 t}, z_{2 t}\right]}\right]=\omega_{t}$ be the carrier. According to the definition of ω_{t} we choose bijective mapping of the segment $[0,1]$ onto ω_{t} as the parameterization of the $\omega_{\left[z_{1 t}, z_{2 t}\right]}$. This curve consist of the segments of a ray $\left\{z: z=r e^{i \varphi}, r \geqslant r_{0}\right\}$ (denoted by γ) and arcs of the circles (denoted by ℓ). From the construction ω_{t} it follows that

$$
\begin{equation*}
z=\lambda(s) \in \gamma, s \quad \nearrow \Rightarrow|z| \nearrow, \tag{44}
\end{equation*}
$$

when the point $z, z \in \omega_{t}$, moves along ω_{t} on the segment of the line γ.
The sequence $\left\{c_{q}\right\}$ of zeros and poles $f(z), z \in g_{\alpha, \alpha+\pi}$, does not have finite accumulation points and in (10) the series $\sum_{c_{q} \in\left\{c_{q}\right\}} \delta_{q}$ is convergent, therefore $\forall \delta>0 \exists r(\delta)>0$

$$
\begin{equation*}
\operatorname{mes}\{\Delta \cap[r(\delta),+\infty)\} \leqslant \sum_{c_{q} \in\left\{c_{q}\right\},\left|c_{q}\right|>r(\delta)} 2 \delta_{q}<\frac{\delta}{2 \pi} . \tag{45}
\end{equation*}
$$

From (45) and the definition of Δ it follows that

$$
\begin{equation*}
\Delta=\bigcup_{j=1}^{\infty}\left[x_{j}, y_{j}\right], x_{j}<y_{j}<x_{j+1}, \sum_{x_{j}>r(\delta)} y_{j}-x_{j}<\frac{\delta}{2 \pi}, \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{z: y_{j}<|z|<x_{j+1}\right\} \cap \ell=\varnothing . \tag{47}
\end{equation*}
$$

Let the point $z_{1 t}$ of the "segment" ω_{t} is such that $y_{j}<\left|z_{1 t}\right|<x_{j+1}$; then from (47) it follows that $z_{1 t} \in \gamma$; considering the definition of $S(\varphi)$ and (44) we obtain $y_{j}<\left|z_{1 t}\right|<$ $x_{j+1} \Rightarrow \forall z \in \omega_{t}:\left|z_{1 t}\right| \leqslant|z|$.

If $r(\delta)<x_{j} \leqslant\left|z_{1 t}\right| \leqslant y_{j}$, then from (45) it follows that the total length of arcs ℓ is less than δ; however, taking into account (46), $y_{j}-x_{j}<\frac{\delta}{2 \pi},\left|z_{1 t}\right|-\frac{\delta}{2 \pi}<x_{j}$. Since $\left\{z: y_{j-1}<\right.$
$\left.|z|<x_{j}\right\} \cap \ell=\varnothing$ from conditions $x_{j} \leqslant\left|z_{1 t}\right| \leqslant y_{j}$ it follows that $\forall z \in \omega_{t}: x_{j} \leqslant|z|$; therefore $\left|z_{1 t}\right|-\frac{\delta}{2 \pi}<x_{j} \leqslant|z|$. Hence,

$$
\begin{equation*}
y_{j}<\left|z_{1 t}\right|<x_{j+1} \Rightarrow \forall z \in \omega_{t}:\left|z_{1 t}\right| \leqslant|z|, x_{j} \leqslant\left|z_{1 t}\right| \leqslant y_{j} \Rightarrow \forall z \in \omega_{t}:\left|z_{1 t}\right|-\frac{\delta}{2 \pi}<|z| . \tag{48}
\end{equation*}
$$

Similarly

$$
\begin{gather*}
y_{m}<\left|z_{2 t}\right|<x_{m+1} \Rightarrow \forall z \in \omega_{t}:|z| \leqslant\left|z_{2 t}\right|, \\
x_{m} \leqslant\left|z_{2 t}\right| \leqslant y_{m} \Rightarrow \forall z \in \omega_{t}:|z| \leqslant y_{m}<\left|z_{2 t}\right|+\frac{\delta}{2 \pi} . \tag{49}
\end{gather*}
$$

According to (10), the total length ℓ is less than $2 \pi M$. From (39) it follows that for $\zeta \in w_{t}^{-}$,

$$
\begin{equation*}
\left|\frac{f^{\prime}(\zeta)}{f(\zeta)}\right|<\left(|y|+\frac{\delta}{10}\right) \frac{1}{|\zeta|}, \zeta \in w_{t}^{-} \tag{50}
\end{equation*}
$$

is valid. Integrating (39) along w_{t}^{-}and taking the real parts, using (50), (48), (49) and the fact that $|z| \geq r_{1 t} \geq r_{0}$, r_{0} is sufficiently large, $\delta>0$ is sufficiently small, we obtain

$$
\begin{gather*}
\ln \left|\frac{f(z)}{f\left(z_{1 t}\right)}\right| \leq\left|\int_{\gamma} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta+\int_{\ell} \frac{f^{\prime}(\zeta)}{f(\zeta)} d \zeta\right|<\left(|y|+\frac{\delta}{10}\right)\left(\int_{r_{1 t}-\delta}^{|z|+\delta} \frac{d x}{x}+\frac{2 \pi M}{r_{1 t}-\delta}\right)< \\
<\left(|y|+\frac{\delta}{9}\right) \ln |z|, \quad z \in w_{t}^{-},|z| \geq r_{0}, \delta<\varepsilon \tag{51}
\end{gather*}
$$

If $r_{1 t}>r_{0}$, then (43), (51) imply it follows that

$$
\ln \left|f\left(z_{1 t}\right)\right|=(\nu+\varepsilon) \ln r_{1 t}, \ln |f(z)| \leq\left(|y|+\frac{\delta}{9}\right) \ln |z|+(\nu+\varepsilon) \ln r_{1 t},
$$

therefore, taking into account (35) and $|y| \leq \nu, \delta<\varepsilon$, we obtain

$$
\begin{equation*}
\ln |f(z)| \leq(\nu+2 \varepsilon) \ln r, z \in w_{t}^{-}, z>r(\varphi) \tag{52}
\end{equation*}
$$

If $r_{1}=r_{0}$, then from (40), (35), (42), (51) we obtain $\ln \left|f\left(z_{1 t}\right)\right| \leq \ln C$ and

$$
(\nu+\varepsilon) \ln r \leq \ln |f(z)|<\left(|y|+\frac{\delta}{9}\right) \ln |z|+\ln C, r_{1 t} \leq|z| \leq r_{2 t},|y| \leq \nu, \delta<\varepsilon
$$

It is possible only if $r_{2 t}<r_{*}$, where $r_{*}=$ const. Finally, in this case (52) holds.
For any $\theta_{1}, \theta_{2}, \alpha-\pi<\theta_{1}<\theta_{2}<\alpha+\pi$, there exists $\varphi, \theta_{1}<\varphi<\theta_{2}$

$$
\begin{equation*}
\left\{z: \arg _{\alpha-\pi} z=\varphi=\text { const, } \quad z \geq d\right\} \cap E_{*}=\varnothing, \quad d=\frac{2 \pi M}{\theta_{2}-\theta_{1}} \tag{53}
\end{equation*}
$$

Therefore, if Π is a set of these values $\varphi, \alpha<\varphi<\alpha+\pi$, for which (53) holds, then the set Π is dense on $(\alpha, \alpha+\pi)$.

Let $\varphi \in \Pi$. Choose $r_{0}>d$ such that $f\left(r_{0}\right) \neq 0, \infty, \alpha \leq \theta \leq \alpha+\pi$. Thus (40), (53) hold; the curve $S=S(\varphi)$, defined above, is the ray $S(\varphi)=\left\{z: \arg _{\alpha-\pi} z=\varphi=\right.$ const, $\left.z \geq d\right\}$, and the part $\omega_{t} \subset S(\varphi)$, defined in (42), (43), is a segment of line. By ω_{t}^{-}we denote such
segments ω_{t} for which equality (39) holds with $\rho<0$; let ω_{t}^{0} be the segments ω_{t} for which equality (39) with $\rho=0$ holds. If segment $w_{t}^{-} \subset S(\varphi)$ exists, then from (39) it follows that

$$
\begin{equation*}
\left|\frac{f^{\prime}(\zeta)}{f(\zeta)}\right| \leq\left(|y|+\frac{\delta}{9}\right) \frac{1}{|\zeta|}, \zeta \in w_{t}^{-} \tag{54}
\end{equation*}
$$

Integrating (39) along the arc $w_{\left[z_{1 t}, z\right]}^{-}$of the segment $w_{\left[z_{1 t}, z_{2 t}\right]}^{-}: z=t e^{i \varphi},\left|z_{1 t}\right| \leq t \leq\left|z_{2 t}\right|$, and extracting the real part and taking into account (54) we obtain

$$
\ln \left|\frac{f(z)}{f\left(z_{1 t}\right)}\right|<\left(|y|+\frac{\delta}{9}\right) \int_{r_{1 t}}^{r} \frac{d s}{s}<\left(|y|+\frac{\delta}{9}\right) \ln \frac{r}{r_{1 t}}, r_{1 t} \leq|z| \leq r_{2 t},|z|=r, z \in w_{t},
$$

therefore

$$
\begin{equation*}
\left|\frac{f(z)}{f\left(z_{1 t}\right)}\right|<\left(\frac{r}{r_{1 t}}\right)^{|y|+\frac{\delta}{9}}, 0<\delta<\varepsilon . \tag{55}
\end{equation*}
$$

It will be proved that in this case

$$
\begin{equation*}
\exists r_{*}:\left\{z: \arg _{\alpha-\pi} z=\varphi \in \Pi,|z| \geq r_{*}\right\} \bigcap w_{t}^{-}=\varnothing \tag{56}
\end{equation*}
$$

is true. Let there exists the "segment" $\omega_{t}^{0} \subset S(\varphi)$. Since $\omega_{t}^{0} \subset \Phi_{0}$, where Φ_{0} is the connected component, then from (39) it follows that $(\rho=0)$

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}=(y+u(z)) z^{-1} \ln ^{v} z, y \neq 0,|u(z)|<\frac{\delta}{10}, z \in \Phi_{0},|z| \geqslant r_{0} . \tag{57}
\end{equation*}
$$

If $z=|z| e^{i \varphi}, \alpha<\varphi<\alpha+\pi$, then $\ln z=\ln |z|\left(1+\frac{i \varphi}{\ln |z|}\right)$ and taking into account Taylor series expansion formula we obtain

$$
\ln ^{v} z=\ln ^{v}|z|\left(1+\frac{i \varphi}{\ln |z|}\right)^{v}=\ln ^{v}|z|\left(1+O\left(\frac{1}{\ln |z|}\right)\right), \alpha<\varphi<\alpha+\pi, z \rightarrow \infty
$$

Thus from (57) we have

$$
\begin{gather*}
\frac{f^{\prime}(z)}{f(z)}=(y+u(z))\left(1+O\left(\frac{1}{\ln |z|}\right)\right) \frac{\ln ^{v}|z|}{z}= \\
=\left(y+u_{1}(z)\right) \frac{\ln ^{v}|z|}{z},\left|u_{1}(z)\right|<\frac{\delta}{9}, z \in \Phi_{0},|z| \geqslant r_{0}, y \neq 0 . \tag{58}
\end{gather*}
$$

Let in (58) $v>0$. Integrating (58) over the arc $\omega_{\left[z_{1 t}, z\right]}^{0}$ of the segment

$$
\omega_{\left[z_{11}, z_{2 t}\right]}^{0}: z=t e^{i \varphi},\left|z_{1 t}\right| \leq t \leq\left|z_{2 t}\right|, \quad\left(\left|z_{1 t}\right|=r_{1 t},\left|z_{2 t}\right|=r_{2 t},|z|=r\right)
$$

and taking the real part, we obtain

$$
\begin{align*}
\ln \frac{f(z)}{f\left(z_{1 t}\right)} & =\frac{y+\omega(z)}{v+1}\left(\ln ^{v+1}|z|-\ln ^{v+1}\left|z_{1 t}\right|\right), y=|y| e^{i \beta},|\omega(z)|<\frac{\delta}{9} \\
\ln \left|\frac{f(z)}{f\left(z_{1 t}\right)}\right| & =\frac{|y| \cos \beta+g(z)}{v+1}\left(\ln ^{v+1}|z|-\ln ^{v+1}\left|z_{1 t}\right|\right),\left|z_{1 t}\right| \leq|z| \leq\left|z_{2 t}\right| \tag{59}
\end{align*}
$$

where $w(z), g(z)$ are some functions, $|w(z)|<\frac{\delta}{9},|g(z)|<\frac{\delta}{9}, z \in \omega_{t}^{0}, v>0$; hence, β takes a finite amount of possible values.

1. If $\cos \beta=0$ in (59), then (40) and (43) imply that

$$
\begin{equation*}
\ln |f(z)|<\frac{\delta}{5} \ln ^{v+1}|z|, z \in \omega_{t}^{0}, r_{1 t} \leqslant|z| \leqslant r_{2 t} \leqslant+\infty, v>0 \tag{60}
\end{equation*}
$$

2. Suppose that $\cos \beta<0$ in (59). Choose $\delta>0$ such that $|y| \cos \beta+\frac{\delta}{2}<0$ (β is one of a finite amount of possible values). Then the right-hand side of (59) is negative. If $r_{0}<r_{1 t}$, then from (43) and (59) it follows that

$$
\ln \left|f\left(r e^{i \varphi}\right)\right|<\ln \left|f\left(r_{1 t} e^{i \varphi}\right)\right|=(\nu+\varepsilon) \ln r_{1 t}, r_{1 t}<r \leqslant r_{2 t} \leq+\infty
$$

Therefore, we have a contradiction with (42). If $r_{0}=r_{1 t}$, then taking into account (59) and (40) we obtain

$$
\ln \left|f\left(r e^{i \varphi}\right)\right|<\ln \left|f\left(r_{1 t} e^{i \varphi}\right)\right|<\ln C, r_{1 t}<r \leqslant r_{2 t}
$$

The latter statement together with (42) imply that $r_{2 t}<r_{*}=$ const, thus

$$
\begin{equation*}
\exists r_{*}:\left\{z: \arg _{\alpha-\pi} z=\varphi \in \Pi,|z| \geqslant r_{*}\right\} \cap \omega_{t}^{0}=\varnothing, \cos \beta<0 \tag{61}
\end{equation*}
$$

3. Let $\cos \beta>0$ in (59) and $r_{0}<r_{1 t}<r_{2 t}<+\infty$. Choose δ such that $0<\delta<|y| \cos \beta$. Then taking into consideration (43) we may rewrite (59) as follows

$$
(\nu+\varepsilon) \ln \frac{r_{2 t}}{r_{1 t}}=\ln \left|\frac{f\left(r_{2 t} e^{i \varphi}\right)}{f\left(r_{1 t} e^{i \varphi}\right)}\right|>|y| \cos \beta \frac{\ln ^{v+1} r_{2 t}-\ln ^{v+1} r_{1 t}}{2(v+1)},
$$

or

$$
\begin{equation*}
c\left(\ln r_{2 t}-\ln r_{1 t}\right)>\ln ^{v+1} r_{2 t}-\ln ^{v+1} r_{1 t}, r_{1 t}<r_{2 t}, v>0, \tag{62}
\end{equation*}
$$

where $c=\frac{2(v+1)(\nu+\varepsilon)}{|y| \cos \beta}$. The function $\ln ^{v+1} r-c \ln r \uparrow+\infty$ if $r>e^{\left(\frac{c}{v+1}\right)^{\frac{1}{v}}}$. Therefore, (62) is impossible if $r_{1 t}>r_{*}=$ const. If $r_{0}=r_{1 t}<r_{2 t}<+\infty$ in (59), then the proof is similar. Hence

$$
\begin{equation*}
\exists r_{*}:\left\{z: \arg _{\alpha-\pi} z=\varphi \in \Pi,|z| \geqslant r_{*}\right\} \cap \omega_{t}^{0}=\varnothing, \cos \beta>0, r_{2 t}<+\infty \tag{63}
\end{equation*}
$$

4. Suppose that $r_{2 t}=+\infty$ (the segment ω_{t}^{0} has an infinite length) and $\cos \beta>0$ in (59). We consider $|z|=r$ is so large that in (59): $|g(z)|<\frac{\delta}{9}<\frac{|y| \cos \beta}{3}, z \in \omega_{t}^{0} \subset S(\varphi)$. Therefore

$$
\begin{equation*}
\ln \left|f\left(r e^{i \varphi}\right)\right|=\frac{|y| \cos \beta+g(z)}{v+1} \ln ^{v+1}|z|+O(1), r_{1 t} \leq r \leq+\infty \tag{64}
\end{equation*}
$$

Let take φ_{1} such that $\varphi<\varphi_{1}<\alpha+\pi$. We have $\omega_{t}^{0} \subset \Phi_{0}$. Let us prove that

$$
\begin{equation*}
\exists d:\left\{z: \varphi \leqslant \arg _{\alpha} z \leqslant \varphi_{1},|z| \geqslant d\right\} \backslash E_{* *} \subset \Phi_{0} \tag{65}
\end{equation*}
$$

where $E_{* *}$ is a set of disks with a finite sum of radii.
Let denote by H_{r} the curve obtained when the point z moves from the point $z \in S(\varphi)$, $|z|=r$, along the arc $\left\{r e^{i \theta}: \varphi \leqslant \theta \leqslant \alpha+\pi\right\}$ enveloping the disks with centers at c_{q} (see (10)) along the arcs $\left\{z:\left|z-c_{q}\right|=\delta_{q}\right\}$. We denote these arcs by \varkappa. Let $z=r(x) e^{i \theta(x)}, 0 \leqslant x \leqslant 1$ be the equation of H_{r}. We choose arcs \varkappa such that in the equation $H_{r}: r(x) \geqslant r$ holds.

The point $z=r(0) e^{i \theta(0)}$ is the starting point of the curve $H_{r}, z=r(0) e^{i \theta(0)} \in \omega_{t}^{0} \subset \Phi_{0}$. Let $x_{*} \in[0,1], x_{*}$ be the largest value, such that the curve

$$
h_{r}=\left\{z: z \in H_{r}, z=r(x) e^{i \theta(x)}, 0 \leqslant x \leqslant x_{*}\right\} \subset \Phi_{0}
$$

($\left[h_{r}\right] \subset \Phi_{0}$, where $\left[h_{r}\right]$ is the set of points of the arc h_{r}), Φ_{0} is the connected component of Φ. The point $z=r(0) e^{i \theta(0)} \in \Phi_{0} \subset \Phi$ and (64) is true at this point. From the definition of Φ it follows that $0<x_{*}$. Suppose that $\theta\left(x_{*}\right)<\varphi_{1}$. From the definition of the connected component $\Phi_{0} \subset \Phi$ and the definition of the point x_{*} it follows that

$$
\begin{equation*}
\left|f\left(r\left(x_{*}\right) e^{i \theta\left(x_{*}\right)}\right)\right|=\left(r\left(x_{*}\right)\right)^{\nu+\varepsilon} . \tag{66}
\end{equation*}
$$

The curve h_{r} consists of arcs of the circle $\{z:|z|=r\}$ and of the $\operatorname{arcs} \varkappa$. The total length of the arcs \varkappa is not greater than $2 \pi M$ (see (10)), therefore $r \leqslant r(x)<r+2 \pi M, r(x) e^{i \theta(x)} \in\left[h_{r}\right]$.

The length h_{r} is less than $\pi r+2 \pi M$. Therefore, integrating (58) along $h_{r},\left[h_{r}\right] \subset \Phi_{0}$, and extracting the real parts we obtain

$$
\ln \left|\frac{f\left(r\left(x_{*}\right) e^{i \theta\left(x_{*}\right)}\right)}{f(z)}\right|=\operatorname{Re} \int_{h_{r}}(y+u(\zeta)) \frac{\ln ^{v} \zeta}{\zeta} d \zeta=O\left(\ln ^{v} r\right), r \rightarrow+\infty
$$

because

$$
\begin{aligned}
& \left|\int_{h_{r}}(y+u(\zeta)) \frac{\ln ^{v} \zeta}{\zeta} d \zeta\right| \leqslant\left(|y|+\frac{\delta}{10}\right) 2 \int_{h_{r}} \frac{\ln ^{v}|\zeta|}{|\zeta|} d s \leqslant \\
& \quad \leqslant\left(|y|+\frac{\delta}{10}\right) 2 \frac{\ln ^{v} r}{r}(\pi r+2 \pi M)=O\left(\ln ^{v} r\right)
\end{aligned}
$$

Therefore, from (64) and (66) it follows that $\left(|g(z)|<\frac{\delta}{9}<\frac{|y| \cos \beta}{3}, z \in \omega_{t}^{0}\right)$

$$
(\nu+\varepsilon) \ln r=\ln |f(z)|+O\left(\ln ^{v} r\right)>\frac{|y| \cos \beta}{2(v+1)} \ln ^{v+1} r, v>0, \cos \beta>0 .
$$

But this is impossible for a sufficiently large r. Therefore $\theta\left(x_{*}\right) \geqslant \varphi_{1}$ and (65) is proved. Similarly, we can show that $\forall \varphi_{0}, \varphi_{1}, \alpha<\varphi_{0}<\varphi_{1}<\alpha+\pi, \exists d$:

$$
\begin{equation*}
B=\left\{z: \varphi_{0} \leqslant \arg _{\alpha} z \leqslant \varphi_{1},|z| \geqslant d\right\} \backslash E_{* *} \subset \Phi_{0}, f\left(d e^{i \theta}\right) \neq 0, \infty \tag{67}
\end{equation*}
$$

where $E_{* *}$ is the set of disks with a finite sum of radii, $\alpha \leqslant \theta \leqslant \alpha+\pi$.
Let us denote by $\Gamma(z)$ the curve obtained when the point z moves in due order along the segment $\{z: z \in S(\varphi), d \leqslant|z| \leqslant r\} \subset B$ and along the curve H_{r}. Let $z_{1}=d e^{i \varphi}$ be the starting point and $z=r(x) e^{i \theta(x)} \in B$ be the ending point of $\Gamma(z)$ (see above). Integrating (57) over $\Gamma(z)$, we obtain

$$
\begin{gather*}
\ln \frac{f(z)}{f\left(z_{1}\right)}=y\left(\ln ^{v+1} z-\ln ^{v+1} z_{1}\right)(v+1)^{-1}+\int_{\Gamma(z)} \frac{u(\zeta) \ln ^{v} \zeta}{\zeta} d \zeta, z \in B, \\
\left|\int_{\Gamma(z)} \frac{u(\zeta) \ln ^{v} \zeta}{\zeta} d \zeta\right| \leqslant \frac{2 \delta}{3}\left(\frac{\ln ^{v+1} r}{v+1}+\frac{\ln ^{v} r}{r}(\pi r+2 \pi M)\right) \tag{68}
\end{gather*}
$$

The estimate of integral in (68) is uniform by $\arg _{\alpha} z$ in B. Since values of $\varphi_{0}, \varphi_{1}, \alpha<\varphi_{0}<$ $\varphi_{1}<\alpha+\pi$ were chosen arbitrarily, then from (68) it follows that estimate (4) is true on the set $\left\{r e^{i \theta}: \alpha+\varepsilon<\theta<\alpha+\pi-\varepsilon, r \geqslant d\right\}, \varepsilon>0$.
5. Suppose that in (57) $v \leq 0$. Integrating (57) along ω_{t}^{0} and extracting the real parts we obtain

$$
\ln \left|\frac{f(z)}{f\left(z_{1 t}\right)}\right|<\left(|y|+\frac{\delta}{9}\right) \int_{r_{1 t}}^{r} \frac{d s}{s}<\left(|y|+\frac{\delta}{9}\right) \ln \frac{r}{r_{1 t}}, r_{1 t} \leqslant|z| \leqslant r_{2 t},|z|=r, z \in \omega_{t},
$$

or

$$
\begin{equation*}
\left|\frac{f(z)}{f\left(z_{1 t}\right)}\right|<\left(\frac{r}{r_{1 t}}\right)^{|y|+\frac{\delta}{9}}, 0<\delta<\varepsilon . \tag{69}
\end{equation*}
$$

Exactly the same estimate holds in the case $\rho<0$ (see (55)). Let $r_{0}<r_{1 t}<r_{2 t}<+\infty$. From (69) and (43) we obtain

$$
\left|\frac{f\left(z_{2 t}\right)}{f\left(z_{1 t}\right)}\right|=\left(\frac{r_{2 t}}{r_{1 t}}\right)^{\nu+\varepsilon}<\left(\frac{r_{2 t}}{r_{1 t}}\right)^{|y|+\frac{\delta}{9}}, 0<\delta<\varepsilon
$$

but this is impossible because $|y| \leqslant \nu, \delta<\varepsilon$ (see (35)). If $r_{0}<r_{1 t}<r_{2 t}=+\infty$, then from (69) and (42) we obtain

$$
r^{\nu+\varepsilon} \leqslant\left|f\left(r e^{i \varphi}\right)\right|<\left|f\left(r_{1} e^{i \varphi}\right)\right|\left(\frac{r}{r_{1 t}}\right)^{|y|+\frac{\delta}{9}}, r>r_{1 t}
$$

but this is also impossible because $|y| \leqslant \nu, \delta<\varepsilon$. Let $r_{0}=r_{1 t}$. From (40), (42) and (69) we obtain

$$
\begin{equation*}
r^{\nu+\varepsilon} \leqslant\left|f\left(r e^{i \varphi}\right)\right|<C\left(\frac{r}{r_{1 t}}\right)^{|y|+\frac{\delta}{9}}, r_{0} \leqslant r \leqslant r_{2 t} . \tag{70}
\end{equation*}
$$

Since $|y| \leqslant \nu, \delta<\varepsilon$, then (70) is possible if $r_{2 t}<r_{*}$ where r_{*} is a constant. Therefore

$$
\begin{equation*}
\exists r_{*}:\left\{z: \arg _{\alpha-\pi} z=\varphi \in \Pi,|z| \geqslant r_{*}\right\} \cap \omega_{t}^{0}=\varnothing, v \leq 0 . \tag{71}
\end{equation*}
$$

Simultaneously we have proved (56).
The similar arguments could be applied if for any $\varphi \in \Pi$ the ray

$$
S(\varphi)=\left\{z: \arg _{\alpha-\pi} z=\varphi=\text { const, } z \geq d\right\}
$$

contains the segment w_{t}^{0} of an infinite length on which $\cos \beta>0$ in (59), then the statement (4) of theorem 1 holds. Otherwise $\forall \varphi \in \Pi$ on the ray $S(\varphi)$ one of the ratio (41), (60), (61), (63), (56), (71) holds. Hence

$$
\begin{equation*}
\forall \varphi \in \Pi: \ln |f(z)|<\frac{\delta}{5} \ln ^{v+1}|z|, z \in\left\{z: \arg _{\alpha-\pi} z=\varphi, z \geq r(\varphi)\right\} \tag{72}
\end{equation*}
$$

Lets consider any $\{z: \arg z=\varphi\}, \varphi \notin \Pi$. We denote

$$
\begin{equation*}
S_{1}=\{z: \arg z=\varphi,|z| \notin \Delta, \operatorname{mes} \Delta<\infty\} \tag{73}
\end{equation*}
$$

where Δ is the set of points that belong to the intervals $\left[\left|c_{q}\right|-\delta_{q},\left|c_{q}\right|+\delta_{q}\right], c_{q} \in\left\{c_{q}\right\}$ (see (10)). Let us prove that on S_{1} estimate (5) holds.

If $\Phi \cap S_{1}=\varnothing$, then on S_{1} inequality (41) is true. Let $\Phi \cap S_{1} \neq \varnothing$. The set $\Phi \cap S_{1}$ can be represented as a sum of "maximal" segments

$$
w_{t}(\varphi)=\left\{z: \arg z=\varphi, r_{1 t} \leq|z| \leq r_{2 t}\right\} \subset \Phi \cap S_{1}
$$

such that

$$
\begin{equation*}
|f(z)| \geq|z|^{\nu+\varepsilon}, z \in w_{t}(\varphi) \subset \Phi_{0}, \varphi \notin \Pi \tag{74}
\end{equation*}
$$

where Φ_{0} is the connected component of Φ. According to the latter (see (42)), we define the segments $w_{t}^{-}(\varphi), w_{t}^{0}(\varphi)$. On the segment $w_{t}^{-}(\varphi)$ estimate (52) holds (this estimate is proved for all $\varphi \in(0, \pi))$.

We obtain estimates on the segment $w_{t}^{0}(\varphi)$. Choose any $\delta_{1}>0$. The set Π (see (53)) is dense on $(0, \pi)$. Then there exist $\psi(1), \psi(2)$, such that

$$
\begin{equation*}
\psi(1), \psi(2) \in \Pi \wedge \varphi-\delta_{1}<\psi(1)<\varphi<\psi(2)<\varphi+\delta_{1} . \tag{75}
\end{equation*}
$$

On the rays $S(\psi(j))=\{z: \arg z=\psi(j)\}, j \in\{1,2\},(72)$ holds, hence

$$
\begin{equation*}
\ln \left|f\left(r e^{i \psi(j)}\right)\right|<\delta \ln ^{v+1} r, r>r(\psi(j)), j \in\{1,2\} ; v>0 . \tag{76}
\end{equation*}
$$

Consider the segment $w_{t}(\varphi) \subset S_{1}$. Let $z=r e^{i \varphi} \in w_{t}(\varphi) \in \Phi_{0} \subset \Phi$. By $\theta(1)$ we denote the least value and by $\theta(2)$ we denote the greatest value such that

$$
\theta(1) \leq \varphi \leq \theta(2) \wedge\{z: \theta(1) \leq \arg z \leq \theta(2),|z|=r\} \subset \Phi_{0} .
$$

Let

$$
\zeta=\max (\theta(1), \psi(1)), \lambda=\min (\theta(2), \psi(2)) .
$$

From the definition of $\theta(1), \theta(2)$, and from (75) it follows that

$$
\begin{equation*}
\{z: \zeta \leq \arg z \leq \lambda,|z|=r\} \subset \Phi_{0}, \varphi-\delta_{1}<\zeta \leq \varphi \leq \lambda<\varphi+\delta_{1} \tag{77}
\end{equation*}
$$

Let $z=r e^{i \varphi} \in w_{t}^{0}(\varphi) \subset S_{1}$. Thus $w_{t}^{0}(\varphi) \subset \Phi_{0}$ and statement (57) holds on Φ_{0}. Integrating (57) along the arc $\{z: \zeta \leq \arg z \leq \lambda,|z|=r\} \subset \Phi_{0}$ from the point re $e^{i \zeta}$ to the point $z=r e^{i \varphi}$, and extracting real parts and taking into account $0 \leq \varphi-\zeta<\delta_{1}$, we obtain

$$
\begin{equation*}
\ln \left|\frac{f(z)}{f(r \exp (i \zeta))}\right| \leq(|y|+\delta) \delta_{1} \ln ^{v} r, z=r e^{i \varphi} \tag{78}
\end{equation*}
$$

where $\zeta=\max (\theta(1), \psi(1))$. If $\psi(1) \leq \theta(1)$, then $\zeta=\theta(1)$. Thus from the definition of $\theta(1)$ and from the definition of the connected component Φ_{0} equality $\left|f\left(r e^{i \zeta}\right)\right|=r^{\nu+\varepsilon}$ follows. If $\theta(1)<\psi(1)$, then $\zeta=\psi(1)$ and from (76)

$$
\ln \left|f\left(r e^{i \zeta}\right)\right|=\ln \left|f\left(r e^{i \psi(1)}\right)\right|<\delta \ln ^{v+1} r, v>0
$$

Therefore from (78) we obtain

$$
\ln |f(z)| \leq \delta \ln ^{v+1} r+\delta_{1}(|y|+\delta) \ln ^{v} r, z=r e^{i \varphi} \in w_{t}^{0}(\varphi) .
$$

The latter statement, (52) and the estimate $|f(z)|<|z|^{\nu+\varepsilon}, z \in \Phi_{1}$ (see (36)), yield that on the ray $S_{1}(\varphi \notin \Pi)$ estimate (5) holds.

Choose some $\alpha, \xi, \psi,-\infty<\alpha<\xi<\psi<+\infty$. There exists $l \in \mathbb{N}$ such that $\alpha<\xi<$ $\psi<\alpha+\frac{l \pi}{2}$. Let $\alpha_{j} \stackrel{\text { def }}{=} \alpha+\frac{j \pi}{2}, j \in\{0,1, \ldots, l\}$. Then $\left(0<\varepsilon<\max \left(\xi-\alpha, \frac{\pi}{4}\right)\right)$

$$
\begin{equation*}
[\xi, \psi] \subset \bigcup_{j=0}^{l}\left[\alpha_{j}+\varepsilon, \alpha_{j}+\pi-\varepsilon\right] \tag{79}
\end{equation*}
$$

The function $f \in M_{l}$ is the solution of equation (1). So the single-valued branch $f(z)$, $z \in g_{\alpha_{j}, \alpha_{j}+\pi}, j \in\{0,1, \ldots, l\}$, is the solution of equation (1) (this solution satisfies the conditions of Theorem 1). Therefore (4) or (5) is true for each branch $f(z), z \in g_{\alpha_{j}, \alpha_{j}+\pi}$.

For the branch $f(z), z \in g_{\alpha_{j}, \alpha_{j}+\pi}, j \in\{0,1, \ldots, l\}$, by E_{j} we denote the set of exceptional disks E_{*} (see theorem 1) with a finite sum of radii on the part of the Riemann surface $g_{\alpha_{j}, \alpha_{j}+\pi}=\left\{r e^{i \theta}: r_{0} \leqslant r, \alpha_{j} \leqslant \theta \leqslant \alpha_{j}+\pi\right\}$ of the meromorphic function $f(z), z \in G=$ $\left\{z: r_{0} \leqslant|z|<+\infty\right\}$. The union of parts

$$
g_{\alpha_{j}+\varepsilon, \alpha_{j}+\pi-\varepsilon} \backslash E_{j}=\left\{r e^{i \theta}: r_{0} \leqslant r, \alpha_{j}+\varepsilon \leqslant \theta \leqslant \alpha_{j}+\pi-\varepsilon\right\} \backslash E_{j}
$$

of the Riemann surface of the function $f(z), z \in G$, we denote by

$$
\bigcup_{j=0}^{l} g_{\alpha_{j}+\varepsilon, \alpha_{j}+\pi-\varepsilon} \backslash E_{j}, E=\bigcup_{j=0}^{l} E_{j}
$$

be the union of the sets of the disks on the Riemann surface. Since E_{j} is the set of disks with a finite sum of radii then the sum of radii of the disks that form the set E is also finite.

From (79) it follows that the part of the Riemann surface

$$
\begin{equation*}
g_{\xi, \psi}=\left\{r e^{i \theta}: r_{0} \leqslant r, \xi \leqslant \theta \leqslant \psi\right\} \subset \bigcup_{j=1}^{l} g_{\alpha_{j}+\varepsilon, \alpha_{j}+\pi-\varepsilon} \tag{80}
\end{equation*}
$$

Let us assume that for the branch $f(z), z \in g_{\alpha_{0}, \alpha_{0}+\pi}\left(\alpha_{0}=\alpha\right)$ (4) is true. Namely $\exists d>0: r>d \wedge \alpha_{0}+\varepsilon \leqslant \theta \leqslant \alpha_{0}+\pi-\varepsilon \Rightarrow$

$$
\begin{align*}
& \ln f\left(r e^{i \theta}\right)=\ln ^{v+1}\left(r e^{i \theta}\right)\left(\frac{y}{v+1}+g\left(r e^{i \theta}\right)\right), r e^{i \theta} \notin E_{0} \\
& \left|g\left(r e^{i \theta}\right)\right|<\varepsilon, v>0, y=|y| e^{i \beta}, \operatorname{Re} y>0, \cos \beta>0 . \tag{81}
\end{align*}
$$

By the construction there exists φ such that $\alpha_{1}+\varepsilon<\varphi<\alpha_{0}+\pi-\varepsilon<\alpha_{1}+\pi-\varepsilon$.
The equality (81) is true, in particular on infinite "ray" $S(\varphi)$ (see definition below (40), $E_{0}=E_{*}$). Thus, we proved that (59), (64) hold with $\cos \beta>0$ on infinite "ray" $S(\varphi)$ for the branch $f(z), z \in g_{\alpha_{1}, \alpha_{1}+\pi}$. Repeating the proof of (68) we obtain that for $f(z)$,

$$
z \in g_{\alpha_{1}, \alpha_{1}+\pi}, \exists d_{1}>0: r>d_{1} \wedge \alpha_{1}+\varepsilon \leqslant \theta \leqslant \alpha_{1}+\pi-\varepsilon
$$

statement (81) is true.
Similarly we prove that for each branch $f(z), z \in g_{\alpha_{j}, \alpha_{j}+\pi}, j \in\{0,1, \ldots, l\}, \exists d_{j}>0: r>$ $d_{j} \wedge \alpha_{j}+\varepsilon \leqslant \theta \leqslant \alpha_{j}+\pi-\varepsilon$ it follows that (81) is true. Hence, from (80) it follows that (4) is valid, $d=\max d_{j}, j \in\{0,1, \ldots, l\}$.

REFERENCES

1. Markushevich A.I. Theory of analytic functions. - M.: Nauka, 1967, V.1. - 488p.; 1968, V.2. - 624p. (in Russian)
2. Golubev V.V. Lectures on the analytic theory of differential equations. - M.-L.: GITL, 1950. - 436p. (in Russian)
3. Boutroux P. Sur quelques propertiés des fonctions entieres// Acta math. - 1904. - V.29. - P. 97-204.
4. Van der Waerden B.L. Algebra. - M.: Nauka, 1979. - 624p. (in Russian)
5. Mokhon'ko A.Z., Kuzemko L.I. About logarithmic derivative of meromorphic function// Visnyk of Lviv Polytechnic National University, Physical and mathematical sciences. - 2006. - V.566. - P. 12-19. (in Ukrainian)
6. Goldberg A.A., Ostrovskii I.V. Value distribution of meromorphic functions. - M.: Nauka, 1970. - 592 p. (in Russian)
7. Mokhon'ko A.Z., Mokhon'ko V.D. On order of growth of analytic solutions for algebraic differential equations having logarithmic singularity// Mat. Stud. - 2000. - V.13, №2. - P. 203-218.
8. Mokhon'ko A.A., Mokhon'ko A.Z. On the logarithmic derivative of meromorphic functions// Topics in Analysis and its Applications. NATO Science Series. II Mathematics, Physics and Chemistry. - 2004. V.147. - P. 91-103.
9. Mokhon'ko A.Z., Mokhon'ko V.D. Asymptotic estimates growth of meromorphic solutions of differential equations in an angular domain// Sib. Math. J. - 2000. - V.41, №1. - P. 185-199. (in Russian)
10. Mokhon'ko A.Z. Estimates of absolute value of the logarithmic derivative of the function meromorphic in an angular domain and its applications// Ukr. Mat. J. - 1989. - V.41, №6. - P. 839-843. (in Russian)

Lviv Polytechnic National University
kolyasa.lubov@gmail.com

