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We obtain asymptotic estimates of the moduli of meromorphic solutions with a logarithmic
singularity at ∞ of the differential equation∑

k+s=m

fkfs1vks(z)z
τksLnκksz =

∑
|K|<m

bK(z)fk0fk11 . . . fkpp ,

f ′ = f1, . . . , f
(p) = fp, K = (k0, k1, . . . , kp), |K| = k0 + k1 + . . .+ kp;

τm−s,s − s 6 τm−n,n − n, s < n = max{s : k + s = m, cks 6= 0};

where vks(z), bK(z) are analytic functions such that ∀α, β,−∞ < α < β < +∞,

|bK(reiθ)| < rτK , vks(re
iθ) = cks + o(1), r → +∞, α 6 θ 6 β; τks, κks, τK ∈ R, cks ∈ C.

Л. И. Коляса, А. З. Мохонько, В. Д. Мохонько. Асимптотические свойства мероморфных
решений дифференциальных уравнений в окрестности логарифмической особой точки //
Мат. Студiї. – 2014. – Т.42, №1. – C.67–83.

Получены асимптотические оценки модуля мероморфных с логарифмической особой
точкой в ∞ решений дифференциальных уравнений∑

k+s=m

fkfs1vks(z)z
τksLnκksz =

∑
|K|<m

bK(z)fk0fk11 . . . fkpp ,

f ′ = f1, . . . , f
(p) = fp, K = (k0, k1, . . . , kp), |K| = k0 + k1 + . . .+ kp;

τm−s,s − s 6 τm−n,n − n, s < n = max{s : k + s = m, cks 6= 0};

где vks(z), bK(z) — аналитические функции, такие что ∀α, β,−∞ < α < β < +∞,

|bK(reiθ)| < rτK , vks(re
iθ) = cks + o(1), r → +∞, α 6 θ 6 β; τks, κks, τK ∈ R, cks ∈ C.

Let us consider the differential equation∑
k+s=m

fkf s1vks(z)zτksLnκksz =
∑
|K|<m

bK(z)fk0fk11 . . . fkpp , (1)

f ′ = f1, . . . , f
(p) = fp, k0, k1, . . . , kp ∈ N ∪ {0}, K = (k0, k1, . . . , kp),

|K| = k0 + k1 + . . .+ kp, τks, κks ∈ R,
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where vks(z), bK(z), z ∈ G = {z : r0 6 |z| < +∞}, such that ∀α, β, −∞ < α < β < +∞,

|bK(reiθ)| < rτK , vks(re
iθ) = cks + o(1), r →∞, α 6 θ 6 β, r > r0,

τK ∈ R, cks ∈ C; vks(z), bK(z), z ∈ G, are analytic functions, for example, for some K,

bK(z) = MKz
τK−εLnκKz, ε > 0, MK ∈ C.

We assume that vks(z) ≡ 0 if cks = 0 and

∃k∗, s∗ ∈ N ∪ {0} : k∗ + s∗ = m, ck∗s∗ 6= 0. (2)

Denote by

n = max{s : k + s = m, cks 6= 0}, q = min{s : k + s = m, cks 6= 0}. (3)

Theorem 1. Suppose that in the differential equation (1) τm−s,s− s 6 τm−n,n−n, s < n, or
n = 0. If f(z), z ∈ G, is a meromorphic function with a logarithmic singularity at∞, has the
order of growth µ, µ < +∞, (if in (1) p = 1, then the condition µ < +∞ is not necessary)
and is a solution of the differential equation (1), then (∀ε > 0)(∀ξ, ψ,−∞ < ξ < ψ < +∞)
(∃d > 0) one has

(r > d ∧ ξ 6 θ 6 ψ)⇒ ln f(reiθ) = lnυ+1(reiθ)
( y

υ + 1
+ g(reiθ)

)
, (4)

where |g(reiθ)| < ε, υ > 0, Rey > 0, reiθ 6∈ E, E is a set of disks with a finite sum of radii,
or ∃∆ ⊂ (r0,+∞):

ln |f(reiθ)| < ε lnυ+1 r, r > r(θ), r 6∈ ∆, (5)

∆ is a set of segments with a finite sum of lengths.

Example 1. The function f(z) = eln2 z, z 6= 0, is a solution of the differential equation
zf ′ = 2f ln z, and satisfies (4).

Example 2. The Weierstrass elliptic function ℘(z), z ∈ C, is a meromorphic function which
has the order of growth µ = 2 ([1, V.2, p. 422]), and the function ℘(z), z ∈ C, is a solution of
the differential equation ([1, V.2, p. 362]) 4f 3 = (f ′)2 + g2f + g3. This differential equation
is an equation of form (1) with n = 0 (see (3)) (in the left-hand side of this equation only
one summand 4f 3 has degree m = 3 for the functions f and f ′, therefore v30(z) ≡ 4 = c30.
Hence, for all other summands we have

fkf s1 , k + s = 3, s > 1, vks(z) ≡ 0 = cks, n = max{s : k + s = 3, cks 6= 0} = 0

is true). For the Weierstrass function a sharper estimate than (5) will be proved

|℘(z)| 6 |z|ν+ε, z ∈ C \ E, |z| > d, ν = 12, ε > 0,

where E is the set of disks with a finite sum of radii.
Consider the differential equations of Painlevé f ′′ = 6f 2 + z and f ′′ = 2f 3 + zf + a,

a = const, z ∈ C. All solutions of these differential equations f(z), z ∈ C are transcendental
meromorphic functions (Painlevé a transcendent) ([2, p. 189]) of finite order of growth
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µ < ∞ ([3]). Rewrite these equations in the form (1): 6f 2 = f ′′ − z and 2f 3 = f ′′ − zf − a
with n = 0 (see (3)).

For all solutions of the first and second Painlevé’s equations we will prove the following
estimate

|f(z)| 6 |z|4µ+ε, z ∈ C \ E, |z| > d, ε > 0,

where E is a set of disks with a finite sum of radii. According to the above estimate the first
and the second Painlevé equations have no entire transcendental solutions.

Let us recall the definition of a meromorphic function with a logarithmic singularity at∞.
By Al we denote the set of analytic functions in G = {z : r0 ≤ |z| <∞} for which ∞ is the
unique singular point, namely a logarithmic singular point. The set Al is a commutative ring
without divisors of zero (complete ring). The field of quotients of the ring Al is denoted by
Ml (each complete ring can be embedded in some field ([4, p. 52, 58])) Al ⊂ Ml. If f ∈ Al,
then we shall say that f (z) , z ∈ G, is an analytic function with an isolated logarithmic
singular point at ∞. If f ∈ Ml, then the function f (z) , z ∈ G, is called a meromorphic
function with a logarithmic singularity at ∞.

In ([5, p. 12]) an equivalent definition of a meromorphic function is considered. This
definition is based on a concept of analytic extension.

Let f ∈ Ml. For any α, β, −∞ < α < β < +∞ (it is possible that β − α > 2π) we
denote by f(z),

z ∈ gα,β =
{
z = reiθ : α ≤ θ ≤ β, r0 ≤ r < +∞

}
, (6)

a single-valued branch of the function f ∈Ml (see [5, p. 12]).
We consider Nevanlinna’s characteristics of the function f(z), z ∈ gα,β ([6, p. 40]). Write

ln+ x = max (ln x, 0), x ≥ 0; k = π/ (β − α) > 0. Let bl = |bl| exp (iθl) be the poles of the
function f(z), z ∈ gα,β. We put

Aα,β (r, f) =
k

π

r∫
r0

(
1

tk+1
− tk−1

r2k

)(
ln+
∣∣f (teiα)∣∣+ ln+

∣∣f (teiβ)∣∣) dt,
Bα,β (r, f) =

2k

πrk

β∫
α

ln+
∣∣f (reiθ)∣∣ sin k(θ − α)dθ,

Cα,β (r, f) = 2k

r∫
r0

cα,β (t, f)

(
1

tk+1
+
tk−1

r2k

)
dt, (7)

where

cα,β (t, f) = cα,β (t,∞) =
∑

r0<|bl|≤t, α≤θl≤β

sin k (θl − α) ,

is the counting function of the poles; each pole is counted according to its multiplicity,

Sα,β (r, f) = Aα,β (r, f) +Bα,β (r, f) + Cα,β (r, f) , r0 ≤ r <∞. (8)

For any single-valued branch f(z), z ∈ gα,β of the function f ∈Ml we define

ρα,β = lim
r→+∞

ln+ Sα,β(r, f)

ln r
. (9)
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The value µ = µ[f ] = sup{ρα,β : −∞ < α < β < +∞} is called the order of growth of the
function f (z) , z ∈ G.

In particular if ραj ,αj+π is the order of growth of the single-valued branch f(z), z ∈
gαj ,αj+π = {reiθ : r0 6 r, αj 6 θ 6 αj + π}, of the function f ∈Ml, then ραj ,αj+π 6 µ.

Preliminary construction. Let f ∈ Ml be a solution of the differential equation (1); if
in (1) p = 1, then the function f has the order of growth µ, 0 6 µ < +∞ ([7]); if p > 2,
then (according to the assumption of the theorem) the function f has the order of growth
µ < +∞.

Let {cq} be the set of all zeros and poles of the meromorphic solution f(z), z ∈ gα,α+π

of the differential equation (1). For any σ > 0 and for each cq = |cq|eiθq we consider the disk
with the center at cq and radius δq = |cq|−µ−1−σ

5 sin(θq − α);α < θq < α + π, σ > 0. Let E∗
be the set of points that belong to these disks. Then by [8]∣∣∣∣fj(z)

f(z)

∣∣∣∣ < K|z|2j(µ+1+σ
4

)

sin2j(θ − α)
, z = reiθ ∈ gα,α+π\E∗, σ > 0;

∑
δq < M = const, cq ∈ {cq}. (10)

For each cq ∈ {cq} we consider the interval [|cq| − δq, |cq|+ δq]. Let ∆ be the set of points
that belong to these intervals. According to (10) E∗ is the set of disks with a finite sum of
radii, mes∆ 6

∑
2δq < +∞.

We divide (1) by fm(z). After simple transformations and new notation for coefficients
and exponents we may rewrite differential equation (1) in the form (z ∈ gα,α+π)(

zf ′(z)

f(z)

)n
+

n−q∑
j=1

(
zf ′(z)

f(z)

)n−j
vj(z)zdj lnhj z = ω(z), vj(z) = cj + o(1), (11)

ω(z) =
∑

|K|6m−1

bK(z)zn−τm−n,m(ln z)−κm−n,m
(f1/f)k1 . . . (fp/f)kp

fm−|K|
, (12)

cj ∈ C, z →∞. In particular, in (11)

dj = τm−n+j,n−j − τm−n,n + j 6 0, j ∈ {1, 2 . . . , n− q}, d0
def
= 0, (13)

(according to our assumptions τm−s,s − s 6 τm−n,n − n, s < n, s = n− j). Set

Ω = {z = teiθ : t > (sin(θ − α))−
4
σ , α < θ < α + π}, σ > 0;

χ = max{k1 + 2k2 + . . .+ pkp : |K| < m}. (14)

For any δ, 0 < δ < π
2
, there exists d = d(δ) such that

Q = {z : |z| > d, α + δ 6 argα z 6 α + π − δ} ⊂ Ω.

Considering (10), (14), we obtain (c = const)∣∣∣∣f1(z)

f(z)

∣∣∣∣k1 . . . ∣∣∣∣fp(z)

f(z)

∣∣∣∣kp < c|z|(2µ+2+σ
2

)χ

sin2χ(argα z − α)
< c|z|(2µ+2+σ)χ, z ∈ Ω \ E∗. (15)

Using the new notation

zf ′(z)

f(z)
= L(z), c0 = 1, d0 = 0, h0 = 0, v0(z) ≡ 1, z ∈ gα,α+π, (16)
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we may rewrite differential equation (11) in the form (q > 0)

Ln(z) +

n−q∑
j=1

Ln−j(z)vj(z)zdj(ln z)hj = ω(z), cn−q 6= 0. (17)

This equation is said to be characteristic for (1). We consider the set

F = {j : vj(z) = cj + o(1) 6≡ 0, z ∈ gα,α+π, j ∈ {1, 2, . . . , n− q}}.

Suppose that
∃j ∈ F : dj > 0 ∨ dj = 0, hj > 0. (18)

1◦. If in equation (17)
q = 0 ∨ q > 1, dn−q < max

j∈F
dj,

then we denote (see (17)) H = {(j, dj) : j ∈ F ∪ {0}} which is a subset of the plane.
2◦. If in equation (17)

q > 1, dn−q = max
j∈F

dj
(18)
> 0,

then we append to the set H the point (n, dn), dn
def
= −1, and obtain the set H̃ = {(j, dj) : j ∈

F} ∪ {(0, d0)} ∪ {(n, dn)}.
Consider the case 1◦. By the points of H, let us construct the Newton diagram (N. D.)

of equation (17) (of the set H) and consider the convex hull of the set H. The polygon is
the boundary of the hull. The points (0, d0) and (n − q, dn−q) divide the polygon into two
polygonal lines. The top line is the N. D.. Let the vertices of the N. D. have abscissas

i0, i1, . . . , iT , 0 = i0 < i1 < . . . < iT = n− q, (19)

then ∑
s∈{1,...,T}

(is − is−1) = iT − i0 = n− q, iT = n− q. (20)

We denote
ρs =

dis − dis−1

is − is−1

, s ∈ {1, 2, . . . , T}, (21)

where ρs are angular coefficients of the segments of the N. D., ρ1 > ρ2 > . . . > ρT . We set

ρs(n− j) + dj
def
= lj,s, j ∈ F. (22)

The properties of the N. D. imply for the points of the set H

lis−1,s = lis,s = max
j∈F

lj,s
def
= ls. (23)

Let a constant A satisfy the condition (see (21), (23))

A > max(0, max
s∈{1,2,...,T}

−ls). (24)

If the conditions in 2◦ hold then the point (n, dn), dn
def
= −1, is added to the set H. As

a result, we have the set H̃ = {(j, dj) : j ∈ F ∪ {0}} ∪ (n, dn). In this case we construct the
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N. D. by the points of H̃ of equation (17) and consider the convex hull of H̃. The polygon is
the boundary of the hull. The points (0, d0) and (n, dn) divide the polygon into two polygonal
lines. The top line is the N. D. of the set H̃ (of equation (17)). The vertices of the N. D. of
the set H̃ have abscissas

i0, i1, . . . , iT , iT+1, 0 = i0 < i1 < . . . < iT = n− q < iT+1 = n,

that are different from the abscissas of the N. D. vertices of the set H by just one additional
point iT+1 = n. Similarly to (21) we consider angular coefficients of the edges of the N. D.
of the set H̃

ρs =
dis − dis−1

is − is−1

, s ∈ {1, 2, . . . , T, T + 1}, ρ1 > ρ2 > . . . > ρT > ρT+1. (25)

Due to 2◦ and the properties of the convex hull we obtain that ρ1 > ρ2 > . . . > ρT > 0;
ρT+1 < 0. Similarly to (22) we set

ρs(n− j) + dj = lj,s, s ∈ {1, . . . , T, T + 1}, j ∈ F. (26)

From the properties of the N. D. we get for the points of the set H̃ that

lis−1,s = lis,s = max
j∈F

lj,s
def
= ls, s ∈ {1, . . . , T, T + 1}. (27)

Therefore the estimate of the number A (24) becomes

A > max(0, max
s∈{1,...,T}+1

−ls). (28)

In [9] the following lemma is proved.

Lemma 1. Let the coefficients ω(z), vj(z), z ∈ Φ ⊂ gα,β, j ∈ {1, 2, . . . , n − q}, in equa-
tion (17) be defined on an unbounded set Φ, such that |ω(z)| < |z|−A, (where the constant A
satisfy (24) in the case 1◦ and (28) in the case 2◦), as well as: a) vj(z) ≡ 0 if cj = 0,
b) ∀ε > 0∃σ = σ(δ)∀z ∈ Φ ∩ {z = reiθ : r > σ, α 6 θ 6 β} ⇒

vj(z) = (cj + gj(z)), cj ∈ C, |gj(z)| < δ2

2n
.

If ∀j ∈ F = {j : vj(z) 6≡ 0, z ∈ Φ, j ∈ {1, 2, . . . , n − q}} in equation (17): the degrees
dj < 0∨dj = 0, hj 6 0, then all solutions of equation (17) are bounded in Φ∩{z = reiθ : r > σ,
α 6 θ 6 β}.

Let ∃j ∈ F : dj > 0 ∨ dj = 0, hj > 0. Then ρs, s ∈ {1, . . . , T}, are angular coefficients of
the segments of the Newton diagram of the set H = {(j, dj) : j ∈ F ∪ {0}}. Moreover, there
exist integers ξs,0, ξs,1, . . . , ξs,ps , s ∈ {1, . . . , T}, 0 = ξ1,0 < ξ1,1 < . . . < ξ1,p1 < . . . < ξs,0 <
ξs,1 < . . . < ξs,ps < . . . < ξT,0 < ξT,1 < · · · < ξT,pT = n − q, and corresponding numbers υsk,
defined by the points (j, hj), j ∈ F , such that there exist ξs,k − ξs,k−1 solutions

xj(z) = (yj + o(1))zρs(ln z)υsk , yj 6= 0, z ∈ Φ, z →∞,
s ∈ {1, . . . , T}, k ∈ {1, 2, . . . , ps}, j ∈ {ξs,k−1 + 1, ξs,k−1 + 2, . . . , ξs,k}, (29)
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of equation (17). The total sum of such solutions is∑
s∈{1,...,T}

∑
k∈{1,2,...,ps}

(ξs,k− ξs,k−1) =
∑

s∈{1,...,T}

(ξs,ps − ξs,0) =
∑

s∈{1,...,T}

(is− is−1) = iT − i0 = n− q

(see (20)). Therefore, if q = 0, then all n solutions of equation (17) are of form (29). In the
case q > 1, dn−q < maxj∈F dj, q solutions of (17) are of the form

xj(z) = o(1)zρT (ln z)υT,pT , ρT < 0, z ∈ Φ, z →∞,
j ∈ {ξT,pT + 1, ξT,pT + 2, . . . , n}; ξT,pT = n− q, (30)

and in the case q > 1, dn−q = maxj∈F dj, q solutions of (17) are of the form

xj(z) = o(zρT+1), z →∞, ρT+1 < 0, j ∈ {n− q + 1, n− q + 2, . . . , n}. (31)

Lemma 2. Let conditions of Lemma 1 hold true and Φ ⊂ gαβ,Φ be an unbounded closed
(open) set. By Φ0 we denote the connected component of the set Φ. If ∀j ∈ F = {j : gj(z) 6≡ 0,
z ∈ Φ} in equation (17) the degrees dj < 0∨dj = 0, hj 6 0, then all solutions of equation (17)
are bounded in Φ ∩ {z = reiθ : r > δ, α 6 θ 6 β}.
∃j ∈ F : dj > 0 ∨ dj = 0, hj > 0. Let a continuous (analytic) function x(z), z ∈ Φ is

a solution of equation (17). If in (17) q = 0, then ∀ε > 0 ∃r0

x(z) = (y + u(z))zρ lnυ z, y 6= 0, |u(z)| < ε, z ∈ Φ0, |z| > r0,

ρ, υ ∈ R, y ∈ C, y = y(Φ0), ρ = ρ(Φ0), υ = υ(Φ0), (32)

where u(z) is some continuous (analytic) function; y, ρ, υ do not change if z ∈ Φ0, |z| > r0;
y, ρ, υ are one of the numbers yj, ρs, υsk, respectively, defined in Lemma 1. If q > 1, then
statement (32) is true on Φ0 or

|x(z)| < |z|ζ+ε, ζ + ε < 0, z ∈ Φ0, |z| > r0, (33)

holds, ζ = ρT ∨ ζ = ρT+1 (see (30), (31)), ε > 0 is sufficiently small.

Proof of Lemma 2. Let in (17) q = 0. According to Lemma 1 all the solutions of equation (17)
has form (29). The continuous function x(z), z ∈ Φ, is the solution of equation (17). Hence,
at each point z ∈ Φ, |z| > r0, the function x(z), z ∈ Φ, coincides at least with one of the
solutions (29)

x(z) = (yj + o(1))zρs(ln z)υsk , yj 6= 0, z ∈ Φ. (34)

If xt(z) = (yt + o(1))zρl(ln z)υln , yt 6= 0, z ∈ Φ, is one of the solutions (29) of equation
(17) and r0 is sufficiently large, then x(z) 6= xt(z), z ∈ Φ, |z| > r0, when |yj − yt|+ |ρs− ρl|+
|υsk−υln| > 0. Hence, taking into consideration continuity of x(z), z ∈ Φ, and connectedness
of the component Φ0,Φ0 ⊂ Φ, we obtain that (34) is true for all z ∈ Φ0, |z| > r0. Hence, (32)
holds.

The solution f ∈ Ml of equation (1) has the order of growth µ, µ < +∞; the angular
coefficients ρs of the segments of the N. D. are defined in (21), (25). Let µ0 = max(µ, ρ1).
We denote (see (28) and (24))

l = max
s∈{1,...,T}

−ls ∨ l = max
s∈{1,...,T}+1

−ls,

ν = max(y,max
K
{τK + n− τm−n,m + 2(µ0 + 1)χ+ l}), (35)
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where a constant y is further determined by the solutions of characteristic equation (see (29),
(39)). Let us consider the sets

Φ = {z : z ∈ Ω \ E∗, |f(z)| > |z|ν+ε}, Φ1 = {z : z ∈ Ω \ E∗, |f(z)| < |z|ν+ε}. (36)

On the set Φ the assumptions of Lemma 1 are satisfied (|bK(z)| < |z|τK )

|ω(z)| (12)
=

∑
|K|6m−1

|bK(z)zn−τm−n,m(ln z)−κm−n,m | |f1/f |k1 . . . |fp/f |kp
|f |m−|K|

6

6
∑

|K|6m−1

|z|n−τm−n,m+τK+σ
9
|f1/f |k1 . . . |fp/f |kp

|f |
(15)
6

6
∑

|K|6m−1

c|z|n−τm−n,m+τK+(2µ+2+σ)χ+σ
9

1

|f |
(36)
6

6
∑

|K|6m−1

|z|n−τm−n,m+τK+(2µ0+2+σ)χ+σ
8
−ν−ε

(35)
6 |z|−l+σχ+σ

7
−ε, (37)

(in (10) we assume that σ < 7ε
7χ+1

).
If in equation (1) n = 0 (see (3)) (hence, corresponding characteristic equation (17) does

not depend on L), then in the left-hand side of (1) only one summand fmvm0(z)zτm0Lnκm0z,
vm0(z) = cm0 + o(1), has the degree m in f and f ′. Then there exists d > 0 such that
Φ∩{z : |z| > d} = ∅. If we assume the contrary, then equation (17) has the form cm0+o(1) =
o(1), z ∈ Φ. From here we obtain that cm0 = 0 which contradicts the assumption (2). Then
from (36) it follows

|f(z)| < |z|ν+ε, z ∈ Ω \ E∗, (38)

namely, in this case we obtain a sharper estimate than (5). From inequality (38) assertions
formulated in example 2 follow.

Let us consider that (17) depend on L (n > 1).
Let Φ0 be an arbitrary connected components of Φ, Φ0 ⊂ Φ (see (36)).
Assume for definiteness in (17) q = 0. According to Lemma 2 for the continuous function

L(z) = zf ′(z)
f(z)

which is a solution of equation (17): ∀δ > 0∃r0 such that

f ′(z)

f(z)
= (y + u(z))zρ−1 lnυ z, y 6= 0, |u(z)| < δ

10
, z ∈ Φ0, |z| > r0,

ρ, υ ∈ R, y ∈ C, y = y(Φ0), ρ = ρ(Φ0), υ = υ(Φ0), (39)

is true, where u(z) is some analytic function; y, ρ, υ do not change for z ∈ Φ0, y, ρ, υ are one
from the numbers yj, ρs, υsk respectively, defined in Lemma 1.

Let y be the greatest possible values of |y| in (39) (see (35)).

Proof of Theorem 1. According to (13) inequalities 0 > ρ1 > ρ2 > . . . > ρT hold for angular
coefficients of the segments of the N.P.L, defined in (17) (see (21)). Hence, the angular
coefficients are not positive. One of the conditions of (39) is true on the set Φ0. We assume
r0 > 0 such that f(r0e

iθ) 6= 0,∞, α 6 θ 6 α + π. Thus

0 < c < |f(r0e
iθ)| < C, α 6 θ 6 α + π, c, C = const. (40)
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Choose some ϕ, α < ϕ < α+π. Suppose that z0 = r0e
iϕ /∈ E∗. Let us denote by S(ϕ) the

curve obtained when the point z moves from the point z0 along the ray {z : z = reiϕ, r > r0}
enveloping the disks of the set E∗, which are along the arcs {z : |z − cq| = δq} (see (10)) so
that argα−π z > ϕ, where α− π 6 argα−π z < α + π.

If Φ ∩ S(ϕ) = ∅, then from (36) it follows

|f(z)| < |z|ν+ε, z ∈ S(ϕ). (41)

Let Φ ∩ S(ϕ) 6= ∅. The set Φ ∩ S(ϕ) is a union of connected components ωt such that

|f(z)| > |z|ν+ε, z ∈ ωt, (42)

Moreover, if z1t is the initial point and z2t is the ending point of ωt and |z1t| > r0,
|z2t| < +∞, then

|f(z1t)| = |z1t|ν+ε, |f(z2t)| = |z2t|ν+ε. (43)

For z ∈ ωt (39) holds, y = y(t), ρ = ρ(t), υ = υ(t). We denote by {ωt} the set of all ωt
on S(ϕ).

By w−t , w0
t we denote such segments wt ∈ {wt}, for which equality (39) holds true with

ρ < 0, ρ = 0, respectively.
Let ω[z1t,z2t] be a parameterization of the “segment” ωt from z1t to z2t, ω[z1t,z2t] : z = λ(s),

0 6 s 6 1, z1t = λ(0), z2t = λ(1); [ω[z1t,z2t]] = ωt be the carrier. According to the definition
of ωt we choose bijective mapping of the segment [0, 1] onto ωt as the parameterization of
the ω[z1t,z2t]. This curve consist of the segments of a ray {z : z = reiϕ, r > r0} (denoted by γ)
and arcs of the circles (denoted by `). From the construction ωt it follows that

z = λ(s) ∈ γ, s↗⇒ |z| ↗, (44)

when the point z, z ∈ ωt, moves along ωt on the segment of the line γ.
The sequence {cq} of zeros and poles f(z), z ∈ gα,α+π, does not have finite accumulation

points and in (10) the series
∑

cq∈{cq} δq is convergent, therefore ∀δ > 0 ∃r(δ) > 0

mes{∆ ∩ [r(δ),+∞)} 6
∑

cq∈{cq}, |cq |>r(δ)

2δq <
δ

2π
. (45)

From (45) and the definition of ∆ it follows that

∆ =
∞⋃
j=1

[xj, yj], xj < yj < xj+1,
∑

xj>r(δ)

yj − xj <
δ

2π
, (46)

where
{z : yj < |z| < xj+1} ∩ ` = ∅. (47)

Let the point z1t of the “segment” ωt is such that yj < |z1t| < xj+1; then from (47) it
follows that z1t ∈ γ; considering the definition of S(ϕ) and (44) we obtain yj < |z1t| <
xj+1 ⇒ ∀z ∈ ωt : |z1t| 6 |z|.

If r(δ) < xj 6 |z1t| 6 yj, then from (45) it follows that the total length of arcs ` is less
than δ; however, taking into account (46), yj − xj < δ

2π
, |z1t| − δ

2π
< xj. Since {z : yj−1 <
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|z| < xj} ∩ ` = ∅ from conditions xj 6 |z1t| 6 yj it follows that ∀z ∈ ωt : xj 6 |z|; therefore
|z1t| − δ

2π
< xj 6 |z|. Hence,

yj < |z1t| < xj+1 ⇒ ∀z ∈ ωt : |z1t| 6 |z|, xj 6 |z1t| 6 yj ⇒ ∀z ∈ ωt : |z1t| −
δ

2π
< |z|. (48)

Similarly

ym < |z2t| < xm+1 ⇒ ∀z ∈ ωt : |z| 6 |z2t|,

xm 6 |z2t| 6 ym ⇒ ∀z ∈ ωt : |z| 6 ym < |z2t|+
δ

2π
. (49)

According to (10), the total length ` is less than 2πM. From (39) it follows that for ζ ∈ w−t ,∣∣∣∣f ′(ζ)

f(ζ)

∣∣∣∣ < (|y|+ δ

10

)
1

|ζ|
, ζ ∈ w−t , (50)

is valid. Integrating (39) along w−t and taking the real parts, using (50), (48), (49) and the
fact that |z| ≥ r1t ≥ r0, r0 is sufficiently large, δ > 0 is sufficiently small, we obtain

ln

∣∣∣∣ f(z)

f(z1t)

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
γ

f ′(ζ)

f(ζ)
dζ +

∫
`

f ′(ζ)

f(ζ)
dζ

∣∣∣∣∣∣ <
(
|y|+ δ

10

) |z|+δ∫
r1t−δ

dx

x
+

2πM

r1t − δ

 <

<

(
|y|+ δ

9

)
ln |z|, z ∈ w−t , |z| ≥ r0, δ < ε. (51)

If r1t > r0, then (43), (51) imply it follows that

ln |f(z1t)| = (ν + ε) ln r1t, ln |f(z)| ≤
(
|y|+ δ

9

)
ln |z|+ (ν + ε) ln r1t,

therefore, taking into account (35) and |y| ≤ ν, δ < ε, we obtain

ln |f(z)| ≤ (ν + 2ε) ln r, z ∈ w−t , z > r(ϕ). (52)

If r1 = r0, then from (40), (35), (42), (51) we obtain ln |f(z1t)| ≤ lnC and

(ν + ε) ln r ≤ ln |f(z)| <
(
|y|+ δ

9

)
ln |z|+ lnC, r1t ≤ |z| ≤ r2t, |y| ≤ ν, δ < ε.

It is possible only if r2t < r∗, where r∗ = const. Finally, in this case (52) holds.
For any θ1, θ2, α− π < θ1 < θ2 < α + π, there exists ϕ, θ1 < ϕ < θ2

{z : argα−πz = ϕ = const, z ≥ d} ∩ E∗ = ∅, d =
2πM

θ2 − θ1

. (53)

Therefore, if Π is a set of these values ϕ, α < ϕ < α + π, for which (53) holds, then the
set Π is dense on (α, α + π) .

Let ϕ ∈ Π. Choose r0 > d such that f (r0) 6= 0,∞, α ≤ θ ≤ α+ π. Thus (40), (53) hold;
the curve S = S (ϕ) , defined above, is the ray S (ϕ) = {z : argα−πz = ϕ = const, z ≥ d},
and the part ωt ⊂ S (ϕ) , defined in (42), (43), is a segment of line. By ω−t we denote such
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segments ωt for which equality (39) holds with ρ < 0; let ω0
t be the segments ωt for which

equality (39) with ρ = 0 holds. If segment w−t ⊂ S(ϕ) exists, then from (39) it follows that∣∣∣∣f ′(ζ)

f(ζ)

∣∣∣∣ ≤ (|y|+ δ

9

)
1

|ζ|
, ζ ∈ w−t . (54)

Integrating (39) along the arc w−[z1t,z] of the segment w−[z1t,z2t] : z = teiϕ, |z1t| ≤ t ≤ |z2t|, and
extracting the real part and taking into account (54) we obtain

ln

∣∣∣∣ f(z)

f(z1t)

∣∣∣∣ < (|y|+ δ

9

) r∫
r1t

ds

s
<

(
|y|+ δ

9

)
ln

r

r1t

, r1t ≤ |z| ≤ r2t, |z| = r, z ∈ wt,

therefore ∣∣∣∣ f(z)

f(z1t)

∣∣∣∣ < ( r

r1t

)|y|+ δ
9

, 0 < δ < ε. (55)

It will be proved that in this case

∃r∗ : {z : argα−π z = ϕ ∈ Π, |z| ≥ r∗}
⋂

w−t = ∅ (56)

is true. Let there exists the “segment” ω0
t ⊂ S(ϕ). Since ω0

t ⊂ Φ0, where Φ0 is the connected
component, then from (39) it follows that (ρ = 0)

f ′(z)

f(z)
= (y + u(z))z−1 lnυ z, y 6= 0, |u(z)| < δ

10
, z ∈ Φ0, |z| > r0. (57)

If z = |z|eiϕ, α < ϕ < α + π, then ln z = ln |z|(1 + iϕ
ln |z|) and taking into account Taylor

series expansion formula we obtain

lnv z = lnv |z|
(

1 +
iϕ

ln |z|

)v
= lnv |z|

(
1 +O

(
1

ln |z|

))
, α < ϕ < α + π, z →∞.

Thus from (57) we have

f ′(z)

f(z)
= (y + u(z))

(
1 +O

(
1

ln |z|

))
lnv |z|
z

=

= (y + u1(z))
lnv |z|
z

, |u1(z)| < δ

9
, z ∈ Φ0, |z| > r0, y 6= 0. (58)

Let in (58) υ > 0. Integrating (58) over the arc ω0
[z1t,z]

of the segment

ω0
[z1t,z2t]

: z = teiϕ, |z1t| ≤ t ≤ |z2t|, (|z1t| = r1t, |z2t| = r2t, |z| = r)

and taking the real part, we obtain

ln
f(z)

f(z1t)
=
y + ω(z)

υ + 1
(lnυ+1 |z| − lnυ+1 |z1t|), y = |y|eiβ, |ω(z)| < δ

9
,

ln

∣∣∣∣ f(z)

f(z1t)

∣∣∣∣ =
|y| cos β + g(z)

υ + 1
(lnυ+1 |z| − lnυ+1 |z1t|), |z1t| ≤ |z| ≤ |z2t|, (59)
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where w(z), g(z) are some functions, |w(z)| < δ
9
, |g(z)| < δ

9
, z ∈ ω0

t , υ > 0; hence, β takes
a finite amount of possible values.

1. If cos β = 0 in (59), then (40) and (43) imply that

ln |f(z)| < δ

5
lnυ+1 |z|, z ∈ ω0

t , r1t 6 |z| 6 r2t 6 +∞, υ > 0. (60)

2. Suppose that cos β < 0 in (59). Choose δ > 0 such that |y| cos β + δ
2
< 0 (β is one of

a finite amount of possible values). Then the right-hand side of (59) is negative. If r0 < r1t,
then from (43) and (59) it follows that

ln |f(reiϕ)| < ln |f(r1te
iϕ)| = (ν + ε) ln r1t, r1t < r 6 r2t ≤ +∞.

Therefore, we have a contradiction with (42). If r0 = r1t, then taking into account (59) and
(40) we obtain

ln |f(reiϕ)| < ln |f(r1te
iϕ)| < lnC, r1t < r 6 r2t.

The latter statement together with (42) imply that r2t < r∗ = const, thus

∃r∗ : {z : argα−π z = ϕ ∈ Π, |z| > r∗} ∩ ω0
t = ∅, cos β < 0. (61)

3. Let cos β > 0 in (59) and r0 < r1t < r2t < +∞. Choose δ such that 0 < δ < |y| cos β.
Then taking into consideration (43) we may rewrite (59) as follows

(ν + ε) ln
r2t

r1t

= ln

∣∣∣∣f(r2te
iϕ)

f(r1teiϕ)

∣∣∣∣ > |y| cos β
lnυ+1 r2t − lnυ+1 r1t

2(υ + 1)
,

or
c(ln r2t − ln r1t) > lnυ+1 r2t − lnυ+1 r1t, r1t < r2t, υ > 0, (62)

where c = 2(υ+1)(ν+ε)
|y| cosβ

. The function lnυ+1 r − c ln r ↑ +∞ if r > e( c
υ+1

)
1
υ . Therefore, (62) is

impossible if r1t > r∗ = const. If r0 = r1t < r2t < +∞ in (59), then the proof is similar.
Hence

∃r∗ : {z : argα−π z = ϕ ∈ Π, |z| > r∗} ∩ ω0
t = ∅, cos β > 0, r2t < +∞. (63)

4. Suppose that r2t = +∞ (the segment ω0
t has an infinite length) and cos β > 0 in (59).

We consider |z| = r is so large that in (59): |g(z)| < δ
9
< |y| cosβ

3
, z ∈ ω0

t ⊂ S(ϕ). Therefore

ln |f(reiϕ)| = |y| cos β + g(z)

υ + 1
lnυ+1 |z|+O(1), r1t ≤ r ≤ +∞. (64)

Let take ϕ1 such that ϕ < ϕ1 < α + π. We have ω0
t ⊂ Φ0. Let us prove that

∃d : {z : ϕ 6 argα z 6 ϕ1, |z| > d} \ E∗∗ ⊂ Φ0, (65)

where E∗∗ is a set of disks with a finite sum of radii.
Let denote by Hr the curve obtained when the point z moves from the point z ∈ S(ϕ),

|z| = r, along the arc {reiθ : ϕ 6 θ 6 α+π} enveloping the disks with centers at cq (see (10))
along the arcs {z : |z − cq| = δq}. We denote these arcs by κ. Let z = r(x)eiθ(x), 0 6 x 6 1
be the equation of Hr. We choose arcs κ such that in the equation Hr : r(x) > r holds.
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The point z = r(0)eiθ(0) is the starting point of the curve Hr, z = r(0)eiθ(0) ∈ ω0
t ⊂ Φ0. Let

x∗ ∈ [0, 1], x∗ be the largest value, such that the curve

hr = {z : z ∈ Hr, z = r(x)eiθ(x), 0 6 x 6 x∗} ⊂ Φ0,

([hr] ⊂ Φ0, where [hr] is the set of points of the arc hr), Φ0 is the connected component of
Φ. The point z = r(0)eiθ(0) ∈ Φ0 ⊂ Φ and (64) is true at this point. From the definition
of Φ it follows that 0 < x∗. Suppose that θ(x∗) < ϕ1. From the definition of the connected
component Φ0 ⊂ Φ and the definition of the point x∗ it follows that

|f(r(x∗)e
iθ(x∗))| = (r(x∗))

ν+ε. (66)

The curve hr consists of arcs of the circle {z : |z| = r} and of the arcs κ. The total length of
the arcs κ is not greater than 2πM (see (10)), therefore r 6 r(x) < r+2πM, r(x)eiθ(x) ∈ [hr].

The length hr is less than πr + 2πM . Therefore, integrating (58) along hr, [hr] ⊂ Φ0,
and extracting the real parts we obtain

ln

∣∣∣∣f(r(x∗)e
iθ(x∗))

f(z)

∣∣∣∣ = Re
∫
hr

(y + u(ζ))
lnυ ζ

ζ
dζ = O(lnυ r), r → +∞,

because ∣∣∣∣∣∣
∫
hr

(y + u(ζ))
lnυ ζ

ζ
dζ

∣∣∣∣∣∣ 6
(
|y|+ δ

10

)
2

∫
hr

lnυ |ζ|
|ζ|

ds 6

6

(
|y|+ δ

10

)
2

lnυ r

r
(πr + 2πM) = O(lnυ r).

Therefore, from (64) and (66) it follows that (|g(z)| < δ
9
< |y| cosβ

3
, z ∈ ω0

t )

(ν + ε) ln r = ln |f(z)|+O(lnυ r) >
|y| cos β

2(υ + 1)
lnυ+1 r, υ > 0, cos β > 0.

But this is impossible for a sufficiently large r. Therefore θ(x∗) > ϕ1 and (65) is proved.
Similarly, we can show that ∀ϕ0, ϕ1, α < ϕ0 < ϕ1 < α + π,∃d :

B = {z : ϕ0 6 argα z 6 ϕ1, |z| > d} \ E∗∗ ⊂ Φ0, f(deiθ) 6= 0,∞, (67)

where E∗∗ is the set of disks with a finite sum of radii, α 6 θ 6 α + π.
Let us denote by Γ(z) the curve obtained when the point z moves in due order along

the segment {z : z ∈ S(ϕ), d 6 |z| 6 r} ⊂ B and along the curve Hr. Let z1 = deiϕ be the
starting point and z = r(x)eiθ(x) ∈ B be the ending point of Γ(z) (see above). Integrating (57)
over Γ(z), we obtain

ln
f(z)

f(z1)
= y(lnυ+1 z − lnυ+1 z1)(υ + 1)−1 +

∫
Γ(z)

u(ζ) lnυ ζ

ζ
dζ, z ∈ B,

∣∣∣∣ ∫
Γ(z)

u(ζ) lnυ ζ

ζ
dζ

∣∣∣∣ 6 2δ

3

(
lnυ+1 r

υ + 1
+

lnυ r

r
(πr + 2πM)

)
. (68)
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The estimate of integral in (68) is uniform by argα z in B. Since values of ϕ0, ϕ1, α < ϕ0 <
ϕ1 < α+ π were chosen arbitrarily, then from (68) it follows that estimate (4) is true on the
set {reiθ : α + ε < θ < α + π − ε, r > d}, ε > 0.

5. Suppose that in (57) v ≤ 0. Integrating (57) along ω0
t and extracting the real parts we

obtain

ln
∣∣∣ f(z)

f(z1t)

∣∣∣ < (|y|+ δ

9

) r∫
r1t

ds

s
<
(
|y|+ δ

9

)
ln

r

r1t

, r1t 6 |z| 6 r2t, |z| = r, z ∈ ωt,

or ∣∣∣ f(z)

f(z1t)

∣∣∣ < ( r

r1t

)|y|+ δ
9
, 0 < δ < ε. (69)

Exactly the same estimate holds in the case ρ < 0 (see (55)). Let r0 < r1t < r2t < +∞. From
(69) and (43) we obtain∣∣∣∣f(z2t)

f(z1t)

∣∣∣∣ =

(
r2t

r1t

)ν+ε

<

(
r2t

r1t

)|y|+ δ
9

, 0 < δ < ε,

but this is impossible because |y| 6 ν, δ < ε (see (35)). If r0 < r1t < r2t = +∞, then from
(69) and (42) we obtain

rν+ε 6 |f(reiϕ)| < |f(r1e
iϕ)|
(
r

r1t

)|y|+ δ
9

, r > r1t,

but this is also impossible because |y| 6 ν, δ < ε. Let r0 = r1t. From (40), (42) and (69) we
obtain

rν+ε 6 |f(reiϕ)| < C

(
r

r1t

)|y|+ δ
9

, r0 6 r 6 r2t. (70)

Since |y| 6 ν, δ < ε, then (70) is possible if r2t < r∗ where r∗ is a constant. Therefore

∃r∗ : {z : argα−π z = ϕ ∈ Π, |z| > r∗} ∩ ω0
t = ∅, v ≤ 0. (71)

Simultaneously we have proved (56).
The similar arguments could be applied if for any ϕ ∈ Π the ray

S(ϕ) = {z : argα−π z = ϕ = const, z ≥ d}

contains the segment w0
t of an infinite length on which cos β > 0 in (59), then the statement

(4) of theorem 1 holds. Otherwise ∀ϕ ∈ Π on the ray S(ϕ) one of the ratio (41), (60), (61),
(63), (56), (71) holds. Hence

∀ϕ ∈ Π: ln |f(z)| < δ

5
lnv+1 |z|, z ∈ {z : argα−π z = ϕ, z ≥ r(ϕ)}. (72)

Lets consider any {z : arg z = ϕ}, ϕ /∈ Π. We denote

S1 = {z : arg z = ϕ, |z| /∈ ∆, mes∆ <∞}, (73)

where ∆ is the set of points that belong to the intervals [|cq| − δq, |cq| + δq], cq ∈ {cq} (see
(10)). Let us prove that on S1 estimate (5) holds.
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If Φ∩ S1 = ∅, then on S1 inequality (41) is true. Let Φ∩ S1 6= ∅. The set Φ∩ S1 can be
represented as a sum of “maximal” segments

wt(ϕ) = {z : arg z = ϕ, r1t ≤ |z| ≤ r2t} ⊂ Φ ∩ S1

such that
|f(z)| ≥ |z|ν+ε, z ∈ wt(ϕ) ⊂ Φ0, ϕ 6∈ Π (74)

where Φ0 is the connected component of Φ. According to the latter (see (42)), we define the
segments w−t (ϕ), w0

t (ϕ). On the segment w−t (ϕ) estimate (52) holds (this estimate is proved
for all ϕ ∈ (0, π)).

We obtain estimates on the segment w0
t (ϕ). Choose any δ1 > 0. The set Π (see (53)) is

dense on (0, π). Then there exist ψ(1), ψ(2), such that

ψ(1), ψ(2) ∈ Π ∧ ϕ− δ1 < ψ(1) < ϕ < ψ(2) < ϕ+ δ1. (75)

On the rays S(ψ(j)) = {z : arg z = ψ(j)}, j ∈ {1, 2}, (72) holds, hence

ln |f(reiψ(j))| < δ lnv+1 r, r > r(ψ(j)), j ∈ {1, 2}; v > 0. (76)

Consider the segment wt(ϕ) ⊂ S1. Let z = reiϕ ∈ wt(ϕ) ∈ Φ0 ⊂ Φ. By θ(1) we denote the
least value and by θ(2) we denote the greatest value such that

θ(1) ≤ ϕ ≤ θ(2) ∧ {z : θ(1) ≤ arg z ≤ θ(2), |z| = r} ⊂ Φ0.

Let
ζ = max(θ(1), ψ(1)), λ = min(θ(2), ψ(2)).

From the definition of θ(1), θ(2), and from (75) it follows that

{z : ζ ≤ arg z ≤ λ, |z| = r} ⊂ Φ0, ϕ− δ1 < ζ ≤ ϕ ≤ λ < ϕ+ δ1. (77)

Let z = reiϕ ∈ w0
t (ϕ) ⊂ S1. Thus w0

t (ϕ) ⊂ Φ0 and statement (57) holds on Φ0. Integra-
ting (57) along the arc {z : ζ ≤ arg z ≤ λ, |z| = r} ⊂ Φ0 from the point reiζ to the point
z = reiϕ, and extracting real parts and taking into account 0 ≤ ϕ− ζ < δ1, we obtain

ln

∣∣∣∣ f(z)

f(r exp(iζ))

∣∣∣∣ ≤ (|y|+ δ) δ1 lnv r, z = reiϕ, (78)

where ζ = max(θ(1), ψ(1)). If ψ(1) ≤ θ(1), then ζ = θ(1). Thus from the definition of θ(1)
and from the definition of the connected component Φ0 equality |f(reiζ)| = rν+ε follows. If
θ(1) < ψ(1), then ζ = ψ(1) and from (76)

ln |f(reiζ)| = ln |f(reiψ(1))| < δ lnv+1 r, v > 0.

Therefore from (78) we obtain

ln |f(z)| ≤ δ lnv+1 r + δ1 (|y|+ δ) lnv r, z = reiϕ ∈ w0
t (ϕ).

The latter statement, (52) and the estimate |f(z)| < |z|ν+ε, z ∈ Φ1 (see (36)), yield that on
the ray S1(ϕ 6∈ Π) estimate (5) holds.
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Choose some α, ξ, ψ,−∞ < α < ξ < ψ < +∞. There exists l ∈ N such that α < ξ <

ψ < α + lπ
2
. Let αj

def
= α + jπ

2
, j ∈ {0, 1, . . . , l}. Then (0 < ε < max(ξ − α, π

4
))

[ξ, ψ] ⊂
l⋃

j=0

[αj + ε, αj + π − ε]. (79)

The function f ∈ Ml is the solution of equation (1). So the single-valued branch f(z),
z ∈ gαj ,αj+π, j ∈ {0, 1, . . . , l}, is the solution of equation (1) (this solution satisfies the
conditions of Theorem 1). Therefore (4) or (5) is true for each branch f(z), z ∈ gαj ,αj+π.

For the branch f(z), z ∈ gαj ,αj+π, j ∈ {0, 1, . . . , l}, by Ej we denote the set of exceptional
disks E∗ (see theorem 1) with a finite sum of radii on the part of the Riemann surface
gαj ,αj+π = {reiθ : r0 6 r, αj 6 θ 6 αj + π} of the meromorphic function f(z), z ∈ G =
{z : r0 6 |z| < +∞}. The union of parts

gαj+ε,αj+π−ε \ Ej = {reiθ : r0 6 r, αj + ε 6 θ 6 αj + π − ε} \ Ej

of the Riemann surface of the function f(z), z ∈ G, we denote by

l⋃
j=0

gαj+ε,αj+π−ε \ Ej, E =
l⋃

j=0

Ej

be the union of the sets of the disks on the Riemann surface. Since Ej is the set of disks with
a finite sum of radii then the sum of radii of the disks that form the set E is also finite.

From (79) it follows that the part of the Riemann surface

gξ,ψ = {reiθ : r0 6 r, ξ 6 θ 6 ψ} ⊂
l⋃

j=1

gαj+ε,αj+π−ε. (80)

Let us assume that for the branch f(z), z ∈ gα0,α0+π(α0 = α) (4) is true. Namely
∃d > 0: r > d ∧ α0 + ε 6 θ 6 α0 + π − ε⇒

ln f(reiθ) = lnυ+1(reiθ)
( y

υ + 1
+ g(reiθ)

)
, reiθ 6∈ E0,

|g(reiθ)| < ε, υ > 0, y = |y|eiβ, Rey > 0, cos β > 0. (81)

By the construction there exists ϕ such that α1 + ε < ϕ < α0 + π − ε < α1 + π − ε.
The equality (81) is true, in particular on infinite “ray” S(ϕ) (see definition below (40),

E0 = E∗). Thus, we proved that (59), (64) hold with cos β > 0 on infinite “ray” S(ϕ) for the
branch f(z), z ∈ gα1,α1+π. Repeating the proof of (68) we obtain that for f(z),

z ∈ gα1,α1+π,∃d1 > 0: r > d1 ∧ α1 + ε 6 θ 6 α1 + π − ε

statement (81) is true.
Similarly we prove that for each branch f(z), z ∈ gαj ,αj+π, j ∈ {0, 1, . . . , l}, ∃dj > 0: r >

dj ∧ αj + ε 6 θ 6 αj + π − ε it follows that (81) is true. Hence, from (80) it follows that (4)
is valid, d = max dj, j ∈ {0, 1, . . . , l}.
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