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Let F: Ry — Ry be a function of the form F(zr) = f]R+ f(u)e™v(du), where v is a

Borel measure with unbounded support, f some measurable positive function, u.(z,F) =
max{ f(u)e®™: u € suppr}. We obtain necessary and sufficient conditions for the relation
InF(z) < (14 o(1))Inu.(z, F) to be held as x — +oo, for each function F' outside some
set E of zero lower linear density.

A. O. Kypunsik, O. B. Ckackus, /1. 1O. Bukpau. O comnonowenuu muna Bopeas das urme-
epanos Jlanaaca-Cmuavmoeca // Mar. Crymii. — 2014. — T.42, Ne2. — C.134-142.

B crarbe mosydeHbl HeOOXOAUMbIE U JIOCTATOYHBIE YCJIOBUSI JUJISL TOTO, YTOOBI COOTHOIIE-
are In F(z) < (14 o(1)) In pu(x, F) umeso Mecro juist kaxzaoi dyukmun F: Ry — Ry Buga
— ru . .o
F(z) = fR+ fw)e*™ v(du) upu  — +00 BHe HEKOTOPOro MHOXKeCTBa F HyJIeBOl HUKHE(l Jiu-
HEHHOMN IUIOTHOCTH, IJie ¥ — OopeJieBa Mepa ¢ HEOrPAHUYEHHBIM HOCHTeseM, f — HeKoTopas

HOJIOXKUTENbHAs u3MepuMast Gyukuusd, (2, F') = max{f(u)e*™: u € suppv}.

1. Introduction and the main result. Let R, = [0, +00), v be a nonnegative measure
on R, with unbounded support suppr and f(z) an arbitrary nonnegative r-measurable
function on R,. By Z(v) we denote the class of functions F': R — R of the form

P(a) = [ fwerv(du). 1)

For F € Z(v) and = € R we denote

(e, F) = sup{f(u)e™: u € supp v},

We remark that the condition (Vx € R): pu.(x, F) < +oco is fulfilled if and only if (for
example see |1, 2])

—1
u—+00 u
uesupp v

Denote by L the class of nonnegative continuous functions ¢: R, — R, such that
(t) = 400 as t — 400 and by Lt the subclass of functions ¢ € L such that ¢ (t) ~ +oo
as t — +o0.
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The following result can be deduced from [3] (for entire Dirichlet series see in [5]).
Theorem A ([3]). Let F € Z(v, ®). If

—+00

/ ‘“%”0“) < oo, wo(t) == v((0,1]), (2)
then the relation
In F(z) < (14 o0(1))In p(x, F) (3)

holds as © — +oo (z ¢ FE), where E C Ry is some set of finite Lebesgue measure on R,
ie.meas E = [, dr < +o0.

In [4] (see also [5]) it was proved that, for every positive measure v such that Inyy(t) =
O(t) (t — +oo) and ["¢'dInwy(t) = +oo there exist a function F € Z(v) and a positive
constant d > 0 such that the inequality In F(x) > (1+d) In p.(z, F') holds for all x > xy, i.e.
condition (2), in some sense, is a necessary condition for the conclusion of Theorem A.

Let ® € L*. By Z(v, ®) we denote the class of functions F' € Z(v) such that

(Je>0): InF(z) <P(cx) (x> x0),
(v, @) == {F € Z(v): (3¢ > 0)(3z; = +00)[ In F(z) < ®(cx) (v =z, j > 1)]}.

Proposition 7 of |6, p.135-137] implies the following assertion.

Theorem B. Let ® € LT, F € Z(v, ®). If

n®(R)

dl
(Vn>0): lim = / Ill/g =0, (4)

R—+00
then relation (3) holds as v — 400 (z ¢ E), where E' is a set of zero linear density, i.e.

1
DE = RETOO I meas(E N[0, R]) = 0.

From [8, Theorem 1] one can deduce the next statement.

Theorem 1. Let ®y(z) = xP(x), ® € LT, F € Z(v, Dy). If condition (4) is satisfied then
relation (3) holds as 0 — +oo (0 ¢ E), where E is some set of zero linear density, i.e.
DE = 0.
Remark 1. If t®(t) = O(P(2t)) (t — +00), then Z(v, ®) = Z(v, ®y) with Oo(z) := xP(x).
But, in general, Z(v, ®) C Z(v, ®y), Z(v, ®) # Z(v, o).

From Proposition 8 in [6, p. 137-138] we can obtain the following assertion.

Theorem C. Let ® € LT, F € I*(v,®). If condition (4) is satisfied, then there exists
a measurable set E C R, such that

1
DE := lim —meas(EFN[0,z]) =0 (5)
z——4oo L
and relation (3) holds as x — 400 (v € Ry \ E).

From [8, Theorem 2| we get the next assertion.
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Theorem 2. Let & € Lt F € Z*(v,®). If condition (4) is satisfied then there exists
a measurable set E C R, such that DE = 0 and relation (3) holds as x — +o0o (x € R4\ E).

Conjecture 1. Condition (4) is a necessary condition for the conclusions of Theorems 1
and 2.

In this paper we prove the following theorem.

Theorem 3. Let ®y(x) = 2P(x), € LT, F € Z(v,®y). If conditions

(W0 >0):  Inue(nd(t) = o(td(t)) (£ — +o0) (6)
and
1 77<I>(R)allnz/ (t)
V>0 lm / T 0wty = v((0,1)) (7)

0

are satisfied then relation (3) holds as v — +oo (x ¢ E), where E is a set of zero linear
lower density, i.e. DE = 0.

We remark that condition (7) implies that the equality

)

im =0
isoo  LD(t)

holds for every n > 0.
The following theorem shows that condition (7) is a necessary condition for the conclusion
of Theorem 3.

Theorem 4. Let ® € L. If conditions

1 U‘I’(R)dl ' +o00
(3 >0)(3b>0): lim — / dlnn(®) / e dyy(t) < +00 (8)
R—+o00 R ; t 9

are satisfied then for every h > 0 there exists a function F € Z(v, ®y), ®o(z) = xP(x) such
that for all x > x( the inequality

In F(x) > (1 4+ h)Inp.(x, F) 9)
holds.
Conjecture 2. The assertion of Theorem 3 is valid without condition (6).
Conjecture 3. The assertion of Theorem 4 is true without the second condition of (8).
Remark 2. It is easy to see that the second condition of (8) is satisfied if and only if
Invy(t) = O(t) (t — +00).

2. Proof of the main results. We define a class of positive functions by setting
bd(t)

L@) = {we Lt (%>0)] lim ! / W) _ o] ae) = o (w(t0 () (t = +00) }.

t——+o0 T

We need the following two lemmas.
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Lemma 1 ([7, 11]). Let ¢, ¢ € LT be two functions such that

def 1
AlR) = p(R

G C Ry, and R = o(¢(Rp(R))) (R — +00). Then

| /‘th(t) —o(1) (R— +o0, RE Q)

Rop(R)

As(R) difﬁ % —o(1) (R— 400, R€Q).

Remark 3. It is easy to see that the conditions R = o(¢)(Rp(R))) (R — +00) and
(Vb >0): v ' (R) =o(Rp(bR)) (R — +o0)
are equivalent.

Lemma 2. Let &, € L, ¢ € L(®,). If g(x) is a positive differentiable nondecreasing function
on [0, 4+00) such that g(x) < x®y(x) (x > x¢), then for theset E = {x > 0: ¢'(z) > ¥(g(x))}
we have

1
}—%meas(E N0,R])) -0 (R=R; = +0)
for some sequence 0 < R; T 400 (1 < j T +00).

Proof. The condition ¢ € L(®;), ®; € LT implies that there exists a sequence (R;) such
that 0 < R; T +o00 (1 < j 1 +00) and

P (R)

1 dyp=!
0

Therefore, using Lemma 1 we obtain

. ,( ) . g(R) g . R®1(R) J
g (x U U
—meas(E N[0, R]) — < —= / — =o0(1),
R e *r ) 3w =r | vV
EmOR 0 0

Proof of Theorem 3. From conditions (6) and (7) it follows that there exists a function ¢ €
L* such that

bR
(Wb >0): v (bB(R)) = o(RB(R)), Rl%loo}l% / & t W _o (o0
Inp(R) =0 (v " (R)) (R— 400), (11)

i.e., by Remark 3 we have ¢ € L(®).
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For any fixed x > 0 we obtain

/ fu)e"v(du) < / 2(1+($)),f(u)e“”":l/(du) <

u>2(In F(z))’ u>2(In F(z))’
+o0o

Sm/uﬂu)e v(du) = 5

0

Therefore, F(z) < [,y payy f(w)e*v(du) + F(x)/2 and

F(x) <2 / flu)e" v(du) < 2p.(z)vo(2(In F(z))") (12)

u<2(In F(z))’

for every x > 0.
Applying Lemma 2 with g(z) = In F(z), ®1(z) = ®(z) and ¥ (t) = 391 (t) we get

1
§(x) < S (gla)
for all z € Ry \ E, DE = 0. Hence using (11) and (12) we obtain

)
In F(z) <In2+Inp(z) + Invg (26 (2)) <In2+Inp(z) + nv(¢r(g(x))) <
<In2+Inu.(z)+ o(ln F(z))
<

ast — 400 (x € Ry\E). Thus (1+0(1))In F(z) < Inp,(z, F)asz — +oo (x € R\ E). O

Proof of Theorem /. Following [4] we put

t

No(#) :/@dag, wo(t) = v(0:1], B = 1%1 B0,
() = —Bu /m (No(0.5(t+ D)/t +1) iy — {exp{w<u>}, w1,

12 1, 0<u<l.

1

We prove that a function F' defined by the integral of the form (1). Indeed, the condition
f0+°° e Mduy(t) < oo implies that
+o00

= +/oof(u)ez“1/(du) = +/Oof(u)emdyo(u) < p(x+mn,F)- / e Mdvg(u). (13)

0

Now, for each fixed z € R} we consider the function 9 (u, z) = ¥ (u) + zu. It is easy to see
that 1y (u, z) is a concave function of u > 1 for each fixed x € R, and has a unique point of
maximum @ = u(z) € [1,4+00). We can find this point from the equation

B8 r oy  No(0,5(t + 1) B ( No(0,5(u+ 1))
%:_B/t 1“( In(t + 1) )dt_ﬂln< In(u+ 1)) )”:0’

1
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and also Y(u,z) > ¢¥(l,z) =2 >0 (1 <u <,z >0). Hence
In p(z, F) = sup{In f(u) + zu: v € suppr} < max{(u) +uz: u>1} =

No(0,5(u+ 1))
In(u + 1))

=(u) +ur = Bln( )S Blnvyy(0,5(u+ 1)) < Blnwy(u) < +oo,  (14)

and F' € Z(v). On the other hand, for z > 0 we obtain
F(z) > /f(u)em‘y(du) > /u(du) = 1p(u) — 1(0) = vy ().
0 0

Using inequality (14) we have
1
In F(z) > Inyy(u) > Elnu*(x,F) =(14+h) -Inu(z, F) (x> o).

The first condition of (8) yields

n®(R)
(3n > 0)(3b > 0): ;%;% / mgﬁMt>b (15)
Indeed, if we assume that
5B (R)
(V6 > 0): ;%;1-/ mguhﬁ:o

0
then for any fixed n > 0 there exists a sequence R; — 400 (j — +00) such that

2n®(R) 2n®(R) 2n®(R)

1 In vy (t) 1 In vo(t) 1 In vy (t)
max {E / t2 dt, }—% / t2 dt = E / t2 dt — 0
0 n®(R) 0
as R = R; — +o00. From the inequality
" ) (0 ()
1 In vy (t Invy(n®(R
= dt > R>0
R / 12 ~ 2nRP(R) ( )
n®(R)
we obtain o (1 (R))
nvy(n o
RO(R) —0 (R=R; = +00).
But
n®(R) 5(R)
0<b< 1 / dInyy(t) _ Invy(n®(R)) l/" lnyo(t)dt <
R t nRO(R) R Jy 2
0

< Invy(n®(R)) 1 /WNR) In vo(t)
0

reE) TR 3 dt =0 (R=R; — too).
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We have got a contradiction.
Remark that No(t) > [, 2@ dz > vy(t/e) > vo(t/3) (t > 0). Then

t/e
/yln (Nol(t + 1)/2)/In(t + 1)) >/yln (vo (£ + 1)/6)/n(t+1)
t2 - t? -
y y y/6
> /lnyotgt/6)dt_/lnln(tt2+ l)dt > é/lnz(;(u)du_c’

where ¢ > 0 is some constant. Hence by conditions (8) we obtain

6n®d(R) n®(R)

/ ln(NO((tleng)/ln(tle % / nyo Zli_f?i (R> Ry).
and LB
In f(u) = p(u) < 5 w5 ) = —erwelen) (> 6n2(r0))

where the function ¢ is the inverse function to ®, and ¢y, ¢y > 0. Then for large enough x
we have

In g, (x, F) < max{max{¢(u) + zu: u > 6nP(ry)}, max{e(u) + zu: 0 < u < 6ndP(ro)}} <

< max{—cjup(cou) + zu: u > 6ndP(ry)} < max{ - C—lvq)(v) + E@(’U): v > 0} =
Co Co

:max{x_clvq)(v): 0<v< —} < £®(£>
C1 C1

Co C2

Finally, from (13) it follows that F' € Z(v, ®y). O

3. Corollaries. Let A = (\,,) be a sequence such that 0 = \g < A\, T 400 (1 < n 1 +00),
and v(E) 1= ), .pox,(F) for any bounded set £ C Ry, where 6,(E£) = 1 at A € £ and
Ir(E) = 0 otherwise. Then for a function F' € Z(r) and x > 0 we have an entire Dirichlet

series .
= [ fwesin) = 3 fon)e
R, n=0
Denote by H(A, ®) the class of entire Dirichlet series with fixed sequence of exponents A of

the form
“+o00
= g ane™™,
n=0

such that
“+oo
(Fe>0): Mz, F) < P(cx) (x>x0), Mz, F):= Z |ap|e* .

From Theorem 3 we obtain the following corollary.
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Corollary 1. Let ®y(z) = x®(z), ® € LT, F € H(\, ®y). If conditions

(Vn>0): Inn(nd®(t)) =o(td(t)) (t = +o0) (16)
and
1 ncp(R)dln n(t)
(Vn>0): R%ooﬁ / : =0, n(t)::;tl,

are satisfied then the relation
InM(z, F)=(14o0(1))Inp(x, F)

holds as x — +o00, (x € FE), where E is a set of zero linear lower density, i.e. DE = 0,
M(z, F) = sup{|F(z +iy)|: y € R}, p(z, F) = max{|a,|e**: n > 0}.

In [9, Theorem 2| we prove the statement of Corollary 1 with the condition

sup{li—::an}:C)(h;\—;n) (m — +00) (17)

instead of condition (16). Remark that condition (17) implies Inn = O(A,) (n — +00), i.e.
Inn(t) = O(t) (t = +o00). Thus condition (16) follows from condition (17).

The statement of Corollary 1 follows also from Theorem 3 in [10].

From Theorem 4 we obtain the following corollary (see also |9, Theorem 2|).

Corollary 2. Let ® € L*. If conditions

n®(R

(In > 0)(3b > 0): lim 1 /

R—+o00

+o0

> b, / e "dn(t) < +o0

0

)
dInn(t)
t

are satisfied then for every h > 0 there exists a function F' € H(\, ®) such that for all x > x
one has

InM(z, F) > (14 h)lnp(z, F).

Condition (17) implies that Inn(t) = O(t) (¢ — +o00). Therefore, by Remark 2,

f0+°° e Mdn(t) < 400 for some n > 0 large enough.

4. Concluding remarks. Let v be a discrete measure on R, with unbounded support.
From the results of [12, 13| it follows that the boundedness of the Lebesgue measure of
an exceptional set E in Theorem A is the best possible in this case (for similar statements
on the class of multiple Dirichlet series see [14]| and on the class of Laplace integrals of several
variables see [15]). In this connection the following questions arise.

Question 1. Let v be an absolutely continuous or singular measure. Whether the same is
true for these cases?”

Question 2. Is the description of an exceptional set in theorems 1-3 best possible?
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