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Let ϕ be the characteristic function of a probability law F analytic in DR = {z : |z| < R},
0 < R ≤ +∞, M(r, ϕ) = max{|ϕ(z)| : |z| = r} and WF (x) = 1 − F (x) + F (−x), x ≥ 0. We
obtain upper estimates for limr↑R(lnM(r, ϕ))/Φ(r) for some positive convex on (0, R) function
Φ under certain conditions on WF .

М. И. Плацидем, М. Н. Шеремета. Оценка для максимума модуля аналитических харак-
теристических функций вероятностных законов на некоторых последовательностях //
Мат. Студiї. – 2014. – Т.42, №2. – C.149–159.

Пусть ϕ — характеристическая функция вероятностного закона F , аналитическая в
DR = {z : |z| < R}, 0 < R ≤ +∞, M(r, ϕ) = max{|ϕ(z)| : |z| = r} и WF (x) = 1 − F (x) +
F (−x), x ≥ 0. Для некоторой положительной выпуклой на (0, R) функции Φ при опреде-
ленных условиях на WF получены оценки сверху для limr↑R(lnM(r, ϕ))/Φ(r).

1. Introduction and preliminary results.A non-decreasing left continuous on (−∞,+∞)
function F is said to be a probability law ([1, p. 10]) if limx→+∞ F (x) = 1 and limx→−∞ F (x) =
0, and the function ϕ(z) =

∫ +∞
−∞ eizxdF (x) defined for real z is called the characteristic

function of this law ([1, p. 12]). If ϕ has an analytic extension to the disk DR = {z : |z| < R},
0 < R ≤ +∞, then we call ϕ to be the analytic in DR characteristic function of the law F .
In the sequel we always assume that DR is the maximal disk of the analyticity of ϕ. It is
known ([1, p. 37–38]) that ϕ is the analytic in DR characteristic function of a law F if and
only if WF (x) =: 1 − F (x) + F (−x) = O(e−rx) as 0 ≤ x → +∞ for every r ∈ [0, R).
Hence it follows that limx→+∞

1
x

ln 1
WF (x)

= R. If we put M(r, ϕ) = max{|ϕ(z)| : |z| = r}
and µ(r, ϕ) = sup{WF (x)erx : x ≥ 0} for 0 ≤ r < R then ([1, p. 55], see also [2]) µ(r, ϕ) ≤
2M(r, ϕ). Therefore, the estimates from below for lnM(r, ϕ) follow from the same estimates
for lnµ(r, ϕ). Further we assume that lnµ(r, ϕ) ↑ +∞ as r ↑ R, that is

lim
x→+∞

WF (x)eRx = +∞. (1)

On the other hand ([1, p. 52]), M(r, ϕ) ≤ I(r, ϕ) + 1 + WF (0) for all r ∈ [0, R), where
I(r, ϕ) =

∫∞
0
WF (x)erxdx. Since it is possible to estimate I(r, ϕ) via µ(r, ϕ) we will obtain
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the corresponding estimates for M(r, ϕ) via µ(r, ϕ). Therefore, the investigation of the rela-
tionship between the growth of M(r, ϕ) and the decrease of WF (x) reduces to the study of
the behavior of µ(r, ϕ).

For entire characteristic functions the relationship between the growth ofM(r, ϕ) and the
decrease ofWF (x) in terms of the order and the type is investigated by B. Ramachandran ([3],
see also [1, p. 54]). N. I. Jakovleva ([4–5]) obtained such a relationship in terms of generalized
orders. Some additions tothe results of N. I. Jakovleva are obtained by B. V. Vynnyts’kyi
([6]) and M. Dewess ([7]). V. M. Sorokivs’kyi ([8]) investigated the relationship between the
growth ofM(r, ϕ) and the decrease of WF (x) for analytic functions in the disk D1. The most
general results are obtained ([9]) for entire as well as analytic in DR, R < +∞, characteristic
functions.

For the lower order
λ[ϕ] = lim

r→+∞

ln lnM(r, ϕ)

ln r

of an entire characteristic function ϕ N. I. Jakovleva ([4]) obtained a lower estimate. She
proved that if

lim
x→+∞

lnx

ln
(

1
x

ln 1
WF (x)

) ≥ λ then lim
r→+∞

1

ln r
ln

ln M(r, ϕ)

r
≥ λ.

This result is generalized in [10]; namely, it is proved that if there exists an increasing to
+∞ sequence (xk) such that xk+1 = O(xk) as k → +∞ and

lnxk ≥ λ ln

(
1

xk
ln

1

WF (xk)

)
then lim

r→+∞

1

ln r
ln

lnM(r, ϕ)

r
≥ λ.

Various generalizations of this result are obtained in [10] for entire as well as for analytic
in DR, R < +∞, characteristic functions.

For an upper estimate of λ[ϕ] it is proved in [4] that if

lim
r→+∞

ln ln M(r, ϕ)

ln r
= % > 1 and lim

x→+∞, x∈U

lnx

ln
(

1
x

ln 1
WF (x)

) ≤ δ < %− 1,

where U =
⋃
j(a2j, a2j+1) and limj→∞(a2j/a2j+1) ≤ δ/(%− 1) then λ[ϕ] ≤ 1 + δ.

Below we will show that, in this result the set U of intervals can be replaced with
a sequence that increases to +∞ not very quickly.

As in [10], by Ω(0, R), 0 < R ≤ +∞, we denote the class of positive unbounded func-
tions Φ on [r0, R) for some r0 ∈ [0, R) such that the derivative Φ′ is positive, continuously
differentiable and increasing to +∞ on (r0, R). For Φ ∈ Ω(0, R) let Ψ(r) = r − Φ(r)

Φ′(r)
be the

function associated with Φ in the sense of Newton and φ be the inverse function to Φ′. It
is known ([11]) that the function Ψ is continuously differentiable on [r0, R), Ψ(r) ↑ R as
r ↑ R, the function φ is continuously differentiable and increasing to R on (x0,+∞) and the
following lemma is true.

Lemma 1 ([11], Theorem 2.1). Let Φ ∈ Ω(0, R), 0 < R < +∞, and ϕ be an analytic in
DR characteristic function of a probability law F , which satisfies (1). Then in order that
lnµ(r, ϕ) ≤ Φ(r) for all r ∈ [r0, R) it is necessary and sufficient that lnWF (x) ≤ −xΨ(φ(x))
for all x ≥ x0.
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The following assertion is also true.

Proposition 1. Let Φ ∈ Ω(0, R), 0 < R ≤ +∞, and ϕ be an analytic in DR characteristic
function of a probability law F , which satisfies (1). Then if lnµ(rk, ϕ) ≤ Φ(rk) for some
sequence (rk) increasing to R then

lnWF (xk) ≤ −xkΨ(φ(xk)) (2)

for all k, where xk = Φ′(rk).

Indeed, the condition lnµ(rk, ϕ) ≤ Φ(rk) implies that lnWF (x) ≤ Φ(rk) − xrk for all
x ≥ 0 and k ≥ 1. Therefore,

lnWF (xk) = lnWF (Φ′(rk)) ≤ Φ(rk)− rkΦ′(rk) = −Φ′(rk)Ψ(rk) = −xkΨ(φ(xk)).

In view of Proposition 1 the question arises whether inequality (2) for some increasing to
+∞ sequence (xk) implies the estimate lnµ(rk, ϕ) ≤ Φ(rk) for some sequence (rk) increasing
to R. The answer is negative in general because the following statement is true.

Proposition 2. For every function Φ ∈ Ω(0, R), 0 < R ≤ +∞, and increasing to +∞
sequence (xk) of positive numbers there exists a probability law F such that (2) holds for
all k ≥ 1 and lnµ(r, ϕ) > Φ(r) for all r < R.

Proof. Indeed, let F (x) = 0 for x ≤ x1 and F (x) = 1−exp{−xkΨ(φ(xk))} for x ∈ [xk, xk+1),
k ≥ 1. Then lnWF (x) = lnWF (xk) = −xkΨ(φ(xk)) for all x ∈ [xk, xk+1) and k ≥ 1.
Therefore, if r ∈ [φ(xk), φ(xk+1)] then

lnµ(r, ϕ) ≥ sup{lnWF (x) + rx : xk ≤ x < xk+1} =

= sup{lnWF (xk) + rx : xk ≤ x < xk+1} = −xkΨ(φ(xk)) + rxk+1. (3)

On [φ(xk), φ(xk+1)] we consider the function A(r) = (−xkΨ(φ(xk)) + rxk+1)/Φ(r). Then
A′(r) = a(r)/Φ(r)2, where a(r) = Φ(r)xk+1 − Φ′(r)(rxk+1 − xkΨ(φ(xk))). Since

a(φ(xk)) = Φ(φ(xk))xk+1 − xk(φ(xk)− xkΨ(φ(xk))) =

= xk+1(Φ(φ(xk))− xk(φ(xk))) + x2
kΨ(φ(xk)) =

= −xk+1xkΨ(φ(xk)) + x2
kΨ(φ(xk)) = −(xk+1 − xk)xkΨ(φ(xk)) < 0,

a(φ(xk+1)) = Φ(φ(xk+1))xk+1 − xk+1(xk+1φ(xk+1)− xkΨ(φ(xk))) = xk+1(Φ(φ(xk+1))−
−xk+1φ(xk+1)) + xkxk+1Ψ(φ(xk)) = xk+1(xkΨ(φ(xk))− xk+1Ψ(φ(xk+1))) < 0,

a′(r) = xk+1Φ′(r)− Φ′′(r)(rxk+1 − xkΨ(φ(xk)))− Φ′(r)xk+1 ≤ −Φ′′(r)(φ(xk)xk+1−
−xkφ(xk) + Φ(φ(xk))) = −Φ′′(r)((xk+1 − xk)φ(xk) + Φ(φ(xk))) < 0

we obtain that a(r) < 0 on [φ(xk), φ(xk+1)], the function A(r) decreases on [φ(xk), φ(xk+1)]
and, thus,

A(r) ≥ −xkΨ(φ(xk)) + φ(xk+1)xk+1

Φ(φ(xk+1))
>
−xk+1Ψ(φ(xk+1)) + xk+1φ(xk+1)

Φ(φ(xk+1))
= 1.

Therefore, in view of (3) and of the definition of A(r) for r ∈ [φ(xk), φ(xk+1)] we have
(lnµ(r, ϕ))/Φ(r) = A(r) > 1.
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2. Main results. Under additional assumptions on the decrease ofWF (i. e. on the growth of
lnµ(r, ϕ)) it is possible to get from (2) estimates on lnµ(rk, ϕ) from above for some sequence
(rk) ↑ R. Here we will suggest two related solutions of this problem. One of them is based
on results from [12].

For Φ ∈ Ω(0, R) and Φ′(x0) ≤ a < b < +∞ we put

G1(a, b,Φ) =
ab

b− a

∫ b

a

Φ(ϕ(t)

t2
dt, G2(a, b,Φ) = Φ

(
1

b− a

∫ b

a

ϕ(t)dt

)
.

It is known ([13]) that G1(a, b,Φ) < G2(a, b,Φ), and in [12] the following lemma is proved.

Lemma 2. Let (xk) be an increasing to +∞ sequence of positive numbers, Φ ∈ Ω(0, R),
0 < R < +∞, and µD(r) be the maximal term of formal Dirichlet series

D(s) =
∞∑
k=1

exp{−xkΨ(φ(xk)) + sxk}, s = r + it.

Then

lim
r↑R

lnµD(r)

Φ(r)
= 1, lim

r↑R

ln lnµD(r)

ln Φ(r)
= 1, (4)

lim
r↑R

lnµD(r)

Φ(r)
= lim

k→∞

G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
(5)

and if

lnµD(r) +

(
Φ(r)Φ′′(r)

(Φ′(r))2
− 1

)
ln Φ(r) ≥ 0, r ∈ [r0, R), (6)

then

lim
r↑R

ln lnµD(r)

ln Φ(r)
= lim

k→∞

lnG1(xk, xk+1,Φ)

lnG2(xk, xk+1,Φ)
. (7)

Using Lemma 2 we prove the following theorem.

Theorem 1. Let Φ ∈ Ω(0, R), 0 < R ≤ +∞, and ϕ be an analytic in DR characteristic
function of a probability law F , which satisfies (1). We suppose that lnµ(r, ϕ) ≤ Φ(r) for
all r ∈ [r0, R) and lnWF (xk) − lnWF (xk+1) = O(1), k → ∞, for some increasing to +∞
sequence X = (xk) of positive numbers. Then

lim
r↑R

lnµ(r, ϕ)

Φ(r)
≤ lim

k→∞

G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
(8)

and if

Q(r) +

(
Φ(r)Φ′′(r)

(Φ′(r))2
− 1

)
ln Φ(r) ≥ q > −∞, r ∈ [r0, R), (9)

where Q(r) ≡ 0 if R < +∞ and Q(r) ≡ ln r if R = +∞, then

lim
r↑R

ln lnµ(r, ϕ)

ln Φ(r)
≤ lim

k→∞

lnG1(xk, xk+1,Φ)

lnG2(xk, xk+1,Φ)
. (10)
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Proof. We put x0 = 0 and µ(r, ϕ;X) = max {WF (xk)e
rxk : k ≥ 1}. Then the condition

lnWF (xk)− lnWF (xk+1) = O(1), k →∞ yields that

lnµ(r, ϕ) = sup
x≥0

(lnWF (x) + rx) = max
k≥0

sup
xk≤x<xk+1

(lnWF (x) + rx) ≤

≤ max
k≥0

(lnWF (xk) + rxk+1) = max
k≥0

(lnWF (xk+1) + rxk+1 + lnWF (xk)− lnWF (xk+1)) ≤

≤ max
k≥0

(lnWF (xk+1) + rxk+1) + const ≤ lnµ(r, ϕ;X) + const. (11)

On the other hand,

lnµ(r, ϕ) = max
k≥0

sup
xk<x≤xk+1

(lnWF (x) + rx) ≥ max
k≥0

(lnWF (xk+1) + rxk+1) ≥ lnµ(r, ϕ;X)

and since lnµ(r, ϕ) ≤ Φ(r) we have lnµ(r, ϕ;X) ≤ Φ(r) for r ∈ [r0, R). Therefore, by
Lemma 1 lnWF (xk) ≤ −xkΨ(φ(xk)) for all k ≥ k0. Hence it follows that lnµ(r, ϕ;X) ≤
lnµD(r) for r ∈ [r0, R). Therefore, by Lemma 2 from (5) we obtain

lim
r↑R

lnµ(r, ϕ;X)

Φ(r)
≤ lim

k→∞

G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
(12)

and if condition (6) holds then (7) implies

lim
r↑R

ln lnµ(r, ϕ;X)

ln Φ(r)
≤ lim

k→∞

lnG1(xk, xk+1,Φ)

lnG2(xk, xk+1,Φ)
. (13)

We remark that (9) implies (6), because if R < +∞ then (4) implies lnµD(r) ↑ +∞ as
r ↑ R, and if R = +∞ then (lnµD(r))/r →∞ as r → +∞, that is ln lnµD(r)− ln r → +∞
as r → +∞.

Inequalities (8) and (10) follow from (11)–(13).

If R = +∞ then the condition lnWF (xk)− lnWF (xk+1) = O(1), k →∞, can be replaced
with some weaker condition provided that the function Φ ∈ Ω(0,+∞) grows not very quickly.

Let L be the class of positive continuous functions α on (−∞,+∞) such that α(x) =
α(x0) for x ≤ x0, 0 < α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0 if α ∈ L and
α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞, and α ∈ Lsi if α(cx) = (1 + o(1))α(x) as
x→ +∞ for each c ∈ (0,+∞).

Theorem 2. Let Φ ∈ Ω(0,+∞) and ϕ be an entire characteristic function of a probability
law F and lnµ(r, ϕ) ≤ Φ(r) for all r ≥ r0. Then:

1) if Φ ∈ L0 and lnWF (xk) = (1 + o(1)) lnWF (xk+1), k →∞, for some increasing to +∞
sequence X = (xk) of positive numbers then inequality (8) holds;

2) if ln Φ ∈ Lsi, (
Φ(r)Φ′′(r)

(Φ′(r))2
− 1

)
ln Φ(r) + ln r ≥ q > −∞, r ≥ r0, (14)

and if there exists an increasing to +∞ sequence X = (xk) of positive numbers such
that lnWF (xk) ≤ a lnWF (xk+1) for some a ∈ (0, 1) and all k ≥ k0 then inequality (10)
holds.
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Proof. We begin with the first part. Since lnWF (xk) ≤ (1−ε) lnWF (xk+1) for each ε ∈ (0, 1)
and all k ≥ k0 = k0(ε), instead of (11) now we have

lnµ(r, ϕ) ≤ max
k≥0

(lnWF (xk) + rxk+1) =

= max

{
max

0≤k≤k0
(lnWF (xk) + rxk+1), max

k≥k0

(
lnWF (xk)

lnWF (xk+1)
lnWF (xk+1) + rxk+1

)}
≤

≤max{rxk0+1, max
k≥k0

((1− ε) lnWF (xk+1)+rxk+1)} ≤ (1− ε) max
k≥0

(lnWF (xk)+xkr/(1−ε))+

+rxk0+1 ≤ (1− ε) lnµ(r/(1− ε), ϕ;X) + rxk0+1. (15)

Therefore, from (12) we obtain

lim
r→+∞

lnµ(r, ϕ)

Φ(r)
≤ (1− ε) lim

r→+∞

lnµ(r/(1− ε), ϕ;X)

Φ(r)
≤

≤ (1− ε) lim
r→+∞

lnµ(r, ϕ;X)

Φ(r)
lim

r→+∞

Φ(r/(1− ε))
Φ(r)

≤ (1− ε)A(ε) lim
k→∞

G1(xk, xk+1,Φ)

G2(xk, xk+1,Φ)
, (16)

where A(ε) = limr→+∞
Φ(r/(1−ε))

Φ(r)
. For Φ ∈ L0 in [14] it is proved that A(ε) ↘ 1 as ε ↓ 0.

Therefore, (16) implies (8).
For the proof of the second part we remark that now instead of (15) we have lnµ(r, ϕ) ≤

a lnµ(r/a, ϕ;X), and (14) implies (9). Therefore, from (13) we obtain

lim
r→+∞

ln ln µ(r, ϕ)

ln Φ(r)
≤ lim

r→+∞

ln ln µ(r/a, ϕ;X)

ln Φ(r/a)
lim

r→+∞

ln Φ(r/a)

ln Φ(r)
≤ lim

k→∞

lnG1(xk, xk+1,Φ)

lnG2(xk, xk+1,Φ)
.

If the function lnWF (x) is smooth enough, then it is possible to get an estimate of
lnµ(r, ϕ).

Theorem 3. Let Φ ∈ Ω(0, R), 0 < R ≤ +∞, and ϕ be an analytic in DR characteristic
function of a probability law F such that lnWF (x) = −V (x) for all x ≥ a, where the
function V is positive, continuously differentiable and V ′(x) ↑ R as 0 < x ↑ +∞. If conditions
(1) and (2) hold for some sequence (xk) of positive numbers then lnµ(rk, ϕ) ≤ Φ(rk) + ark,
where rk = V ′(xk).

Proof. Clearly

lnµ(r, ϕ) ≤ max

{
sup

0≤x≤a
(lnWF (x) + rx), sup

x≥a
(lnWF (x) + rx)

}
≤ ar + max

x≥a
(−V (x) + rx)

and maxx≥a(−V (x) + rx) = (−V (x) + rx)
∣∣
x=v(r)

, where v(r) is the inverse function to V ′.
Therefore,

lnµ(rk, ϕ) ≤ −V (v(rk)) + rkv(rk) + ark = −V (v(V ′(xk))) + V ′(xk)v(V ′(xk)) + ark =

= V (xk) + rkxk + ark ≤ max
j≥1

(V (xj) + xjrk) + ark = max
j≥1

(lnWF (xj) + xjrk) + ark ≤

≤ max
j≥1

(−xjΨ(φ(xj)) + xjrk) + ark ≤ max
x≥a

(−xΨ(φ(x)) + xrk) + ark ≤ Φ(rk) + ark,

because (xΨ(φ(x)))′ = φ(x) and (−xΨ(φ(x))) + xr)|x=Φ′(r) = Φ(r).
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3. Corollaries. Examining the scale of growth in Theorems 1–2 it is possible to get a number
of results for analytic in DR characteristic functions. Here we will restrict ourselves only by
three cases which arise often in mathematical literature. The most often used characteristics
of growth for analytic in DR, 0 < R < +∞ functions ϕ are the order %∗[ϕ], the lower order
λ∗[ϕ] and (if 0 < %∗[ϕ] < +∞) the type T∗[ϕ] and the lower type t∗[ϕ], which are defined by
the formulas

%∗[ϕ] = lim
r↑R

ln lnM(r, ϕ)

ln(1/(R− r))
, λ∗[ϕ] = lim

r↑R

ln lnM(r, ϕ)

ln(1/(R− r))
, (17)

T∗[ϕ] = lim
r↑R

(R− r)%∗[ϕ] lnM(r, ϕ), t∗[ϕ] = lim
r↑R

(R− r)%∗[ϕ] lnM(r, ϕ). (18)

We will show that in these formulas lnM(r, ϕ) can be replaced with lnµ(r, ϕ). Indeed ([1,
p. 55])

lnµ(r, ϕ) ≤ lnM(r, ϕ) + ln 2. (19)

On the other hand ([1, p. 52]), if 0 < η(r) < R− r, then

M(r, ϕ) ≤
∫ ∞

0

WF (x)erxdx+ 1 +WF (0) =

∫ ∞
0

WF (x)e(r+η(r))xe−η(r)xdx+ 1 +WF (0) ≤

≤ 1

η(r)
µ(r + η(r), ϕ) + 1 +WF (0),

that is
lnM(r, ϕ) ≤ lnµ(r + η(r), ϕ)− ln η(r) + o(1), r ↑ R. (20)

We choose η(r) = (R− r)2. Then for r > R− 1 from (20) we obtain

lnM(r, ϕ) ≤ lnµ(r + (R− r)2, ϕ) + 2 ln(1/(R− r)) + o(1), r ↑ R. (21)

Since R−r+(R−r)2
R−r → 1, ln(R−r+(R−r)2)

ln(R−r) → 1, ln ln(1/(R−r))
ln(1/(R−r) → 0 and (R− r)%∗[ϕ] ln(1/(R− r)→ 0

as r ↑ R, from (19) and (21) it follows that in formulas (17) and (18) lnM(r, ϕ) can be
replaced with lnµ(r, ϕ).

Therefore, if %∗[ϕ] < +∞ (T∗[ϕ] < +∞) then lnµ(r, ϕ) ≤ T
(R−r)% for all r ∈ [r0(ε), R),

where either % = %∗[ϕ] + ε and T = 1 or % = %∗[ϕ] and T = T∗[ϕ] + ε. For a function
Φ ∈ Ω(0, R) such that Φ(r) = T

(R−r)% for all r ∈ [r0(ε), R) we have

Φ′(r) =
T%

(R− r)%+1
, φ(x) = R− (T%/x)1/(%+1),

Φ(φ(x))

x2
= T (T%)−%/(%+1)x%/(%+1)−2

for x ≥ x0(ε). Hence it follows that for k ≥ k0(ε)

G1(xk, xk+1,Φ) =
T (%+ 1)

(T%)%/(%+1)

xkxk+1

xk+1 − xk

(
1

x
1/(%+1)
k

− 1

x
1/(%+1)
k+1

)
, (22)

G2(xk, xk+1,Φ) = T

(
(%+ 1)(T%)1/(%+1)

%

x
%/(%+1)
k+1 − x%/(%+1)

k

xk+1 − xk

)−%
. (23)

Further we remark that(
Φ(r)Φ′′(r)

(Φ′(r))2
− 1

)
ln Φ(r) =

1

%
ln

T

(R− r)%
↑ +∞, r ↑ R,
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that is (9) holds. Therefore, if lnWF (xk) − lnWF (xk+1) = O(1), k → ∞, then by Theorem
1 in view of (22)–(23) and of arbitrariness of ε,

λ∗[ϕ] ≤ %∗[ϕ] lim
k→∞

ln

(
xkxk+1

xk+1−xk

(
1

x
1/(%+1)
k

− 1

x
1/(%+1)
k+1

))
ln

(
xk+1−xk

x
%/(%+1)
k+1 −x%/(%+1)

k

)% , (24)

t∗[ϕ] ≤ T∗[ϕ]
(%+ 1)%+1

%%
lim
k→∞

xkxk+1

xk+1 − xk

(
1

x
1/(%+1)
k

− 1

x
1/(%+1)
k+1

)(
x
%/(%+1)
k+1 − x%/(%+1)

k

xk+1 − xk

)%

. (25)

We suppose that

β =: lim
k→∞

lnxk
lnxk+1

< 1.

Then there exists a number β∗ ∈ (β, 1) and an increasing sequence (kj) of positive integers
such that lnxkj ≤ β∗ lnxkj+1, that is xkj = o(xkj+1) as j → ∞. Therefore, from (24) we
obtain

λ∗[ϕ] ≤ %∗[ϕ] lim
j→∞

ln

(
xkjxkj+1

xkj+1−xkj

(
1

x
1/(%+1)
kj

− 1

x
1/(%+1)
kj+1

))
ln

(
xkj+1−xkj

x
%/(%+1)
kj+1 −x%/(%+1)

kj

)% =

= %∗[ϕ] lim
j→∞

lnx
%/(%+1)
kj

% lnx
1/(%+1)
kj+1

= %∗[ϕ] lim
j→∞

lnxkj
lnxkj+1

≤ %∗[ϕ]β∗,

i. e. in view of arbitrariness of β∗ we have the inequality λ∗[ϕ] ≤ β%∗[ϕ]. For β = 1 this
inequality is trivial.

Now we suppose that
γ =: lim

k→∞

xk
xk+1

∈ (0, 1).

Then there exist an increasing sequence (kj) of positive integers such that xkj = (1 + o(1))×
×γxkj+1 as j →∞. Therefore, from (25) we obtain

t∗[ϕ] ≤ T∗[ϕ]
(%+ 1)%+1

%%
lim
j→∞

xkjxki+1

xkj+1 − xkj

(
1

x
1/(%+1)
kj

− 1

x
1/(%+1)
kj+1

)(
x
%/(%+1)
kj+1 − x%/(%+1)

kj

xkj+1 − xkj

)%

≤

≤ T∗[ϕ]
(%+ 1)%+1

%%
γ

γ − 1

(
1

γ1/(%+1)
− 1

)
(1− γ%/(%+1))%

(1− γ)%
= T∗[ϕ]

(%+ 1)%+1

%%
A(γ), (26)

where

A(γ) =:
γ%/(%+1)(1− γ1/(%+1))(1− γ%/(%+1))%

(1− γ)%+1
.

It is easy to show that A(γ)→ %%

(%+1)%+1 as γ → 1, that is, (26) is transformed in the obvious
inequality t∗[ϕ] ≤ T∗[ϕ] as γ → 1. If γ = 0 then xkj = O(xkj+1) as j →∞ and from (25) we
obtain easily that t∗[ϕ] = 0. This equality follows from (26), because A(0) = 0. Thus, the
following corollary is proved.
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Corollary 1. Let the characteristic function ϕ of a probability law F be analytic in DR,
0 < R < +∞, have order %∗[ϕ] and lower order λ∗[ϕ]. Assume that lnWF (xk)−lnWF (xk+1) =
O(1), k → ∞, for some increasing to +∞ sequence (xk) of positive numbers such that
limk→∞

lnxk
lnxk+1

= β, where β is some nonnegative constant. Then λ∗[ϕ] ≤ β%∗[ϕ]. If, moreover,

ϕ has type T∗[ϕ] and lower type t∗[ϕ] and limk→∞
xk
xk+1

= γ then τ∗[ϕ] ≤ T∗[ϕ] (%+1)%+1

%%
A(γ).

For an entire characteristic function ϕ of order %[ϕ] ∈ (1,+∞) the quantities

T [ϕ] = lim
r→+∞

lnM(r, ϕ)

r%[ϕ]
, t[ϕ] = lim

r→+∞

lnM(r, ϕ)

r%[ϕ]
(27)

are called the type and the lower type of ϕ. From (20) for η(r) = 1 we obtain

lnM(r, ϕ) ≤ lnµ(r + 1, ϕ) + o(1), r → +∞.

Combining this with (19) we conclude that in (27) lnM(r, ϕ) can be replaced with lnµ(r, ϕ).
Therefore, we choose Φ ∈ Ω(0,+∞) such that Φ(r) = Tr% for r ≥ r0 = r0(ε), where either
% = %[ϕ] + ε and T = 1 or % = %[ϕ] and T = T [ϕ] + ε. Then Φ ∈ L0, ln Φ ∈ Lsi and(

Φ(r)Φ′′(r)
(Φ′(r))2

− 1
)

ln Φ(r) = %−1
%

ln Φ(r) → +∞ as r → +∞. It is known [15] that for this
function

G1(xk, xk+1,Φ) = (%− 1)T−1/(%−1)%−%/(%−1) xkxk+1

xk+1 − xk

(
x

1/(%−1)
k+1 − x1/(%−1)

k

)
and

G2(xk, xk+1,Φ) = (%− 1)%T−1/(%−1)%−%
2/(%−1)

(
x
%/(%−1)
k+1 − x%/(%−1)

k

xk+1 − xk

)%

.

Therefore, if xkj = (1 + o(1))γ xkj+1 as j →∞, where 0 < γ < 1, then

lim
j→∞

G1(xkj , xkj+1,Φ)

G2(xkj , xkj+1,Φ)
=

%%

(%− 1)%−1

γ(1− γ)%−1(1− γ1/(%−1))

(1− γ%/(%−1))%

and if lnxkj ≤ β∗ lnxkj+1, where 0 < β∗ < 1, then xkj = o(xkj+1), j →∞, and

lim
j→∞

lnG1(xkj , xkj+1,Φ)

lnG2(xkj , xkj+1,Φ)
≤ β∗(%− 1) + 1

%
.

So, as in the proof of Corollary 1, using Theorem 2 in view of arbitrariness of β∗ we obtain
the following corollary.

Corollary 2. Let the entire characteristic function ϕ of a probability law F have the order
%[ϕ] > 1, the lower order λ[ϕ], the type T [ϕ] and the lower type t[ϕ]. Then:

1) if lnWF (xk) ≤ a lnWF (xk+1), 0 < a < 1, for some increasing to +∞ sequence (xk) of
positive numbers such that limk→∞

lnxk
lnxk+1

= β then λ[ϕ]− 1 ≤ β(%[ϕ]− 1);
2) if lnWF (xk) = (1 + o(1)) lnWF (xk+1) as k →∞ for some increasing to +∞ sequence

(xk) of positive numbers such that limk→∞
xk
xk+1

= γ then t[ϕ] ≤ T [ϕ] %%

(%−1)%−1A1(γ), where

A1(γ) = γ(1−γ)%−1(1−γ1/(%−1))

(1−γ%/(%−1))%
.
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If we define the modified order %m[ϕ] = limr→+∞
1

ln r
ln M(r,ϕ)

r
and the modified lower

order λm[ϕ] = limr→+∞
1

ln r
ln M(r,ϕ)

r
, then %m[ϕ] = %[ϕ]− 1, λm[ϕ] = λ[ϕ]− 1 and under the

assumptions of item 1) of Corollary 2 we have the inequality λm[ϕ] ≤ β%m[ϕ], which is an
analog of the inequality from Corollary 1.

If for an entire characteristic function ϕ the function lnM(r, ϕ) increases faster than the
power functions it is possible to use Theorem 1. We will demonstrate this by the example of
R-order %R[ϕ], lower R-order λR[ϕ], R-type TR[ϕ] and lower R-type tR[ϕ], which are defined
by the formulas

%R[ϕ] = lim
r→+∞

ln lnM(r, ϕ)

r
, λR[ϕ] = lim

r→+∞

ln lnM(r, ϕ)

r
,

TR[ϕ] = lim
r→+∞

lnM(r, ϕ)

exp{r%R[ϕ]}
, tR[ϕ] = lim

r→+∞

lnM(r, ϕ)

exp{r%R[ϕ]}
.

For η(r) = 1/r (20) implies the inequality lnM(r, ϕ) ≤ lnµ(r + 1/r, ϕ) + ln r + o(1), r →
+∞. From here and (19) it follows that in the formulas for %R[ϕ], λR[ϕ], TR[ϕ] and tR[ϕ],
the function lnM(r, ϕ) can be replaced with the function lnµ(r, ϕ). Therefore, we choose
Φ(r) = Ter% for r ≥ r0 = r0(ε), where either % = %R[ϕ] + ε and T = 1 or % = %R[ϕ] and
T = TR[ϕ] + ε. It is known ([15]) that for this function

G1(xk, xk+1,Φ) =
1

%

xkxk+1

xk+1 − xk
ln
xk+1

xk
, G2(xk, xk+1,Φ) =

1

e%
exp

{
xk+1 lnxk+1 − xk lnxk

xk+1 − xk

}
.

If now lnxkj ≤ β∗ lnxkj+1, where 0 < β∗ < 1, then xkj = o(xkj+1), j →∞, and

lim
j→∞

lnG1(xkj , xkj+1,Φ)

lnG2(xkj , xkj+1,Φ)
≤ β∗

and if xkj = (1 + o(1))γ xkj+1 as j →∞, where 0 < γ < 1, then

lim
j→∞

G1(xkj , xkj+1,Φ)

G2(xkj , xkj+1,Φ)
=

γ

1− γ
exp

{
1 +

γ ln γ

1− γ

}
ln

1

γ
.

Repeating the proof of Corollary 1, we obtain the following corollary.

Corollary 3. Let an entire characteristic function ϕ of a probability law F have R-order
%R[ϕ], lower R-order λR[ϕ], R-type TR[ϕ] and lower R-type tR[ϕ]. We suppose that
lnWF (xk) − lnWF (xk+1) = O(1) as k → ∞ for some increasing to +∞ sequence (xk) of
positive numbers. If limk→∞

lnxk
lnxk+1

= β then λR[ϕ] ≤ β%R[ϕ] and if

lim
k→∞

xk
xk+1

= γ then tR[ϕ] ≤ TR[ϕ]
γ

1− γ
exp

{
1 +

γ ln γ

1− γ

}
ln

1

γ
.

We demonstrate the application of Theorem 3 only for an entire characteristic function
of finite R-order. It is easy to verify that for the function Φ(r) = er% we have xΨ(φ(x)) =
x
%

ln x
e%
. Therefore, under the corresponding assumptions on WF , Theorem 3 implies that if

lnWF (xk) ≤ −xk
%

ln xk
e%

then lnµ(rk, ϕ) ≤ (1 + o(1))e%rk , k → ∞, where rk = V ′(xk). Hence
the following corollary follows.
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Corollary 4. Let the characteristic function ϕ of a probability law F be entire and analytic
in DR. Assume that lnWF (x) = −V (x) for all x ≥ a, where the function V is positive,
continuously differentiable and V ′(x) ↑ R as 0 < x ↑ +∞. Then λR[ϕ] ≤ lim

x→+∞

x lnx
− lnWF (x)

.

One can obtain analogues of Corollary 3 for other scales of growth, but we are not going
to discuss this here.
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