M. I. Platsydem, M. M. Sheremeta

ESTIMATES FOR THE MAXIMUM MODULUS OF ANALYTIC CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS ON SOME SEQUENCES

Abstract

M. I. Platsydem, M. M. Sheremeta. Estimates for the maximum modulus of analytic characteristic functions of probability laws on some sequences, Mat. Stud. 42 (2014), 149-159.

Let φ be the characteristic function of a probability law F analytic in $\mathbb{D}_{R}=\{z:|z|<R\}$, $0<R \leq+\infty, M(r, \varphi)=\max \{|\varphi(z)|:|z|=r\}$ and $W_{F}(x)=1-F(x)+F(-x), x \geq 0$. We obtain upper estimates for $\underline{\lim }_{r \uparrow R}(\ln M(r, \varphi)) / \Phi(r)$ for some positive convex on $(0, R)$ function Φ under certain conditions on W_{F}.

М. И. Плацидем, М. Н. Шеремета. Оценка для максимума модуля аналитических характеристических функиий вероятностных законов на некоторых последовательностях // Мат. Студії. - 2014. - Т.42, №2. - С.149-159.

Пусть φ - характеристическая функция вероятностного закона F, аналитическая в $\mathbb{D}_{R}=\{z:|z|<R\}, 0<R \leq+\infty, M(r, \varphi)=\max \{|\varphi(z)|:|z|=r\}$ и $W_{F}(x)=1-F(x)+$ $F(-x), x \geq 0$. Для некоторой положительной выпуклой на $(0, R)$ функции Φ при определенных условиях на W_{F} получены оценки сверху для $\underline{\lim }_{r \uparrow R}(\ln M(r, \varphi)) / \Phi(r)$.

1. Introduction and preliminary results. A non-decreasing left continuous on $(-\infty,+\infty)$ function F is said to be a probability law ([1, p. 10]) if $\lim _{x \rightarrow+\infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=$ 0 , and the function $\varphi(z)=\int_{-\infty}^{+\infty} e^{i z x} d F(x)$ defined for real z is called the characteristic function of this law ([1, p. 12]). If φ has an analytic extension to the disk $\mathbb{D}_{R}=\{z:|z|<R\}$, $0<R \leq+\infty$, then we call φ to be the analytic in \mathbb{D}_{R} characteristic function of the law F. In the sequel we always assume that \mathbb{D}_{R} is the maximal disk of the analyticity of φ. It is known ($\left[1\right.$, p. 37-38]) that φ is the analytic in \mathbb{D}_{R} characteristic function of a law F if and only if $W_{F}(x)=: 1-F(x)+F(-x)=O\left(e^{-r x}\right)$ as $0 \leq x \rightarrow+\infty$ for every $r \in[0, R)$. Hence it follows that $\underline{\lim }_{x \rightarrow+\infty} \frac{1}{x} \ln \frac{1}{W_{F}(x)}=R$. If we put $M(r, \varphi)=\max \{|\varphi(z)|:|z|=r\}$ and $\mu(r, \varphi)=\sup \left\{W_{F}(x) e^{r x}: x \geq 0\right\}$ for $0 \leq r<R$ then ([1, p. 55], see also [2]) $\mu(r, \varphi) \leq$ $2 M(r, \varphi)$. Therefore, the estimates from below for $\ln M(r, \varphi)$ follow from the same estimates for $\ln \mu(r, \varphi)$. Further we assume that $\ln \mu(r, \varphi) \uparrow+\infty$ as $r \uparrow R$, that is

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty} W_{F}(x) e^{R x}=+\infty \tag{1}
\end{equation*}
$$

On the other hand $([1, \mathrm{p} .52]), M(r, \varphi) \leq I(r, \varphi)+1+W_{F}(0)$ for all $r \in[0, R)$, where $I(r, \varphi)=\int_{0}^{\infty} W_{F}(x) e^{r x} d x$. Since it is possible to estimate $I(r, \varphi)$ via $\mu(r, \varphi)$ we will obtain

2010 Mathematics Subject Classification: 30D99, 60E10.
Keywords: characteristic function; probability law; lower estimate.
the corresponding estimates for $M(r, \varphi)$ via $\mu(r, \varphi)$. Therefore, the investigation of the relationship between the growth of $M(r, \varphi)$ and the decrease of $W_{F}(x)$ reduces to the study of the behavior of $\mu(r, \varphi)$.

For entire characteristic functions the relationship between the growth of $M(r, \varphi)$ and the decrease of $W_{F}(x)$ in terms of the order and the type is investigated by B. Ramachandran ([3], see also [1, p. 54]). N. I. Jakovleva ([4-5]) obtained such a relationship in terms of generalized orders. Some additions tothe results of N. I. Jakovleva are obtained by B. V. Vynnyts'kyi ([6]) and M. Dewess ([7]). V. M. Sorokivs'kyi ([8]) investigated the relationship between the growth of $M(r, \varphi)$ and the decrease of $W_{F}(x)$ for analytic functions in the disk \mathbb{D}_{1}. The most general results are obtained ([9]) for entire as well as analytic in $\mathbb{D}_{R}, R<+\infty$, characteristic functions.

For the lower order

$$
\lambda[\varphi]=\lim _{r \rightarrow+\infty} \frac{\ln \ln M(r, \varphi)}{\ln r}
$$

of an entire characteristic function φ N. I. Jakovleva ([4]) obtained a lower estimate. She proved that if

$$
\varliminf_{x \rightarrow+\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{W_{F}(x)}\right)} \geq \lambda \text { then }{\underset{r \rightarrow+\infty}{ } \frac{1}{\ln r} \ln \frac{\ln M(r, \varphi)}{r} \geq \lambda ~}_{\text {lim }}
$$

This result is generalized in [10]; namely, it is proved that if there exists an increasing to $+\infty$ sequence $\left(x_{k}\right)$ such that $x_{k+1}=O\left(x_{k}\right)$ as $k \rightarrow+\infty$ and

$$
\ln x_{k} \geq \lambda \ln \left(\frac{1}{x_{k}} \ln \frac{1}{W_{F}\left(x_{k}\right)}\right) \text { then } \underset{r \rightarrow+\infty}{\lim } \frac{1}{\ln r} \ln \frac{\ln M(r, \varphi)}{r} \geq \lambda
$$

Various generalizations of this result are obtained in [10] for entire as well as for analytic in $\mathbb{D}_{R}, R<+\infty$, characteristic functions.

For an upper estimate of $\lambda[\varphi]$ it is proved in [4] that if

$$
\varlimsup_{r \rightarrow+\infty} \frac{\ln \ln M(r, \varphi)}{\ln r}=\varrho>1 \text { and } \varlimsup_{x \rightarrow+\infty, x \in U} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{W_{F}(x)}\right)} \leq \delta<\varrho-1
$$

where $U=\bigcup_{j}\left(a_{2 j}, a_{2 j+1}\right)$ and $\varlimsup_{j \rightarrow \infty}\left(a_{2 j} / a_{2 j+1}\right) \leq \delta /(\varrho-1)$ then $\lambda[\varphi] \leq 1+\delta$.
Below we will show that, in this result the set U of intervals can be replaced with a sequence that increases to $+\infty$ not very quickly.

As in [10], by $\Omega(0, R), 0<R \leq+\infty$, we denote the class of positive unbounded functions Φ on $\left[r_{0}, R\right)$ for some $r_{0} \in[0, R)$ such that the derivative Φ^{\prime} is positive, continuously differentiable and increasing to $+\infty$ on $\left(r_{0}, R\right)$. For $\Phi \in \Omega(0, R)$ let $\Psi(r)=r-\frac{\Phi(r)}{\Phi^{\prime}(r)}$ be the function associated with Φ in the sense of Newton and ϕ be the inverse function to Φ^{\prime}. It is known ([11]) that the function Ψ is continuously differentiable on $\left[r_{0}, R\right), \Psi(r) \uparrow R$ as $r \uparrow R$, the function ϕ is continuously differentiable and increasing to R on $\left(x_{0},+\infty\right)$ and the following lemma is true.

Lemma 1 ([11], Theorem 2.1). Let $\Phi \in \Omega(0, R), 0<R<+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F, which satisfies (1). Then in order that $\ln \mu(r, \varphi) \leq \Phi(r)$ for all $r \in\left[r_{0}, R\right)$ it is necessary and sufficient that $\ln W_{F}(x) \leq-x \Psi(\phi(x))$ for all $x \geq x_{0}$.

The following assertion is also true.
Proposition 1. Let $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F, which satisfies (1). Then if $\ln \mu\left(r_{k}, \varphi\right) \leq \Phi\left(r_{k}\right)$ for some sequence $\left(r_{k}\right)$ increasing to R then

$$
\begin{equation*}
\ln W_{F}\left(x_{k}\right) \leq-x_{k} \Psi\left(\phi\left(x_{k}\right)\right) \tag{2}
\end{equation*}
$$

for all k, where $x_{k}=\Phi^{\prime}\left(r_{k}\right)$.
Indeed, the condition $\ln \mu\left(r_{k}, \varphi\right) \leq \Phi\left(r_{k}\right)$ implies that $\ln W_{F}(x) \leq \Phi\left(r_{k}\right)-x r_{k}$ for all $x \geq 0$ and $k \geq 1$. Therefore,

$$
\ln W_{F}\left(x_{k}\right)=\ln W_{F}\left(\Phi^{\prime}\left(r_{k}\right)\right) \leq \Phi\left(r_{k}\right)-r_{k} \Phi^{\prime}\left(r_{k}\right)=-\Phi^{\prime}\left(r_{k}\right) \Psi\left(r_{k}\right)=-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)
$$

In view of Proposition 1 the question arises whether inequality (2) for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ implies the estimate $\ln \mu\left(r_{k}, \varphi\right) \leq \Phi\left(r_{k}\right)$ for some sequence $\left(r_{k}\right)$ increasing to R. The answer is negative in general because the following statement is true.

Proposition 2. For every function $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers there exists a probability law F such that (2) holds for all $k \geq 1$ and $\ln \mu(r, \varphi)>\Phi(r)$ for all $r<R$.

Proof. Indeed, let $F(x)=0$ for $x \leq x_{1}$ and $F(x)=1-\exp \left\{-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)\right\}$ for $x \in\left[x_{k}, x_{k+1}\right)$, $k \geq 1$. Then $\ln W_{F}(x)=\ln W_{F}\left(x_{k}\right)=-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)$ for all $x \in\left[x_{k}, x_{k+1}\right)$ and $k \geq 1$. Therefore, if $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ then

$$
\begin{gather*}
\ln \mu(r, \varphi) \geq \sup \left\{\ln W_{F}(x)+r x: x_{k} \leq x<x_{k+1}\right\}= \\
=\sup \left\{\ln W_{F}\left(x_{k}\right)+r x: x_{k} \leq x<x_{k+1}\right\}=-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)+r x_{k+1} \tag{3}
\end{gather*}
$$

On $\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ we consider the function $A(r)=\left(-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)+r x_{k+1}\right) / \Phi(r)$. Then $A^{\prime}(r)=a(r) / \Phi(r)^{2}$, where $a(r)=\Phi(r) x_{k+1}-\Phi^{\prime}(r)\left(r x_{k+1}-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)\right)$. Since

$$
\begin{gathered}
a\left(\phi\left(x_{k}\right)\right)=\Phi\left(\phi\left(x_{k}\right)\right) x_{k+1}-x_{k}\left(\phi\left(x_{k}\right)-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)\right)= \\
=x_{k+1}\left(\Phi\left(\phi\left(x_{k}\right)\right)-x_{k}\left(\phi\left(x_{k}\right)\right)\right)+x_{k}^{2} \Psi\left(\phi\left(x_{k}\right)\right)= \\
=-x_{k+1} x_{k} \Psi\left(\phi\left(x_{k}\right)\right)+x_{k}^{2} \Psi\left(\phi\left(x_{k}\right)\right)=-\left(x_{k+1}-x_{k}\right) x_{k} \Psi\left(\phi\left(x_{k}\right)\right)<0, \\
a\left(\phi\left(x_{k+1}\right)\right)=\Phi\left(\phi\left(x_{k+1}\right)\right) x_{k+1}-x_{k+1}\left(x_{k+1} \phi\left(x_{k+1}\right)-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)\right)=x_{k+1}\left(\Phi\left(\phi\left(x_{k+1}\right)\right)-\right. \\
\left.-x_{k+1} \phi\left(x_{k+1}\right)\right)+x_{k} x_{k+1} \Psi\left(\phi\left(x_{k}\right)\right)=x_{k+1}\left(x_{k} \Psi\left(\phi\left(x_{k}\right)\right)-x_{k+1} \Psi\left(\phi\left(x_{k+1}\right)\right)\right)<0, \\
a^{\prime}(r)=x_{k+1} \Phi^{\prime}(r)-\Phi^{\prime \prime}(r)\left(r x_{k+1}-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)\right)-\Phi^{\prime}(r) x_{k+1} \leq-\Phi^{\prime \prime}(r)\left(\phi\left(x_{k}\right) x_{k+1}-\right. \\
\left.-x_{k} \phi\left(x_{k}\right)+\Phi\left(\phi\left(x_{k}\right)\right)\right)=-\Phi^{\prime \prime}(r)\left(\left(x_{k+1}-x_{k}\right) \phi\left(x_{k}\right)+\Phi\left(\phi\left(x_{k}\right)\right)\right)<0
\end{gathered}
$$

we obtain that $a(r)<0$ on $\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$, the function $A(r)$ decreases on $\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ and, thus,

$$
A(r) \geq \frac{-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)+\phi\left(x_{k+1}\right) x_{k+1}}{\Phi\left(\phi\left(x_{k+1}\right)\right)}>\frac{-x_{k+1} \Psi\left(\phi\left(x_{k+1}\right)\right)+x_{k+1} \phi\left(x_{k+1}\right)}{\Phi\left(\phi\left(x_{k+1}\right)\right)}=1
$$

Therefore, in view of (3) and of the definition of $A(r)$ for $r \in\left[\phi\left(x_{k}\right), \phi\left(x_{k+1}\right)\right]$ we have $(\ln \mu(r, \varphi)) / \Phi(r)=A(r)>1$.
2. Main results. Under additional assumptions on the decrease of W_{F} (i. e. on the growth of $\ln \mu(r, \varphi))$ it is possible to get from (2) estimates on $\ln \mu\left(r_{k}, \varphi\right)$ from above for some sequence $\left(r_{k}\right) \uparrow R$. Here we will suggest two related solutions of this problem. One of them is based on results from [12].

For $\Phi \in \Omega(0, R)$ and $\Phi^{\prime}\left(x_{0}\right) \leq a<b<+\infty$ we put

$$
G_{1}(a, b, \Phi)=\frac{a b}{b-a} \int_{a}^{b} \frac{\Phi(\varphi(t)}{t^{2}} d t, \quad G_{2}(a, b, \Phi)=\Phi\left(\frac{1}{b-a} \int_{a}^{b} \varphi(t) d t\right) .
$$

It is known $([13])$ that $G_{1}(a, b, \Phi)<G_{2}(a, b, \Phi)$, and in [12] the following lemma is proved.
Lemma 2. Let $\left(x_{k}\right)$ be an increasing to $+\infty$ sequence of positive numbers, $\Phi \in \Omega(0, R)$, $0<R<+\infty$, and $\mu_{D}(r)$ be the maximal term of formal Dirichlet series

$$
D(s)=\sum_{k=1}^{\infty} \exp \left\{-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)+s x_{k}\right\}, \quad s=r+i t
$$

Then

$$
\begin{gather*}
\varlimsup_{r \uparrow R} \frac{\ln \mu_{D}(r)}{\Phi(r)}=1, \quad \varlimsup_{r \uparrow R} \frac{\ln \ln \mu_{D}(r)}{\ln \Phi(r)}=1, \tag{4}\\
\varliminf_{r \uparrow R} \frac{\ln \mu_{D}(r)}{\Phi(r)}=\varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{5}
\end{gather*}
$$

and if

$$
\begin{equation*}
\ln \mu_{D}(r)+\left(\frac{\Phi(r) \Phi^{\prime \prime}(r)}{\left(\Phi^{\prime}(r)\right)^{2}}-1\right) \ln \Phi(r) \geq 0, \quad r \in\left[r_{0}, R\right) \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\lim }{r \uparrow R} \frac{\ln \ln \mu_{D}(r)}{\ln \Phi(r)}=\varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} . \tag{7}
\end{equation*}
$$

Using Lemma 2 we prove the following theorem.
Theorem 1. Let $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F, which satisfies (1). We suppose that $\ln \mu(r, \varphi) \leq \Phi(r)$ for all $r \in\left[r_{0}, R\right)$ and $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=O(1), k \rightarrow \infty$, for some increasing to $+\infty$ sequence $X=\left(x_{k}\right)$ of positive numbers. Then

$$
\begin{equation*}
\varliminf_{r \uparrow R} \frac{\ln \mu(r, \varphi)}{\Phi(r)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{8}
\end{equation*}
$$

and if

$$
\begin{equation*}
Q(r)+\left(\frac{\Phi(r) \Phi^{\prime \prime}(r)}{\left(\Phi^{\prime}(r)\right)^{2}}-1\right) \ln \Phi(r) \geq q>-\infty, \quad r \in\left[r_{0}, R\right) \tag{9}
\end{equation*}
$$

where $Q(r) \equiv 0$ if $R<+\infty$ and $Q(r) \equiv \ln r$ if $R=+\infty$, then

$$
\begin{equation*}
\varliminf_{r \uparrow R} \frac{\ln \ln \mu(r, \varphi)}{\ln \Phi(r)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} . \tag{10}
\end{equation*}
$$

Proof. We put $x_{0}=0$ and $\mu(r, \varphi ; X)=\max \left\{W_{F}\left(x_{k}\right) e^{r x_{k}}: k \geq 1\right\}$. Then the condition $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=O(1), k \rightarrow \infty$ yields that

$$
\begin{gather*}
\ln \mu(r, \varphi)=\sup _{x \geq 0}\left(\ln W_{F}(x)+r x\right)=\max _{k \geq 0} \sup _{x_{k} \leq x<x_{k+1}}\left(\ln W_{F}(x)+r x\right) \leq \\
\leq \max _{k \geq 0}\left(\ln W_{F}\left(x_{k}\right)+r x_{k+1}\right)=\max _{k \geq 0}\left(\ln W_{F}\left(x_{k+1}\right)+r x_{k+1}+\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)\right) \leq \\
\leq \max _{k \geq 0}\left(\ln W_{F}\left(x_{k+1}\right)+r x_{k+1}\right)+\text { const } \leq \ln \mu(r, \varphi ; X)+\text { const. } \tag{11}
\end{gather*}
$$

On the other hand,

$$
\ln \mu(r, \varphi)=\max _{k \geq 0} \sup _{x_{k}<x \leq x_{k+1}}\left(\ln W_{F}(x)+r x\right) \geq \max _{k \geq 0}\left(\ln W_{F}\left(x_{k+1}\right)+r x_{k+1}\right) \geq \ln \mu(r, \varphi ; X)
$$

and since $\ln \mu(r, \varphi) \leq \Phi(r)$ we have $\ln \mu(r, \varphi ; X) \leq \Phi(r)$ for $r \in\left[r_{0}, R\right)$. Therefore, by Lemma $1 \ln W_{F}\left(x_{k}\right) \leq-x_{k} \Psi\left(\phi\left(x_{k}\right)\right)$ for all $k \geq k_{0}$. Hence it follows that $\ln \mu(r, \varphi ; X) \leq$ $\ln \mu_{D}(r)$ for $r \in\left[r_{0}, R\right)$. Therefore, by Lemma 2 from (5) we obtain

$$
\begin{equation*}
\varliminf_{r \uparrow R} \frac{\ln \mu(r, \varphi ; X)}{\Phi(r)} \leq \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{12}
\end{equation*}
$$

and if condition (6) holds then (7) implies

$$
\begin{equation*}
\frac{\lim }{r \uparrow R} \frac{\ln \ln \mu(r, \varphi ; X)}{\ln \Phi(r)} \leq \underline{\lim } \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)} \tag{13}
\end{equation*}
$$

We remark that (9) implies (6), because if $R<+\infty$ then (4) implies $\ln \mu_{D}(r) \uparrow+\infty$ as $r \uparrow R$, and if $R=+\infty$ then $\left(\ln \mu_{D}(r)\right) / r \rightarrow \infty$ as $r \rightarrow+\infty$, that is $\ln \ln \mu_{D}(r)-\ln r \rightarrow+\infty$ as $r \rightarrow+\infty$.

Inequalities (8) and (10) follow from (11)-(13).
If $R=+\infty$ then the condition $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=O(1), k \rightarrow \infty$, can be replaced with some weaker condition provided that the function $\Phi \in \Omega(0,+\infty)$ grows not very quickly.

Let L be the class of positive continuous functions α on $(-\infty,+\infty)$ such that $\alpha(x)=$ $\alpha\left(x_{0}\right)$ for $x \leq x_{0}, 0<\alpha(x) \uparrow+\infty$ as $x_{0} \leq x \rightarrow+\infty$. We say that $\alpha \in L^{0}$ if $\alpha \in L$ and $\alpha((1+o(1)) x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$, and $\alpha \in L_{s i}$ if $\alpha(c x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ for each $c \in(0,+\infty)$.

Theorem 2. Let $\Phi \in \Omega(0,+\infty)$ and φ be an entire characteristic function of a probability law F and $\ln \mu(r, \varphi) \leq \Phi(r)$ for all $r \geq r_{0}$. Then:

1) if $\Phi \in L^{0}$ and $\ln W_{F}\left(x_{k}\right)=(1+o(1)) \ln W_{F}\left(x_{k+1}\right), k \rightarrow \infty$, for some increasing to $+\infty$ sequence $X=\left(x_{k}\right)$ of positive numbers then inequality (8) holds;
2) if $\ln \Phi \in L_{s i}$,

$$
\begin{equation*}
\left(\frac{\Phi(r) \Phi^{\prime \prime}(r)}{\left(\Phi^{\prime}(r)\right)^{2}}-1\right) \ln \Phi(r)+\ln r \geq q>-\infty, \quad r \geq r_{0} \tag{14}
\end{equation*}
$$

and if there exists an increasing to $+\infty$ sequence $X=\left(x_{k}\right)$ of positive numbers such that $\ln W_{F}\left(x_{k}\right) \leq a \ln W_{F}\left(x_{k+1}\right)$ for some $a \in(0,1)$ and all $k \geq k_{0}$ then inequality (10) holds.

Proof. We begin with the first part. Since $\ln W_{F}\left(x_{k}\right) \leq(1-\varepsilon) \ln W_{F}\left(x_{k+1}\right)$ for each $\varepsilon \in(0,1)$ and all $k \geq k_{0}=k_{0}(\varepsilon)$, instead of (11) now we have

$$
\begin{gather*}
\ln \mu(r, \varphi) \leq \max _{k \geq 0}\left(\ln W_{F}\left(x_{k}\right)+r x_{k+1}\right)= \\
=\max \left\{\max _{0 \leq k \leq k_{0}}\left(\ln W_{F}\left(x_{k}\right)+r x_{k+1}\right), \max _{k \geq k_{0}}\left(\frac{\ln W_{F}\left(x_{k}\right)}{\ln W_{F}\left(x_{k+1}\right)} \ln W_{F}\left(x_{k+1}\right)+r x_{k+1}\right)\right\} \leq \\
\leq \max \left\{r x_{k_{0}+1}, \max _{k \geq k_{0}}\left((1-\varepsilon) \ln W_{F}\left(x_{k+1}\right)+r x_{k+1}\right)\right\} \leq(1-\varepsilon) \max _{k \geq 0}\left(\ln W_{F}\left(x_{k}\right)+x_{k} r /(1-\varepsilon)\right)+ \\
+r x_{k_{0}+1} \leq(1-\varepsilon) \ln \mu(r /(1-\varepsilon), \varphi ; X)+r x_{k_{0}+1} . \tag{15}
\end{gather*}
$$

Therefore, from (12) we obtain

$$
\begin{gather*}
\frac{\lim _{r \rightarrow+\infty} \frac{\ln \mu(r, \varphi)}{\Phi(r)} \leq(1-\varepsilon) \underset{r \rightarrow+\infty}{\lim } \frac{\ln \mu(r /(1-\varepsilon), \varphi ; X)}{\Phi(r)} \leq}{\leq(1-\varepsilon) \underset{r \rightarrow+\infty}{\lim } \frac{\ln \mu(r, \varphi ; X)}{\Phi(r)} \varlimsup_{r \rightarrow+\infty} \frac{\Phi(r /(1-\varepsilon))}{\Phi(r)} \leq(1-\varepsilon) A(\varepsilon) \varliminf_{k \rightarrow \infty} \frac{G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{G_{2}\left(x_{k}, x_{k+1}, \Phi\right)},}
\end{gather*}
$$

where $A(\varepsilon)=\varlimsup_{r \rightarrow+\infty} \frac{\Phi(r /(1-\varepsilon))}{\Phi(r)}$. For $\Phi \in L^{0}$ in [14] it is proved that $A(\varepsilon) \searrow 1$ as $\varepsilon \downarrow 0$. Therefore, (16) implies (8).

For the proof of the second part we remark that now instead of (15) we have $\ln \mu(r, \varphi) \leq$ $a \ln \mu(r / a, \varphi ; X)$, and (14) implies (9). Therefore, from (13) we obtain

$$
\varliminf_{r \rightarrow+\infty} \frac{\ln \ln \mu(r, \varphi)}{\ln \Phi(r)} \leq \varliminf_{r \rightarrow+\infty} \frac{\ln \ln \mu(r / a, \varphi ; X)}{\ln \Phi(r / a)} \varlimsup_{r \rightarrow+\infty} \frac{\ln \Phi(r / a)}{\ln \Phi(r)} \leq \varliminf_{k \rightarrow \infty} \frac{\ln G_{1}\left(x_{k}, x_{k+1}, \Phi\right)}{\ln G_{2}\left(x_{k}, x_{k+1}, \Phi\right)}
$$

If the function $\ln W_{F}(x)$ is smooth enough, then it is possible to get an estimate of $\ln \mu(r, \varphi)$.

Theorem 3. Let $\Phi \in \Omega(0, R), 0<R \leq+\infty$, and φ be an analytic in \mathbb{D}_{R} characteristic function of a probability law F such that $\ln W_{F}(x)=-V(x)$ for all $x \geq a$, where the function V is positive, continuously differentiable and $V^{\prime}(x) \uparrow R$ as $0<x \uparrow+\infty$. If conditions (1) and (2) hold for some sequence $\left(x_{k}\right)$ of positive numbers then $\ln \mu\left(r_{k}, \varphi\right) \leq \Phi\left(r_{k}\right)+a r_{k}$, where $r_{k}=V^{\prime}\left(x_{k}\right)$.

Proof. Clearly

$$
\ln \mu(r, \varphi) \leq \max \left\{\sup _{0 \leq x \leq a}\left(\ln W_{F}(x)+r x\right), \sup _{x \geq a}\left(\ln W_{F}(x)+r x\right)\right\} \leq a r+\max _{x \geq a}(-V(x)+r x)
$$

and $\max _{x \geq a}(-V(x)+r x)=\left.(-V(x)+r x)\right|_{x=v(r)}$, where $v(r)$ is the inverse function to V^{\prime}. Therefore,

$$
\begin{aligned}
& \ln \mu\left(r_{k}, \varphi\right) \leq-V\left(v\left(r_{k}\right)\right)+r_{k} v\left(r_{k}\right)+a r_{k}=-V\left(v\left(V^{\prime}\left(x_{k}\right)\right)\right)+V^{\prime}\left(x_{k}\right) v\left(V^{\prime}\left(x_{k}\right)\right)+a r_{k}= \\
& =V\left(x_{k}\right)+r_{k} x_{k}+a r_{k} \leq \max _{j \geq 1}\left(V\left(x_{j}\right)+x_{j} r_{k}\right)+a r_{k}=\max _{j \geq 1}\left(\ln W_{F}\left(x_{j}\right)+x_{j} r_{k}\right)+a r_{k} \leq \\
& \leq \max _{j \geq 1}\left(-x_{j} \Psi\left(\phi\left(x_{j}\right)\right)+x_{j} r_{k}\right)+a r_{k} \leq \max _{x \geq a}\left(-x \Psi(\phi(x))+x r_{k}\right)+a r_{k} \leq \Phi\left(r_{k}\right)+a r_{k},
\end{aligned}
$$

because $(x \Psi(\phi(x)))^{\prime}=\phi(x)$ and $\left.(-x \Psi(\phi(x)))+x r\right)\left.\right|_{x=\Phi^{\prime}(r)}=\Phi(r)$.
3. Corollaries. Examining the scale of growth in Theorems 1-2 it is possible to get a number of results for analytic in \mathbb{D}_{R} characteristic functions. Here we will restrict ourselves only by three cases which arise often in mathematical literature. The most often used characteristics of growth for analytic in $\mathbb{D}_{R}, 0<R<+\infty$ functions φ are the order $\varrho_{*}[\varphi]$, the lower order $\lambda_{*}[\varphi]$ and (if $0<\varrho_{*}[\varphi]<+\infty$) the type $T_{*}[\varphi]$ and the lower type $t_{*}[\varphi]$, which are defined by the formulas

$$
\begin{gather*}
\varrho_{*}[\varphi]=\varlimsup_{r \uparrow R} \frac{\ln \ln M(r, \varphi)}{\ln (1 /(R-r))}, \quad \lambda_{*}[\varphi]=\frac{\lim _{r \uparrow R}}{} \frac{\ln \ln M(r, \varphi)}{\ln (1 /(R-r))}, \tag{17}\\
T_{*}[\varphi]=\varlimsup_{r \uparrow R}(R-r)^{\varrho_{*}[\varphi]} \ln M(r, \varphi), t_{*}[\varphi]={\underset{\lim }{r \uparrow R}}^{(R-r)^{\varrho_{*}[\varphi]} \ln M(r, \varphi) .} \tag{18}
\end{gather*}
$$

We will show that in these formulas $\ln M(r, \varphi)$ can be replaced with $\ln \mu(r, \varphi)$. Indeed ([1, p. 55])

$$
\begin{equation*}
\ln \mu(r, \varphi) \leq \ln M(r, \varphi)+\ln 2 . \tag{19}
\end{equation*}
$$

On the other hand ([1, p. 52]), if $0<\eta(r)<R-r$, then

$$
\begin{gathered}
M(r, \varphi) \leq \int_{0}^{\infty} W_{F}(x) e^{r x} d x+1+W_{F}(0)=\int_{0}^{\infty} W_{F}(x) e^{(r+\eta(r)) x} e^{-\eta(r) x} d x+1+W_{F}(0) \leq \\
\leq \frac{1}{\eta(r)} \mu(r+\eta(r), \varphi)+1+W_{F}(0)
\end{gathered}
$$

that is

$$
\begin{equation*}
\ln M(r, \varphi) \leq \ln \mu(r+\eta(r), \varphi)-\ln \eta(r)+o(1), \quad r \uparrow R . \tag{20}
\end{equation*}
$$

We choose $\eta(r)=(R-r)^{2}$. Then for $r>R-1$ from (20) we obtain

$$
\begin{equation*}
\ln M(r, \varphi) \leq \ln \mu\left(r+(R-r)^{2}, \varphi\right)+2 \ln (1 /(R-r))+o(1), \quad r \uparrow R . \tag{21}
\end{equation*}
$$

Since $\frac{R-r+(R-r)^{2}}{R-r} \rightarrow 1, \frac{\ln \left(R-r+(R-r)^{2}\right)}{\ln (R-r)} \rightarrow 1, \frac{\ln \ln (1 /(R-r))}{\ln (1 /(R-r)} \rightarrow 0$ and $(R-r)^{\varrho_{*}[\varphi]} \ln (1 /(R-r) \rightarrow 0$ as $r \uparrow R$, from (19) and (21) it follows that in formulas (17) and (18) $\ln M(r, \varphi)$ can be replaced with $\ln \mu(r, \varphi)$.

Therefore, if $\varrho_{*}[\varphi]<+\infty\left(T_{*}[\varphi]<+\infty\right)$ then $\ln \mu(r, \varphi) \leq \frac{T}{(R-r)^{\varrho}}$ for all $r \in\left[r_{0}(\varepsilon), R\right)$, where either $\varrho=\varrho_{*}[\varphi]+\varepsilon$ and $T=1$ or $\varrho=\varrho_{*}[\varphi]$ and $T=T_{*}[\varphi]+\varepsilon$. For a function $\Phi \in \Omega(0, R)$ such that $\Phi(r)=\frac{T}{(R-r)^{e}}$ for all $r \in\left[r_{0}(\varepsilon), R\right)$ we have

$$
\Phi^{\prime}(r)=\frac{T \varrho}{(R-r)^{\varrho+1}}, \phi(x)=R-(T \varrho / x)^{1 /(\varrho+1)}, \frac{\Phi(\phi(x))}{x^{2}}=T(T \varrho)^{-\varrho /(\varrho+1)} x^{\varrho /(\varrho+1)-2}
$$

for $x \geq x_{0}(\varepsilon)$. Hence it follows that for $k \geq k_{0}(\varepsilon)$

$$
\begin{align*}
& G_{1}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{T(\varrho+1)}{(T \varrho)^{\varrho /(\varrho+1)}} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{x_{k}^{1 /(\varrho+1)}}-\frac{1}{x_{k+1}^{1 /(\varrho+1)}}\right), \tag{22}\\
& G_{2}\left(x_{k}, x_{k+1}, \Phi\right)=T\left(\frac{(\varrho+1)(T \varrho)^{1 /(\varrho+1)}}{\varrho} \frac{x_{k+1}^{\varrho /(\varrho+1)}-x_{k}^{\varrho /(\varrho+1)}}{x_{k+1}-x_{k}}\right)^{-\varrho} . \tag{23}
\end{align*}
$$

Further we remark that

$$
\left(\frac{\Phi(r) \Phi^{\prime \prime}(r)}{\left(\Phi^{\prime}(r)\right)^{2}}-1\right) \ln \Phi(r)=\frac{1}{\varrho} \ln \frac{T}{(R-r)^{\varrho}} \uparrow+\infty, \quad r \uparrow R,
$$

that is (9) holds. Therefore, if $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=O(1), k \rightarrow \infty$, then by Theorem 1 in view of (22)-(23) and of arbitrariness of ε,

$$
\begin{gather*}
\lambda_{*}[\varphi] \leq \varrho_{*}[\varphi] \frac{\lim _{k \rightarrow \infty}}{} \frac{\ln \left(\frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{x_{k}^{1 /(\varrho+1)}}-\frac{1}{x_{k+1}^{1 /(\rho+1)}}\right)\right)}{\ln \left(\frac{x_{k+1}-x_{k}}{x_{k+1}^{\varrho /(+1)}-x_{k}^{\text {/(}(++1)}}\right)^{\varrho}}, \tag{24}\\
t_{*}[\varphi] \leq T_{*}[\varphi] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \varliminf_{k \rightarrow \infty} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(\frac{1}{\left.x_{k}^{1 /(\varrho+1)}-\frac{1}{x_{k+1}^{1 /(\varrho+1)}}\right)\left(\frac{x_{k+1}^{\varrho /(\varrho+1)}-x_{k}^{\varrho /(\varrho+1)}}{x_{k+1}-x_{k}}\right)^{\varrho} .}\right. \tag{25}
\end{gather*}
$$

We suppose that

$$
\beta=: \varliminf_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}}<1 .
$$

Then there exists a number $\beta^{*} \in(\beta, 1)$ and an increasing sequence $\left(k_{j}\right)$ of positive integers such that $\ln x_{k_{j}} \leq \beta^{*} \ln x_{k_{j}+1}$, that is $x_{k_{j}}=o\left(x_{k_{j}+1}\right)$ as $j \rightarrow \infty$. Therefore, from (24) we obtain

$$
\begin{aligned}
& \lambda_{*}[\varphi] \leq \varrho_{*}[\varphi] \frac{\varliminf_{j \rightarrow \infty}}{} \frac{\ln \left(\frac{\left.x_{k_{j} x_{k_{j}+1}}^{x_{k_{j}+1}-x_{k_{j}}}\left(\frac{1}{x_{k_{j}}^{1 /(\varrho+1)}}-\frac{1}{x_{k_{j}}^{1 /(\rho+1)}}\right)\right)}{\ln \left(\frac{x_{k_{j}+1}-x_{k_{j}}}{x_{k_{j}+1}^{\varrho(/+1)}-x_{k_{j}}^{\varrho /(\varrho+1)}}\right)^{\varrho}}=\right.}{=\varrho_{*}[\varphi] \varliminf_{j \rightarrow \infty} \frac{\ln x_{k_{j}}^{\varrho /(\varrho+1)}}{\varrho \ln x_{k_{j}+1}^{1 /(\varrho+1)}}=\varrho_{*}[\varphi] \varliminf_{j \rightarrow \infty} \frac{\ln x_{k_{j}}}{\ln x_{k_{j}+1}} \leq \varrho_{*}[\varphi] \beta^{*},}
\end{aligned}
$$

i. e. in view of arbitrariness of β^{*} we have the inequality $\lambda_{*}[\varphi] \leq \beta \varrho_{*}[\varphi]$. For $\beta=1$ this inequality is trivial.

Now we suppose that

$$
\gamma=: \varliminf_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}} \in(0,1)
$$

Then there exist an increasing sequence $\left(k_{j}\right)$ of positive integers such that $x_{k_{j}}=(1+o(1)) \times$ $\times \gamma x_{k_{j}+1}$ as $j \rightarrow \infty$. Therefore, from (25) we obtain

$$
\begin{align*}
& t_{*}[\varphi] \leq T_{*}[\varphi] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \lim _{j \rightarrow \infty} \frac{x_{k_{j}} x_{k_{i}+1}}{x_{k_{j}+1}-x_{k_{j}}}\left(\frac{1}{x_{k_{j}}^{1 /(\varrho+1)}}-\frac{1}{x_{k_{j}+1}^{1 /(\varrho+1)}}\right)\left(\frac{x_{k_{j}+1}^{\varrho /(\varrho+1)}-x_{k_{j}}^{\varrho /(\varrho+1)}}{x_{k_{j}+1}-x_{k_{j}}}\right)^{\varrho} \leq \\
& \quad \leq T_{*}[\varphi] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} \frac{\gamma}{\gamma-1}\left(\frac{1}{\gamma^{1 /(\varrho+1)}}-1\right) \frac{\left(1-\gamma^{\varrho /(\varrho+1)}\right)^{\varrho}}{(1-\gamma)^{\varrho}}=T_{*}[\varphi] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} A(\gamma), \tag{26}
\end{align*}
$$

where

$$
A(\gamma)=: \frac{\gamma^{\varrho /(\varrho+1)}\left(1-\gamma^{1 /(\varrho+1)}\right)\left(1-\gamma^{\varrho /(\varrho+1)}\right)^{\varrho}}{(1-\gamma)^{\varrho+1}}
$$

It is easy to show that $A(\gamma) \rightarrow \frac{\varrho^{\varrho}}{(\varrho+1)^{\varrho+1}}$ as $\gamma \rightarrow 1$, that is, (26) is transformed in the obvious inequality $t_{*}[\varphi] \leq T_{*}[\varphi]$ as $\gamma \rightarrow 1$. If $\gamma=0$ then $x_{k_{j}}=O\left(x_{k_{j}+1}\right)$ as $j \rightarrow \infty$ and from (25) we obtain easily that $t_{*}[\varphi]=0$. This equality follows from (26), because $A(0)=0$. Thus, the following corollary is proved.

Corollary 1. Let the characteristic function φ of a probability law F be analytic in \mathbb{D}_{R}, $0<R<+\infty$, have order $\varrho_{*}[\varphi]$ and lower order $\lambda_{*}[\varphi]$. Assume that $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=$ $O(1), k \rightarrow \infty$, for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\underline{\lim }_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}}=\beta$, where β is some nonnegative constant. Then $\lambda_{*}[\varphi] \leq \beta \varrho_{*}[\varphi]$. If, moreover, φ has type $T_{*}[\varphi]$ and lower type $t_{*}[\varphi]$ and $\underline{\lim }_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}}=\gamma$ then $\tau_{*}[\varphi] \leq T_{*}[\varphi] \frac{(\varrho+1)^{\varrho+1}}{\varrho^{\varrho}} A(\gamma)$.

For an entire characteristic function φ of order $\varrho[\varphi] \in(1,+\infty)$ the quantities

$$
\begin{equation*}
T[\varphi]=\varlimsup_{r \rightarrow+\infty} \frac{\ln M(r, \varphi)}{r^{\varrho[\varphi]}}, \quad t[\varphi]=\lim _{r \rightarrow+\infty} \frac{\ln M(r, \varphi)}{r^{\varrho[\varphi]}} \tag{27}
\end{equation*}
$$

are called the type and the lower type of φ. From (20) for $\eta(r)=1$ we obtain

$$
\ln M(r, \varphi) \leq \ln \mu(r+1, \varphi)+o(1), r \rightarrow+\infty
$$

Combining this with (19) we conclude that in (27) $\ln M(r, \varphi)$ can be replaced with $\ln \mu(r, \varphi)$. Therefore, we choose $\Phi \in \Omega(0,+\infty)$ such that $\Phi(r)=T r^{\varrho}$ for $r \geq r_{0}=r_{0}(\varepsilon)$, where either $\varrho=\varrho[\varphi]+\varepsilon$ and $T=1$ or $\varrho=\varrho[\varphi]$ and $T=T[\varphi]+\varepsilon$. Then $\Phi \in L^{0}, \ln \Phi \in L_{s i}$ and $\left(\frac{\Phi(r) \Phi^{\prime \prime}(r)}{\left(\Phi^{\prime}(r)\right)^{2}}-1\right) \ln \Phi(r)=\frac{\varrho-1}{\varrho} \ln \Phi(r) \rightarrow+\infty$ as $r \rightarrow+\infty$. It is known [15] that for this function

$$
G_{1}\left(x_{k}, x_{k+1}, \Phi\right)=(\varrho-1) T^{-1 /(\varrho-1)} \varrho^{-\varrho /(\varrho-1)} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}}\left(x_{k+1}^{1 /(\varrho-1)}-x_{k}^{1 /(\varrho-1)}\right)
$$

and

$$
G_{2}\left(x_{k}, x_{k+1}, \Phi\right)=(\varrho-1)^{\varrho} T^{-1 /(\varrho-1)} \varrho^{-\varrho^{2} /(\varrho-1)}\left(\frac{x_{k+1}^{\varrho /(\varrho-1)}-x_{k}^{\varrho /(\varrho-1)}}{x_{k+1}-x_{k}}\right)^{\varrho} .
$$

Therefore, if $x_{k_{j}}=(1+o(1)) \gamma x_{k_{j}+1}$ as $j \rightarrow \infty$, where $0<\gamma<1$, then

$$
\varliminf_{j \rightarrow \infty} \frac{G_{1}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}{G_{2}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}=\frac{\varrho^{\varrho}}{(\varrho-1)^{\varrho-1}} \frac{\gamma(1-\gamma)^{\varrho-1}\left(1-\gamma^{1 /(\varrho-1)}\right)}{\left(1-\gamma^{\varrho /(\varrho-1)}\right)^{\varrho}}
$$

and if $\ln x_{k_{j}} \leq \beta^{*} \ln x_{k_{j}+1}$, where $0<\beta^{*}<1$, then $x_{k_{j}}=o\left(x_{k_{j}+1}\right), j \rightarrow \infty$, and

$$
\varliminf_{j \rightarrow \infty} \frac{\ln G_{1}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}{\ln G_{2}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)} \leq \frac{\beta^{*}(\varrho-1)+1}{\varrho}
$$

So, as in the proof of Corollary 1, using Theorem 2 in view of arbitrariness of β^{*} we obtain the following corollary.

Corollary 2. Let the entire characteristic function φ of a probability law F have the order $\varrho[\varphi]>1$, the lower order $\lambda[\varphi]$, the type $T[\varphi]$ and the lower type $t[\varphi]$. Then:

1) if $\ln W_{F}\left(x_{k}\right) \leq a \ln W_{F}\left(x_{k+1}\right), 0<a<1$, for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\underline{\lim }_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}}=\beta$ then $\lambda[\varphi]-1 \leq \beta(\varrho[\varphi]-1)$;
2) if $\ln W_{F}\left(x_{k}\right)=(1+o(1)) \ln W_{F}\left(x_{k+1}\right)$ as $k \rightarrow \infty$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers such that $\underline{\lim }_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}}=\gamma$ then $t[\varphi] \leq T[\varphi] \frac{\varrho^{\varrho}}{(\varrho-1)^{\varrho-1}} A_{1}(\gamma)$, where $A_{1}(\gamma)=\frac{\gamma(1-\gamma)^{\varrho-1}\left(1-\gamma^{1 /(\varrho-1)}\right)}{\left(1-\gamma^{\varrho /(\varrho-1)}\right)^{\varrho}}$.

If we define the modified order $\varrho_{m}[\varphi]=\varlimsup_{r \rightarrow+\infty} \frac{1}{\ln r} \ln \frac{M(r, \varphi)}{r}$ and the modified lower order $\lambda_{m}[\varphi]=\underline{\lim }_{r \rightarrow+\infty} \frac{1}{\ln r} \ln \frac{M(r, \varphi)}{r}$, then $\varrho_{m}[\varphi]=\varrho[\varphi]-1, \lambda_{m}[\varphi]=\lambda[\varphi]-1$ and under the assumptions of item 1) of Corollary 2 we have the inequality $\lambda_{m}[\varphi] \leq \beta \varrho_{m}[\varphi]$, which is an analog of the inequality from Corollary 1.

If for an entire characteristic function φ the function $\ln M(r, \varphi)$ increases faster than the power functions it is possible to use Theorem 1 . We will demonstrate this by the example of R-order $\varrho_{R}[\varphi]$, lower R-order $\lambda_{R}[\varphi], R$-type $T_{R}[\varphi]$ and lower R-type $t_{R}[\varphi]$, which are defined by the formulas

$$
\begin{gathered}
\varrho_{R}[\varphi]=\varlimsup_{r \rightarrow+\infty} \frac{\ln \ln M(r, \varphi)}{r}, \quad \lambda_{R}[\varphi]=\lim _{r \rightarrow+\infty} \frac{\ln \ln M(r, \varphi)}{r}, \\
T_{R}[\varphi]=\varlimsup_{r \rightarrow+\infty} \frac{\ln M(r, \varphi)}{\exp \left\{r \varrho_{R}[\varphi]\right\}}, \quad t_{R}[\varphi]=\varliminf_{r \rightarrow+\infty} \frac{\ln M(r, \varphi)}{\exp \left\{r \varrho_{R}[\varphi]\right\}} .
\end{gathered}
$$

For $\eta(r)=1 / r(20)$ implies the inequality $\ln M(r, \varphi) \leq \ln \mu(r+1 / r, \varphi)+\ln r+o(1), r \rightarrow$ $+\infty$. From here and (19) it follows that in the formulas for $\varrho_{R}[\varphi], \lambda_{R}[\varphi], T_{R}[\varphi]$ and $t_{R}[\varphi]$, the function $\ln M(r, \varphi)$ can be replaced with the function $\ln \mu(r, \varphi)$. Therefore, we choose $\Phi(r)=T e^{r \varrho}$ for $r \geq r_{0}=r_{0}(\varepsilon)$, where either $\varrho=\varrho_{R}[\varphi]+\varepsilon$ and $T=1$ or $\varrho=\varrho_{R}[\varphi]$ and $T=T_{R}[\varphi]+\varepsilon$. It is known ([15]) that for this function

$$
G_{1}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{1}{\varrho} \frac{x_{k} x_{k+1}}{x_{k+1}-x_{k}} \ln \frac{x_{k+1}}{x_{k}}, G_{2}\left(x_{k}, x_{k+1}, \Phi\right)=\frac{1}{e \varrho} \exp \left\{\frac{x_{k+1} \ln x_{k+1}-x_{k} \ln x_{k}}{x_{k+1}-x_{k}}\right\}
$$

If now $\ln x_{k_{j}} \leq \beta^{*} \ln x_{k_{j}+1}$, where $0<\beta^{*}<1$, then $x_{k_{j}}=o\left(x_{k_{j}+1}\right), j \rightarrow \infty$, and

$$
\varliminf_{j \rightarrow \infty} \frac{\ln G_{1}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}{\ln G_{2}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)} \leq \beta^{*}
$$

and if $x_{k_{j}}=(1+o(1)) \gamma x_{k_{j}+1}$ as $j \rightarrow \infty$, where $0<\gamma<1$, then

$$
\varliminf_{j \rightarrow \infty} \frac{G_{1}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}{G_{2}\left(x_{k_{j}}, x_{k_{j}+1}, \Phi\right)}=\frac{\gamma}{1-\gamma} \exp \left\{1+\frac{\gamma \ln \gamma}{1-\gamma}\right\} \ln \frac{1}{\gamma}
$$

Repeating the proof of Corollary 1, we obtain the following corollary.
Corollary 3. Let an entire characteristic function φ of a probability law F have R-order $\varrho_{R}[\varphi]$, lower R-order $\lambda_{R}[\varphi]$, R-type $T_{R}[\varphi]$ and lower R-type $t_{R}[\varphi]$. We suppose that $\ln W_{F}\left(x_{k}\right)-\ln W_{F}\left(x_{k+1}\right)=O(1)$ as $k \rightarrow \infty$ for some increasing to $+\infty$ sequence $\left(x_{k}\right)$ of positive numbers. If $\underline{\lim }_{k \rightarrow \infty} \frac{\ln x_{k}}{\ln x_{k+1}}=\beta$ then $\lambda_{R}[\varphi] \leq \beta \varrho_{R}[\varphi]$ and if

$$
\varliminf_{k \rightarrow \infty} \frac{x_{k}}{x_{k+1}}=\gamma \text { then } t_{R}[\varphi] \leq T_{R}[\varphi] \frac{\gamma}{1-\gamma} \exp \left\{1+\frac{\gamma \ln \gamma}{1-\gamma}\right\} \ln \frac{1}{\gamma}
$$

We demonstrate the application of Theorem 3 only for an entire characteristic function of finite R-order. It is easy to verify that for the function $\Phi(r)=e^{r \varrho}$ we have $x \Psi(\phi(x))=$ $\frac{x}{\varrho} \ln \frac{x}{e \varrho}$. Therefore, under the corresponding assumptions on W_{F}, Theorem 3 implies that if $\ln W_{F}\left(x_{k}\right) \leq-\frac{x_{k}}{\varrho} \ln \frac{x_{k}}{e \varrho}$ then $\ln \mu\left(r_{k}, \varphi\right) \leq(1+o(1)) e^{\varrho r_{k}}, k \rightarrow \infty$, where $r_{k}=V^{\prime}\left(x_{k}\right)$. Hence the following corollary follows.

Corollary 4. Let the characteristic function φ of a probability law F be entire and analytic in \mathbb{D}_{R}. Assume that $\ln W_{F}(x)=-V(x)$ for all $x \geq a$, where the function V is positive, continuously differentiable and $V^{\prime}(x) \uparrow R$ as $0<x \uparrow+\infty$. Then $\lambda_{R}[\varphi] \leq \lim _{x \rightarrow+\infty} \frac{x \ln x}{-\ln W_{F}(x)}$.

One can obtain analogues of Corollary 3 for other scales of growth, but we are not going to discuss this here.

REFERENCES

1. Linnik Ju.V., Ostrovskii I.V. Decomposition of random variables and vectors. - Moscow: Nauka, 1972, 479 p. (in Russian)
2. Skaskiv O.B., Sorokivs'kyi V.M. On the maximum modulus of characteristic functions of probability laws// Kraj. Zadachi Dyfer. Rivnyan'. - 2001. - V.7. - P. 286-289. (in Ukrainian)
3. Ramachandran B. On the order and the type of entire characteristic functions// Ann. Math. - 1962. V.33, №4. - P. 1238-1255.
4. Jakovleva N.I. On the growth of entire characteristic functions of probability laws// Teoriya funkcii, func. analysis i ih prilozh. - 1971. - V.15. - P. 43-49. (in Russian)
5. Jakovleva N.I. On the growth of entire characteristic functions of probability laws// Problems of matematical physics and func. analysis, K.: Naukova Dumka, 1976. - P. 43-54. (in Russian)
6. Vynnyts'kyi B.V. On a property of entire characteristic functions of probability laws// Izv. Vuzov, Matem. - 1975. - V.4. - P. 95-97. (in Russian)
7. Dewess M. The tail behaviour of a distribution function and its connection to the growth of entire characteristic function// Math. Nachr. - 1978. - V.81. - P. 217-231.
8. Sorokivs'kyi V.M. On the growth of the analytic characteristic functions of probability laws// Izv. Vuzov, Matem. - 1979. - V.2. - P. 48-52. (in Russian)
9. Kinash O.M., Parolya M.I., Sheremeta M.M. Growth of the characteristic functions of probability laws// Dopovidi NAN Ukraine. - 2012. - V.8. - P. 13-17. (in Ukrainian)
10. Parolya M.I., Sheremeta M.M. Estimates from below for characteristic functions of probability laws// Mat. Stud. - 2013. - V.39, №1. - P. 54-66.
11. Sheremeta M.M., Sumyk O.M. A connection between the growth of Young conjugated functions// Mat. Stud. - 1999. - V.11, №1. - P. 41-47. (in Ukrainian)
12. Filevych P.V., Sheremeta M.M. On a theorem of L. Sons and assymptotical behaviour of Dirichlet series// Ukr. Math. Bull. - 2006. - V.3, №2. - P. 187-208. (in Ukrainian)
13. Zabolots'kyi M.V., Sheremeta M.M. Generalization of Lindeloff's theorem// Ukr. Mat. Zh. - 1998. V.50, №1. - P. 1117-1192. (in Ukrainian)
14. Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristic of entire functions// Mat. Stud. - 2003. - V.19, №1. - P. 73-82.
15. Sumyk O.M., Sheremeta M.M. Estimates from below for maximal term of Dirichlet series// Izv. Vuzov, Matem. - 2001. - V.4. - P. 53-57. (in Russian)

Ivan Franko National University of Lviv
marta0691@rambler.ru
m_m_sheremeta@list.ru

