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We describe the Riesz measures of multiplicatively periodic δ-subharmonic functions in
Rm\{0}, m ≥ 3 and give their integral representations.

В. С. Хорощак, А. А. Кондратюк. Меры Рисса и мультипликативно периодические δ-суб-
гармонические функции в проколотом евклидовом пространстве // Мат. Студiї. – 2015.
– Т.43, №1. – C.61–65.

Описываются меры Рисса мультипликативно периодических δ-субгармонических в
Rm\{0}, m ≥ 3 функций. Найдены интегральные представления таких функций.

1. Introduction.Multiplicatively periodic (loxodromic) meromorphic functions in the punc-
tured complex plane C∗ = C\{0} are closely related to elliptic functions on C ([1]–[3]). Their
natural extensions are multiplicatively periodic δ-subharmonic functions in C∗ which were
studied in [4].

It was proved in [4] and [5] that each multiplicatively periodic subharmonic function in
◦
Rm = Rm\{0}, m ≥ 2, is constant.

In this paper we consider multiplicatively periodic δ-subharmonic functions in
◦
Rm, m ≥

3, that is, the differences u = u1 − u2 of two subharmonic functions u1 and u2 satisfying the
condition u(qx) = u(x) for some q, 0 < q < 1, and all x ∈

◦
Rm.

The main problems are:

1. to describe the Riesz measures of multiplicatively periodic δ-subharmonic in
◦
Rm functi-

ons;

2. to represent each multiplicatively periodic δ-subharmonic in
◦
Rm function.

2. The Riesz measures of multiplicatively periodic δ-subharmonic functions. Let
u be a subharmonic function in a domain. The positive measure

µu =
1

cm
∆u,
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where cm is the area of the unit sphere in Rm, ∆ is the Laplace operator in the sense of the
Schwarz distributions, is called the Riesz measure of u ([6]). For a δ-subharmonic function u
the distribution 1

cm
∆u is the difference of positive measures.

Denote by B the class of bounded Borel sets in
◦
Rm whose closures are contained in

◦
Rm.

For B ∈ B put
qB = {qx : x ∈ B}, 0 < q < 1.

Definition 1. Let µ be a measure on
◦
Rm. Fix t0 > 0 and a value ν(t0). The function

ν(t) =

{
ν(t0) + µ{x : t0 < |x| ≤ t}, t0 < t,

ν(t0)− µ{x : 0 < t < |x| ≤ t0}, t < t0,

is said to be the distribution function of the measure µ ([7]).

Such a function is right hand continuous, nondecreasing and determined up to a constant.
The difference ν(t2)− ν(t1) gives the measure of the ball layer {x : t1 < |x| ≤ t2}.

For a δ-subharmonic in
◦
Rm function u denote

I(r) =
1

cmrm−1

∫
S(0,r)

u(x)dσ(x),

where S(0, r) is the sphere of radius r centered at the origin.

Lemma 1. Let u be a δ-subharmonic function in
◦
Rm and ν be the distribution function

of µu. Then ν(r) = rm−1

m−2 I
′
+(r) + C, where I ′+(r) is the right hand derivative of I(r), C is

a constant.

Proof. It was proved in [7] that

m− 2

r2−m0 − r2−m

∫ r

r0

ν(t)

tm−1
dt− m− 2

s2−m − r2−m0

∫ r0

s

ν(t)

tm−1
dt =

I(r)− I(r0)

r2−m0 − r2−m
− I(r0)− I(s)

s2−m − r2−m0

, (1)

where 0 < s < r0 < r < 1.
Multiplying (1) by (s2−m − r2−m0 ) and taking the right hand side derivative with respect

to s2−m, we obtain

m− 2

r2−m0 − r2−m

∫ r

r0

ν(t)

tm−1
dt− ν(s) =

I(r)− I(r0)

r2−m0 − r2−m
− sm−1

m− 2
I ′+(s). (2)

Multiplying both sides of equality (2) by (r2−m0 − r2−m) and proceeding similarly, we
deduce

ν(s)− ν(r) =
sm−1

m− 2
I ′+(s)− rm−1

m− 2
I ′+(r),

which completes the proof.

The next theorem solves the first problem.

Theorem 1. A measure µ in
◦
Rm is the Riesz measure of a multiplicatively periodic δ-

subharmonic functions of multiplicator q if and only if
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(i) µ(qB) = qm−2µ(B) for each B ∈ B;

(ii)
∫ r
qr

dν(t)
tm−2 = 0 for all r > 0, where ν(t) is a distribution function of µ.

Proof. Let u be a multiplicatively periodic δ-subharmonic function of multiplicator q. Put
ϕq(x) = ϕ(qx). If ϕ ∈ C∞0 (

◦
Rm), then ∆ϕq(x) = q2∆ϕ(qx). Substituting x = y

q
, x =

(x1, . . . , xm), y = (y1, . . . , ym), we obtain∫
◦
R

m
u(x)∆ϕq(x) dx1 . . . dxm =

∫
◦
R

m
q2u

(
y

q

)
∆ϕ(y)

dy1 . . . dym
qm

=

= q2−m
∫

◦
R

m
u(y)∆ϕ(y) dy1 . . . dym

That is the distribution Tu = 1
cm

∆u has the property

Tuϕ = qm−2Tuϕq. (3)

If ϕ(x) 6= 0, x ∈ B, then ϕ(qx) 6= 0 , x ∈ 1
q
B. That is, if suppϕ = K, then suppϕq = 1

q
K.

By the process of extension [6] of Tu to the measure µu we have µu(1qB) = q2−mµu(B) for
each B ∈ B. Taking qB instead of B in this equality we obtain (i).

Now we are going to prove property (ii). Let ν be the distribution function of µu.
Integrating by parts, we obtain∫ r

s

dν(t)

tm−2
= ν(r)r2−m − ν(s)s2−m + (m− 2)

∫ r

s

ν(t)

tm−1
dt. (4)

Since the function ν(t) is determined up to a constant, the integral
∫ r
s
dν(t)
tm−2 does not

depend on this constant. Therefore, we can put C = 0 in Lemma 1. Then it implies

ν(t)t2−m =
t

m− 2
I ′+(t), (5)

(m− 2)

∫ r

s

ν(t)

tm−1
dt = I(r)− I(s). (6)

Using equalities (5) and (6), we can rewrite (4) as follows∫ r

s

dν(t)

tm−2
=

1

m− 2

(
rI ′+(r)− sI ′+(s)

)
+ I(r)− I(s).

If we put s = qr, then the previous equality can be rewritten in the form∫ r

qr

dν(t)

tm−2
=

1

m− 2
(rI ′+(r)− qrI ′+(qr)) + I(r)− I(qr). (7)

Since the function u is multiplicatively periodic of multiplicator q, we have I(qr) = I(r).
Using also the equality qI ′+(qr) = I ′+(r), we see that (7) implies (ii).

Now let µ be a Borel measure in
◦
Rm satisfying properties (i) and (ii), where ν is its

distribution function. We are going to construct a multiplicatively periodic δ-subharmonic
function of multiplicator q such that µu = µ.
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Consider the function

K(x, a) =
+∞∑
n=0

( 1

|a|m−2
− 1

|qnx− a|m−2
)
−

+∞∑
n=1

1

| x
qn
− a|m−2

,

where x ∈
◦
Rm, q < |a| ≤ 1.

It is easy to verify ([5]) that

K(qx, a) = K(x, a)− 1

|a|m−2
. (8)

We will show that
v(x) =

∫
q<|a|≤1

K(x, a)dµa (9)

is multiplicatively periodic δ-subharmonic function of multiplicator q.
The function v(x) can be represented as follows

v(x) =
+∞∑
n=0

∫
q1−n<|a|≤q−n

(
1

|a|m−2
− 1

|x− a|m−2

)
dµa −

+∞∑
n=1

∫
qn+1<|a|≤qn

dµa
|x− a|m−2

(10)

due to property (i). The function v(x) is δ-subharmonic in
◦
Rm as the sum of the Riesz

potentials.
Using equality (8), we obtain v(qx) = v(x)−

∫
q<|a|≤1

dµa
|a|m−2 .

Then property (ii) implies∫
q<|a|≤1

dµa
|a|m−2

=

∫ 1

q

dν(t)

tm−2
= 0.

Thus, v(qx) = v(x), x ∈
◦
Rm.

3. Representation of multiplicatively periodic δ-subharmonic functions. The fo-
llowing theorem solves the second problem.

Theorem 2. Each multiplicatively periodic δ-subharmonic in
◦
Rm function u of multiplicator

q has the representation

u(x) = C +

∫
q<|a|≤1

K(x, a)dµu(a),

where C is a constant.

Proof. Let u be a multiplicatively periodic δ-subharmonic in
◦
Rm function of multiplicator q.

Theorem 1 shows that µu satisfies conditions (i) and (ii). Consider the function v(x) given
by (9) with µ = µu. It follows from representation (10) that µv = µu since v is the sum of
uniformly convergent potentials of measure µu. So the difference h = u − v is a harmonic
function. Since both u and v are multiplicatively periodic, the function h is as well. Therefore,
([5]) the function h is a constant. Hence, u(x) = C+v(x), x ∈

◦
Rm, where C is a constant.
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