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We study properties of the Ceder product X x;, Y of topological spaces X and Y with
distinguished point b € Y, recently introduced by the authors. Important examples of the
Ceder product are the Ceder plane, the Alexandroff double circle and the Alexandroff duplicate.
In particular, we detect Ceder products which are L-separated or L-regular (these notions
generalize the separation axioms T; for i € {1, 2, 2%, 2%, 3, 3%})
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Nsyyatorcs cBoiicTBa BBEJEHHOTO aBTOpaMU MOHATHs TipousBeaennsa Cumpa X X, Y romoso-
ruvaeckux npocrpancts X u Y, rue b € Y. Ilpumepamu npoussenennst Cuapa cJryKar IJIOCKOCTh
Cujipa, aBOiHAST OKPYKHOCTH AJTeKCaHIPOBA, WK ee 0000IIeHne, YABOCHUE TI0 AJIeKCAHIPOBY.
B wacrtHOCTH, M3ydaloTCs yCIOBUsI, IPU KOTOPBIX mpoussejienne Cugpa Oyraer L-OTae/mMbiM
wim L-peryssipHbIM IIPOCTPAHCTBOM (ST HEJIABHO BBEJIEHHBIE IOHSATHS BKJIOYAIOT AKCHOMBI
orgenumoctu T; npu ¢ € {1,2,2%,2%,3,3%}).

1. Introduction. In [1, ex. 9.1], J. Ceder gave an example of a stratifiable space, which
is not metrizable. We call this space the Ceder plane and denote it by M. In [2] Ceder’s
construction was generalized by introducing a general notion of the Ceder product X x, Y
of two topological spaces with a distinguished point b € Y. Important examples of the
Ceder product are the Ceder plane Ml = R X [0, +00), the Alexandroff double circle |3,
p. 204] and the Alexandroff duplicate of a given topological space. Topological properties
of the Alexandroff duplicate AD(X) of a topological space X have been studied in many
papers (see for example [4, 5]). In particular, A. Caserta and S. Watson [4, Corollary 3.7
characterized metrizable subspaces of AD(X).

In [2] it was proved that, if the spaces X and Y are stratifiable then the Ceder product
X %, Y is stratifiable. Some conditions under which the Ceder products are T;-spaces for ¢ €
{0,1,2,3} were announced in [6] and proved in |7]. Paper 7] also contains a characterization
of spaces X, Y with metrizable Ceder product X x, Y.

In this paper we study separation axioms in Ceder products of topological spaces. We
accept a general approach of [8] based on the notions of L-separated and L-regular spaces

2010 Mathematics Subject Classification: 54CO08.

Keywords: Separation axioms; linear separation axioms; the Ceder plane; Ceder product; Alexandroff double
circle; Alexandroff duplicate; stratifiable space.

doi:10.15330/ms.43.1.78-87

@ V. K. Maslyuchenko, O. V. Maslyuchenko, O. D. Myronyk, 2015



ON L-SEPARATEDNESS AND L-REGULARITY OF THE CEDER PRODUCTS 79

for a linearly ordered set L. Varying the linearly ordered set L we get the classical separation

axioms T;, i € {1,2, 2%, 2%, 3, 3%} as partial cases.

2. The Ceder product. Recall that a family B of open subsets of X is a base for a topolo-
gical space (X,7) if and only if B C 7 and for any G € T and every point z € G there
exists B € B such that x € B C G. It is known [3, p. 33|, that any base B for X has the
following properties:

(B1) for any By, By € B and every point x € By N By there exists B € B such that x € B C
B1 N B27

(B2) for any x € X there exists B € B such that x € B.
Moreover, if a family B of subsets of X has the properties (B1) and (B2), then the family

T={Ge2¥:(VeeG)(3IBeB)(zecBCG)}

is a topology on X, B C T and B is a base for the topological space (X,7T) |3, p. 46].

For a base B of the topology of a space X and a point x € X the family
B, ={B € B:x € B} is a neighborhood base of the topology at x.

Let X and Y be topological spaces, F C X and b€ Y. For U C X and V CY we put

: F .
V=V\{b}, UxV =(UxV)\(FxV).
x {z}
If FF = {z}, then we put U x V = U x V. Consider a family B = B; U B, of subsets of
X XY, where '
Bi={{z}xV:zxe X,V isopeninY}

and
F
By = {U xV:U isopenin X, V isopeninY, b € Vand F C X is a finite set}.
It is easy to see that the family B has properties (B1) and (B2). Thus the family
T={We2¥Y . (VpeW)3BeB)((pecBCW)}

is a topology on X x Y and B is a base for the topological space (X x Y, T) Note that
a neighborhood base at a point p = (z,y), y # b, consists of all sets {z} x V', where V is

F
open in Y and y € V; a neighborhood base at a point p = (x, b) consists of all sets U x V,
where U is an open neighborhood of x in X and V' is an open neighborhood of b in Y and

F C X is a finite set such that x € F. Since U Q V= UI;?V, where Fy = FNU, we can
assume that F' C U.

The Ceder product of topological spaces X and Y with distinguished point b € Y, denoted
by P = X x, Y, is defined to be the topological space (X x Y, T).

Let X be a topological space and AD(X) = X x {0,1} be the Alexandroff duplicate of
X (see |5, 4]). Note that the Alexandroff duplicate AD(X) is the Ceder product X x40, 1}
of X and the connected doubleton {0, 1}o. The space {0,1}¢ is also called the Sierpiriski
space.

Put X, = X x {b}. Consider the mapping ¢ : X — X,, o(x) = (z,b). It is easy to see
that ¢ is a homeomorphism of X onto the subspace X, of the Ceder product P = X x; Y.
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For a € X we put Y, = {a} x Y and Y, = {a} x Y. We consider the mappings ¢ : Y — Y,
U(y) = (a,y), and Yy = Yy : Y — Y,. It is easy to see that ¢y is a homeomorphism of the
subspace Y = Y\ {b} of Y onto the subspace Y, of the Ceder product P. Note, that if the
point b is non-isolated in Y, then the mapping ¢ is not a homeomorphism, because the point
¥ (b) = (a,b) is isolated in the subspace Y.

3. L-separated and L-regular spaces. Let L be a non-empty linearly ordered set, X be
a topological space and x € X. An indexed family (U, )xer, of open subsets U, of a topological
space X is called an L-neighborhood of a point x in X if z € Uy, for every A € L and Uy C U,
for any elements A\, u € L with A < u. We say that an L-neighborhood (Uy)aer of a point x
in X separates points x and u € X, if u ¢ U, for every A € L. The notation (Uy)yer, < A
means that the indexed family (Uy)xer is subordinated to a set A C X i.e. Uy C A for every
A € L. It is clear that an L-neighborhood (Uy)aer of € X separates points  and v € X if
and only if (Uy)rer < X \ {u}.

Following [8], we define a topological space X to be L-separated at a point x € X if
for any point v € X \ {z} there exists an L-neighborhood (Uy)xer of z in X such that
(Un)aer < X \ {u}. Next, a topological space X is said to be L-regular at a point x € X if
for any neighborhood U of x € X there exists an L-neighborhood (Uy)xer of z in X such
that (Uy)aer < U. A topological space X is called L-separated (respectively, L-regular) if X
is L-separated (respectively, L-regular) at each point x € X

We add two more properties to the well-known separation axioms Tg, T, T, 15, T} 1 (see
[3, p- 69]). A topological space X is called a Urysohn space if for any two distinct points z and
y of X there are neighborhoods U and V of points 2 and y respectively, with UNV = @. This
property is called the Urysohn separation axiom, which we denoted by TQ%. A topological
space X is called a functionally Hausdorff space if for any two distinct points x and y of
X there exists a continuous function f: X — R such that f(x) # f(y). We denoted this
property by T, 1.

We will identify each positive integer n with the finite ordinal {0,1,...,n — 1}.

The following result from [8] shows that almost all possible separation axioms are partial
cases of L-separatedness and L-regularity.

Proposition 1. A topological space X is:

(i) a Ty-space if and only if X is 1-separated;

(ii)) Hausdorff (= a Ty-space) if and only if X is 2-separated;

(iii) Urysohn (= a Tzé—space) if and only if X is 3-separated;

(iv) functionally Hausdorff (= a Ty1-space) if and only if X' is Q-separated;

(v) regular if and only if X is 2-regular if and only if n-regular for every integer n > 2;
(vi) completely regular if and only if X is Q-regular;
(vii) Tychonoff (= a Tgé—space) if and only if X is a Q-regular Ti-space.

The characterizations in Proposition 1 can be considered as definitions of the corres-

ponding separation axioms.

It is well known [3, p. 114] that any subspace of a Tj-space is a T;-space for i < 3%. We
show that L-separatedness and L-regularity are hereditary properties too.

Proposition 2. Any subspace E of an L-separated space X is L-separated.
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Proof. The closure of a set A in F will be denoted by [A]g, and the closure of a set A in X
will be denoted by A. It is known [3, p. 111] that [A]z = AN E for any set A C E.

Let z and u be any distinct points of E. Since X is L-separated, there exists an L-neigh-
borhood (U )xer of z in X such that u ¢ U, for every A € L. We set V), = UyN E. It is clear
that V) is open in E, v € V), u ¢ V) for every A € L, and [Vy|p = U\NE C U,NE =V, for
any elements A\ < p of L. Therefore (V))aer is an L-neighborhood of x in E, which separates
points x and u. Thus F is an L-separated space. O

Proposition 3. Any subspace E of an L-regular space X is L-reqular.

Proof. Fix x € F and let V' be a neighborhood of z in E. There exists a neighborhood U of
x in X, such that V = UNE. Since X is an L-regular space, there exists an L-neighborhood
(Ux)xer of z in X such that (Uy)xer, < U. We put V), = UxNE for every A € L. Then (V)\)xer
is an L-neighborhood of x in E such that (V)xer, < V. Therefore E is L-regular. O

4. The axioms 7 and 77 in the Ceder product. We start with finding conditions on
spaces X and Y guaranteeing that the Ceder product satisfies the separation axioms 7; for

ie{0,1}.

Theorem 1. Let X and Y be non-empty topological spaces, b € Y and P = X X, Y be the
Ceder product. Then P is a Ty-space if and only if X and Y are Ty-spaces.

Proof. Necessity. Since X and X, are homeomorphic, X is a Ty-space. Similarly, Y and Y,
are homeomorphic, where a € X. So Y is a Ty-space.
Sufficiency. Let X and Y be Ty-spaces. Fix two distinct points p; = (1, y1) and po = (22, Yo)
of P. If 1 # w9, then there is an open set U in X containing exactly one of the points x1, .
Then W =U x Y is open in P and contains exactly one of the points pq, ps.

If 21 = x9 = x, then y; # yo. Assume first that y;,ys € Y. Since Y is a Ty-space, there is
an open set V in Y, which contains exactly one of the points y1, y». Thus the set W = {z}xV
is a neighborhood of one of the points pi, p» and does not contain the other one.

Finally, consider the case where y; = b or yo = b. Suppose, for example, that y; = b # y».

Then the set W = X X Y is a neighborhood of p; = (x,b) which does not contain the point
P2 = (2,92). u

Theorem 2. Let X and Y be non-empty topological spaces, b € Y and P = X x;, Y be the
Ceder product. Then P is a Ti-space if and only if X and Y are Ti-spaces.

Proof. Necessity. Let P be a Ti-space. As in the proof of Theorem 1 we obtain that X and
Y are T'-spaces.
Sufficiency. Let X and Y be Ti-spaces. Fix two distinct points p1 = (x1,41) and py = (22, o)
of P. If 1 # x5, then there exists a neighborhood U of 1, such that x5 ¢ U. Then W = U XY
is a neighborhood of p; in P, and py ¢ W.

Consider the case, where 1 = x9 = . Then y; # yo. We first consider the subcase
y1,y2 € Y. Since Y is a T}-space, there exists a neighborhood V of 41 in Y, such that y, ¢ V.
Thus, the set W = {z} x V is a neighborhood of p; in P and ps ¢ W.

Now let 43 = b # yo. Then the set W = X XY is a neighborhood of p; = (x,b), which
does not contain ps = (z,ys).

Finally, consider the case where y; # b = 1. The set W = {z} x Y is a neighborhood of
p1 = (x,y1), which does not contain ps = (x,b). ]
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5. L-separatedness of the Ceder product.

Theorem 3. Let L be a non-empty linearly ordered set, X and 'Y be non-empty topological
spaces, b € Y, Y =Y \ {b} and P = X X, Y be the Ceder product. Then the following
conditions are equivalent:

(i) P is an L-separated space;
(ii) X and Y are L-separated spaces.

Proof. (i) = (ii) Let P be an L-separated space. By Proposition 2, the subspaces X, =
X x {b} and Y, = {a} x Y of the Ceder product P are L-separated, where a € X. As in the
proof of Theorem 1, we obtain that X and Y are L-separated.

(i7) = (1) Consider two distinct points p = (z,y) and ¢ = (u,v) of P.

Let x # u. There is an L-neighborhood (Uy)aer of x in X, such that u ¢ U, for every
A € L, by the L-separatedness of X. The sets W, = U, x Y are open neighborhoods of p in
P for all A € L, and

WACUXY CU,xY =W,

for any elements A\ < p of L. So, the indexed family (WW))aer is an L-neighborhood of p in P.
Moreover, g ¢ W), for every A € L, thus, this L-neighborhood separates the points p and g.

Now let x = w. Then y # v. Consider the following three logically possible cases.

Let {y,v} C Y. Since Y is an L-separated space, there is an L-neighborhood (V})xey, of
y in Y, which separates the points y and v. The sets Wy = {2} x V, are open neighborhoods
of pin P for every A € L, and W, = {z} x [W\]y C {z} x V,, = W, for any elements \ < p
of L. Moreover q ¢ W, for every A € L. Therefore (W) ) e is an L-neighborhood of p in P,
which separates the points p and q.

Let y =5b. Theset W = X XY is clopenin P,p € W and q ¢ W. Put W, = W for every
A € L. Then the indexed family (W))\er is an L-neighborhood of p in P, which separates
the points p and q.

Finally, consider the case where v = b. Then the set W = {z} X Y is clopenin P, p € W
and ¢ ¢ W. Put W, = W for every A € L. The indexed family (W))er is the desired
L-neighborhood.

Therefore the space P is L-separated. O

From Proposition 1 and Theorem 3 we immediately obtain the following consequence.

Corollary 1. Let X and Y be non-empty topological spaces and b € Y. The Ceder product
P = X x,Y is a Hausdorff (respectively Urysohn, functionally Hausdorff) space if and only
if X and Y are Hausdorff (respectively Urysohn, functionally Hausdorff) spaces.

6. L-regularity of the Ceder product. Recall that a point x € X of a topological space X
is called an accumulation point if every neighborhood U of x in X is infinite.

A point x € X of a Ti-space X is accumulating if and only if x is not isolated.

The following theorem provides sufficient conditions of L-regularity of the Ceder product.

Theorem 4. Let L be a non-empty linearly ordered set, X and Y be non-empty topological
spaces, b € Y and P = X X, Y be the Ceder product. Assume that

(i) X and Y are L-regular spaces and

(ii) if X has an accumulation point, then Y is L-regular at the point b.
Then the Ceder product P = X X, Y is L-regular.
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Proof. Let p = (z,y) € P and W be a neighborhood of p in P. We are going to find an
L-neighborhood (Wy)xer of p in P, such that (W))aer < W. First consider the case, where
y # b. There exists a neighborhood V' of y in Y, such that {z} x VCW.Theset V=YNV
is a neighborhood of y in Y. Since Y is L-regular, there exists an L-neighborhood (V\)aer
of y in Y, such that (Vy)xer < V. Then the sets Wy = {z} x Vj are open neighborhoods of
p in P for all A € L. Moreover,

Wy ={z} x Wy C{a} xV, =W,
for any elements A < p of L. Therefore (W)y)aer is an L-neighborhood of p in P. Since
Wy={a}xV\C{z}xVC{z}xV W,

we have (W)\)/\eL < W.
If y = b, then we can find a neighborhood U C X of x, a neighborhood V C Y of b and

F
a finite subset /' C U such that U x V C W. _
If z is a non-accumulation point of X, then there exists a finite neighborhood U of z in X

such that U C U. The set U X V =U x ({b} is open in P. Let (U)rer be an L-neighborhood
of x such that (U,\)AeL < U. Put Wy, = Uy x {b} for every A € L. The indexed family (W))xer
is the desired L-neighborhood of p in P.

Suppose that X is L-regular, x is an accumulation point of X, then Y is L-regular at
the point b. Then there exist L-neighborhoods (Uy)er and (Vy)rer of  and bin X and Y

F
respectively, such that (Uy)aer < U and (V)\)xer < V. The set W) = U, x V) is an open
neighborhood of p in P, W, C W for every A € L, and

J— — F _ F
W)\QU,\XV)\QUMXVM:WM

for any elements A < p of L. Therefore (W) e, is an L-neighborhood of p in P, such that
(Wx)xer < W. O

A subset M of a linearly ordered set L is called coinitial if for every A € L there is u € M
such that ;o < A. The smallest cardinality of a coinitial subset in L is called the coinitiality
of L and is denoted by ci(L). A linearly ordered set L is called a set of countable coinitiality
if ci(L) < Ng. It is clear that for a non-empty linearly ordered set L of countable coinitiality
we have ci(L) = 1 or ci(L) = Xy. Indeed, if M = {pg, p11,- .-, itn} is a finite coinitial subset
of a linearly ordered set L, where po < p1q < -+ < pt,, then the subset My = {0} is coinitial
in L. So, in this case we have ci(L) = 1. Note that j is the smallest element of the set L.
If there is no subset of finite coinitiality of a linearly ordered set L and ci(L) < R, then
ci(L) = Ng. In this case there is a sequence of elements [,, in L, such that [, .1 < l,, for every
n € N and the subset Ly = {l,: n € N} is coinitial in L. For example, ci(Q) = ci(R) = N,.

In the case where L is an arbitrary linearly ordered set, it is easily seen that if the Ceder
product P = X x, Y is L-regular, then X and Y are L-regular.

For linearly ordered sets L of countable coinitiality the following theorem provides
necessary and sufficient conditions of L-regularity of the Ceder product.

Let EC X xY and z € X. We denote E* = {y € Y: (z,y) € E}.

Theorem 5. Let L be a non-empty linearly ordered set of countable coinitiality and let
P = X x3 Y be the Ceder product of non-empty topological spaces X and Y, where b € Y’
and {b} = {b}. Then P is an L-regular space if and only if the following conditions hold:
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(i) X and Y are L-regular;

(#7) if X has an accumulation point, then Y is L-regular at b.

Proof. The “if” part follows from Theorem 4. To prove the “only if” part let P be an L-re-
gular space. By Proposition 3, the subspaces X, = X x {b} and Y, = {a} x Y of the Ceder
product P are L-regular, where a € X. Since X and X, are homeomorphic, X is L-regular.
Analogously, Y and Y, are homeomorphic, so Y is L-regular.

Assuming that X contains an accumulation point a € X, we shall prove that Y is L-
regular at b. Given any neighborhood V' C Y of b, we shall construct an L-neighborhood
(V)\),\QL of bin Y with (V)\))\GL < V.

If b is isolated in Y, then we put V), = {b} for every A\ € L.

We suppose that the point b is non-isolated in Y.

If ci(L) = 1, then the set L has the smallest element [ € L. Since the Ceder product
P is L-regular, for the neighborhood W = X x V of the point ¢ = (a,b) in P there is an
L-neighborhood (W))xer of ¢ in P such that (W) < W. For the neighborhood W of ¢
in P there are neighborhoods UofainX , V of bin Y and a finite subset F C U such that

U §1~/ C W,. Since a is an accumulation point of X, there is a point x € U \ F. For every
A € L consider the set V), = W{. We claim that (V))aer is the desired L-neighborhood of b
inY. B

Since x € U \ F, for any A € L we have

~ F ~
V=(UxV)CWCW=1,

because [ < A. Thus Vv C Vi, and so V), is a neighborhood of b in Y.

For every A € L we have W) C W. Therefore V\, = Wy C W* = V. We prove that
V, C V,, for any elements A\ < p of L. We have W, C W,. We show that {x} x Vi CW,.
Given any point y € Vy, consider the point p = (x,y). Suppose that y # b. Consider a basic
neighborhood W* = {z} x V* of p in P, where V* is an open neighborhood of y in Y.
Since the singleton {b} is closed in Y, the set V*is open in Y and y € V*, because y # b.
Therefore V* is a neighborhood of y. Then V* NV, # @&. Thus there is y* € V* N V.
Since y* € V*, we have p* = (x,y*) € W*. On the other hand y* € V) = W} and so
p* € Wy. Therefore p* € W* N Wy, hence W* N W, # @. In this way p € Wy. If y = b, then

~ F ~ —
p=(z,b) cUxV CW, CW,CW,.
Consequently,

and so V, C Vi

Therefore (V))aer is an L-neighborhood of b in Y, such that (Vi) e < V.

Now assume that ci(L) = X, and fix a strictly decreasing sequence (I,,)nen, such that the
subset Ly = {l,,: n € N} is coinitial in L.

Put Uy = X, Vo =V and Wy = Uy x Vy. The set W, is a neighborhood of the point
¢ = (a,b) in P. By L-regularity of P, there is an L-neighborhood (W; »)xer of ¢ in P, such
that (Wi x)xer < Wo. The set Wy, is a neighborhood of ¢ in P. Then there are neighborhoods

F
Uy of ain X, V] of b in Y and a finite subset F; C U; such that W; = U; ><1V1 C Wiy,
The set W is also a neighborhood of ¢ in P. Then there is an L-neighborhood (Ws)aerL
of ¢ in P, such that (Ws)aer < Wi. Next, we consider the neighborhood Wy, of ¢ in P



ON L-SEPARATEDNESS AND L-REGULARITY OF THE CEDER PRODUCTS 85

and choose neighborhoods U, of a in X, V5 of bin Y and a finite subset F, C U, such that

F

Wy = U, X Vo € Wayy,. For every n € N we can construct recursively neighborhoods U, of a
in X, V,, of bin Y, a finite subset F,, C U,, and an L-neighborhood (W), x)aer of ¢ in P such
that the following conditions are satisfied:

F,
(a) Wypiix CW,, =U, xV, for every A € L and n € N;
(b) W,, € W, for every n € N.

Note that U, C U, and V, 41 CV, for every n € Ny = NU {0}. Indeed, for a fixed n

we have
Fpp1

Wn+1 - Un+1 X Vn+1 C Wn+1l +1 C W - U X V
Then Uy, 41 x {b} = W, ;1N(X x{b}) C W,,N(X x{b}) = U, x{b}. It follow that U, 1 C U,.
Since the point a is an accumulation point of X, there is © € U, 41 \ Fy,41. By the above
x € Uy,. Since W11 CW,, and = ¢ F,,,1, we have x ¢ F,, because the point b is not isolated.
Hence

{2} X Vier = Wt N ({2} x Y) S W, 0 ({2} x Y) = {2} x V.

In this way V,, 41 C V,,. In particular, V,, C Vj =V for every n € N.

Since U, is a neighborhood of the accumulation point a in X, we can choose a point
x, € U, \ F, for every n € N. Note that from W,, C W,,_; and z,, ¢ F, it follows that
x, ¢ F,_1 for every n € N.

For every A € L there is the smallest number n = n(\) such that [, < A. For this number
n the inequalities [, < A < [, where n > 2 and [; < X\ where n = 1 are true. We put
V(A) = Wn for every A € L, where n = n(A). We show that (V()A))aez is an L-neighborhood
of bin Y, such that (V(A))xer < V.

Let us verify that V() is a neighborhood of b in Y. Since I, < A, we have W,, =

Frn
Un X Vn - Wn,ln - Wn,)v Then
V, = Win CWo = V(\).

Therefore, V,, C V(A), and hence the set V(\) is a neighborhood of b in Y, because V,, is
a neighborhood of b in Y.

We prove that V(A) C V for every A € L. Suppose that n = n(A) > 2 for A € L. Then
I, < A<l,—1 and

W € W, C Wt = Uny X Vi,
Since U,, C U,,_; and z,, € U,,, we have z,, € U,_;. Note that x,, ¢ F,_;. Therefore
VA =W CWimy =V, 1.
But V,,_; €V then V(\) C V. If n(\) = 1, then
WixCWo=Uyx Vogand V(A) =W, CW =1, =V.

Finally, let us prove that V/(X\) € V() for any elements A\ < p of L. Fix A\ € L and
verify that {x,} x V(\) C W,.\, where n = n()). Let p, = (z,,,y) be an arbitrary point of
{x,} x V(\). We shall prove that p, € W, . Let y # b. Consider any neighborhood V* of y
in Y. The set W* = {z,,} x V* is a basic neighborhood of p, in P. Note that V* is an open
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neighborhood of y in Y. Since y € m, there is a point y* € V* N V(A). It is clear that
P = (@0, %) € {zn} x V* = W* and p* € {,} x V(\) C W,.». Thus p* € W* N W, and
hence p, € W,a. If y = b, then p, = (,,,b) € Unf? Vi € Wi, ©Wox €W

Let A\, € L, A < i, n =n(\) and m = n(p). It is clear that n > m.

Consider the case where n. = m. Then V/(X) = W73 and V(i) = Win,. Since Wy, x € W,
we have

{20} X VON) € Wor € W
) €

Therefore, {x,} x V(X\) € W, ., and hence V(\) Win =V ().
Now let n > m. In thiscase n > 1,n — 1> m and

)\<ln—1§lm§ﬂ

Then Wn,)\ g Wn,ln,l g anl g anl,ln,l g Wn72 g T g Wm g Wm,lm g Wm,,u- ThllS,
W €Wy € Wiy, € W, . Therefore

{xn} X V()\) g Wn,)\ g Wm7

and we have V(\) C W2 =V, because x,, € U,, C U,, and z,, ¢ F,,,. Therefore V() C V,,.
On the other hand, if z,, € U, and z,, ¢ F,,, then

Vie = War C Win =V (u),

hence, V/(\) CV,,, € V(). Thus V(\) C V(u). O

Corollary 2. Let X be a topological space containing an accumulation point, Y be
a topological space, b € Y, {b} = {b} and L be a non-empty countable linearly ordered
set. The Ceder product P = X X, Y is L-regular if and only if X and Y are L-regular.

Problem 1. Let L be a non-empty linearly ordered set, X be a topological space containing
an accumulation point, Y be a topological space, b € Y, {b} = {b} and the Ceder product
P =X x,Y be an L-regular space. Is it true that Y is L-regular at the point b?

A topological space X is called regular at a point x € X if for every neighborhood V' of
x there exists a neighborhood U of x in X such that UcCvV.

A topological space X is called completely regular at a point x € X if for every nei-
ghborhood U of z there exists a continuous function f: X — [0,1] such that f(z) = 0 and
f(u) =1 for every u € X \ U.

From Proposition 1 and Corollary 2 we immediately obtain the following consequence.

Corollary 3. Let X, Y be topological spaces, X # @, b € Y and {b} = {b}. The Ceder
product P = X X, Y is a regular (completely regular) space if and only if the following
conditions are valid:

(i) X and Y are regular (completely regular) spaces;
(ii) if X has an accumulation point, then Y is regular (completely regular) at b.
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