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We study properties of the Ceder product X ×b Y of topological spaces X and Y with
distinguished point b ∈ Y , recently introduced by the authors. Important examples of the
Ceder product are the Ceder plane, the Alexandroff double circle and the Alexandroff duplicate.
In particular, we detect Ceder products which are L-separated or L-regular (these notions
generalize the separation axioms Ti for i ∈ {1, 2, 2 1

3 , 2
1
2 , 3, 3

1
2}).

B. K. Маслюченко, О. В. Маслюченко, O. Д. Mироник. L-отделимость и L-регулярность
произведений Сидра // Мат. Студiї. – 2015. – Т.43, №1. – C.78–87.

Изучаются свойства введенного авторами понятия произведения Сидра X×bY тополо-
гических пространствX и Y , где b ∈ Y . Примерами произведения Сидра служат плоскость
Сидра, двойная окружность Александрова, или ее обобщение, удвоение по Александрову.
В частности, изучаются условия, при которых произведение Сидра будет L-отделимым
или L-регулярным пространством (эти недавно введенные понятия включают аксиомы
отделимости Ti при i ∈ {1, 2, 2 1

3 , 2
1
2 , 3, 3

1
2}).

1. Introduction. In [1, ex. 9.1], J. Ceder gave an example of a stratifiable space, which
is not metrizable. We call this space the Ceder plane and denote it by M. In [2] Ceder’s
construction was generalized by introducing a general notion of the Ceder product X ×b Y
of two topological spaces with a distinguished point b ∈ Y . Important examples of the
Ceder product are the Ceder plane M = R ×0 [0,+∞), the Alexandroff double circle [3,
p. 204] and the Alexandroff duplicate of a given topological space. Topological properties
of the Alexandroff duplicate AD(X) of a topological space X have been studied in many
papers (see for example [4, 5]). In particular, A. Caserta and S. Watson [4, Corollary 3.7]
characterized metrizable subspaces of AD(X).

In [2] it was proved that, if the spaces X and Y are stratifiable then the Ceder product
X×b Y is stratifiable. Some conditions under which the Ceder products are Ti-spaces for i ∈
{0, 1, 2, 3} were announced in [6] and proved in [7]. Paper [7] also contains a characterization
of spaces X, Y with metrizable Ceder product X ×b Y .

In this paper we study separation axioms in Ceder products of topological spaces. We
accept a general approach of [8] based on the notions of L-separated and L-regular spaces
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for a linearly ordered set L. Varying the linearly ordered set L we get the classical separation
axioms Ti, i ∈ {1, 2, 21

3
, 21

2
, 3, 31

2
} as partial cases.

2. The Ceder product. Recall that a family B of open subsets of X is a base for a topolo-
gical space (X, T ) if and only if B ⊆ T and for any G ∈ T and every point x ∈ G there
exists B ∈ B such that x ∈ B ⊆ G. It is known [3, p. 33], that any base B for X has the
following properties:

(B1) for any B1, B2 ∈ B and every point x ∈ B1 ∩B2 there exists B ∈ B such that x ∈ B ⊆
B1 ∩B2;

(B2) for any x ∈ X there exists B ∈ B such that x ∈ B.

Moreover, if a family B of subsets of X has the properties (B1) and (B2), then the family

T = {G ∈ 2X : (∀x ∈ G)(∃B ∈ B)(x ∈ B ⊆ G)}

is a topology on X, B ⊆ T and B is a base for the topological space (X, T ) [3, p. 46].
For a base B of the topology of a space X and a point x ∈ X the family

Bx = {B ∈ B : x ∈ B} is a neighborhood base of the topology at x.
Let X and Y be topological spaces, F ⊆ X and b ∈ Y . For U ⊆ X and V ⊆ Y we put

V̇ = V \ {b}, U
F
× V = (U × V ) \ (F × V̇ ).

If F = {x}, then we put U
x
× V = U

{x}
× V . Consider a family B = B1 ∪ B2 of subsets of

X × Y , where
B1 = {{x} × V̇ : x ∈ X, V is open inY }

and

B2 =
{
U

F
× V : U is open inX, V is open inY, b ∈ V andF ⊆ X is a finite set

}
.

It is easy to see that the family B has properties (B1) and (B2). Thus the family

T = {W ∈ 2X×Y : (∀p ∈ W )(∃B ∈ B)(p ∈ B ⊆ W )}

is a topology on X × Y and B is a base for the topological space (X × Y, T ). Note that
a neighborhood base at a point p = (x, y), y 6= b, consists of all sets {x} × V̇ , where V is

open in Y and y ∈ V ; a neighborhood base at a point p = (x, b) consists of all sets U
F
× V ,

where U is an open neighborhood of x in X and V is an open neighborhood of b in Y and

F ⊆ X is a finite set such that x ∈ F . Since U
F
× V = U

F0

× V , where F0 = F ∩ U , we can
assume that F ⊆ U .

The Ceder product of topological spaces X and Y with distinguished point b ∈ Y , denoted
by P = X ×b Y , is defined to be the topological space (X × Y, T ).

Let X be a topological space and AD(X) = X × {0, 1} be the Alexandroff duplicate of
X (see [5, 4]). Note that the Alexandroff duplicate AD(X) is the Ceder product X×0 {0, 1}0
of X and the connected doubleton {0, 1}0. The space {0, 1}0 is also called the Sierpiński
space.

Put Xb = X × {b}. Consider the mapping ϕ : X → Xb, ϕ(x) = (x, b). It is easy to see
that ϕ is a homeomorphism of X onto the subspace Xb of the Ceder product P = X ×b Y .
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For a ∈ X we put Ya = {a} × Y and Ẏa = {a} × Ẏ . We consider the mappings ψ : Y → Ya,
ψ(y) = (a, y), and ψ0 = ψ|Ẏ : Ẏ → Ẏa. It is easy to see that ψ0 is a homeomorphism of the
subspace Ẏ = Y \ {b} of Y onto the subspace Ẏa of the Ceder product P . Note, that if the
point b is non-isolated in Y , then the mapping ψ is not a homeomorphism, because the point
ψ(b) = (a, b) is isolated in the subspace Ya.

3. L-separated and L-regular spaces. Let L be a non-empty linearly ordered set, X be
a topological space and x ∈ X. An indexed family (Uλ)λ∈L of open subsets Uλ of a topological
space X is called an L-neighborhood of a point x in X if x ∈ Uλ for every λ ∈ L and Uλ ⊆ Uµ
for any elements λ, µ ∈ L with λ < µ. We say that an L-neighborhood (Uλ)λ∈L of a point x
in X separates points x and u ∈ X, if u /∈ Uλ for every λ ∈ L. The notation (Uλ)λ∈L ≺ A
means that the indexed family (Uλ)λ∈L is subordinated to a set A ⊆ X i.e. Uλ ⊆ A for every
λ ∈ L. It is clear that an L-neighborhood (Uλ)λ∈L of x ∈ X separates points x and u ∈ X if
and only if (Uλ)λ∈L ≺ X \ {u}.

Following [8], we define a topological space X to be L-separated at a point x ∈ X if
for any point u ∈ X \ {x} there exists an L-neighborhood (Uλ)λ∈L of x in X such that
(Uλ)λ∈L ≺ X \ {u}. Next, a topological space X is said to be L-regular at a point x ∈ X if
for any neighborhood U of x ∈ X there exists an L-neighborhood (Uλ)λ∈L of x in X such
that (Uλ)λ∈L ≺ U . A topological space X is called L-separated (respectively, L-regular) if X
is L-separated (respectively, L-regular) at each point x ∈ X.

We add two more properties to the well-known separation axioms T0, T1, T2, T3, T3 1
2
(see

[3, p. 69]). A topological space X is called a Urysohn space if for any two distinct points x and
y of X there are neighborhoods U and V of points x and y respectively, with U∩V = ∅. This
property is called the Urysohn separation axiom, which we denoted by T2 1

3
. A topological

space X is called a functionally Hausdorff space if for any two distinct points x and y of
X there exists a continuous function f : X → R such that f(x) 6= f(y). We denoted this
property by T2 1

2
.

We will identify each positive integer n with the finite ordinal {0, 1, . . . , n− 1}.
The following result from [8] shows that almost all possible separation axioms are partial

cases of L-separatedness and L-regularity.

Proposition 1. A topological space X is:

(i) a T1-space if and only if X is 1-separated;

(ii) Hausdorff (= a T2-space) if and only if X is 2-separated;

(iii) Urysohn (= a T2 1
3
-space) if and only if X is 3-separated;

(iv) functionally Hausdorff (= a T2 1
2
-space) if and only if X is Q-separated;

(v) regular if and only if X is 2-regular if and only if n-regular for every integer n ≥ 2;

(vi) completely regular if and only if X is Q-regular;

(vii) Tychonoff (= a T3 1
2
-space) if and only if X is a Q-regular T1-space.

The characterizations in Proposition 1 can be considered as definitions of the corres-
ponding separation axioms.

It is well known [3, p. 114] that any subspace of a Ti-space is a Ti-space for i ≤ 31
2
. We

show that L-separatedness and L-regularity are hereditary properties too.

Proposition 2. Any subspace E of an L-separated space X is L-separated.
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Proof. The closure of a set A in E will be denoted by [A]E, and the closure of a set A in X
will be denoted by A. It is known [3, p. 111] that [A]E = A ∩ E for any set A ⊆ E.

Let x and u be any distinct points of E. Since X is L-separated, there exists an L-neigh-
borhood (Uλ)λ∈L of x in X such that u /∈ Uλ for every λ ∈ L. We set Vλ = Uλ ∩E. It is clear
that Vλ is open in E, x ∈ Vλ, u /∈ Vλ for every λ ∈ L, and [Vλ]E = Uλ ∩E ⊆ Uµ ∩E = Vµ for
any elements λ < µ of L. Therefore (Vλ)λ∈L is an L-neighborhood of x in E, which separates
points x and u. Thus E is an L-separated space.

Proposition 3. Any subspace E of an L-regular space X is L-regular.

Proof. Fix x ∈ E and let V be a neighborhood of x in E. There exists a neighborhood U of
x in X, such that V = U ∩E. Since X is an L-regular space, there exists an L-neighborhood
(Uλ)λ∈L of x in X such that (Uλ)λ∈L ≺ U . We put Vλ = Uλ∩E for every λ ∈ L. Then (Vλ)λ∈L
is an L-neighborhood of x in E such that (Vλ)λ∈L ≺ V . Therefore E is L-regular.

4. The axioms T0 and T1 in the Ceder product. We start with finding conditions on
spaces X and Y guaranteeing that the Ceder product satisfies the separation axioms Ti for
i ∈ {0, 1}.

Theorem 1. Let X and Y be non-empty topological spaces, b ∈ Y and P = X ×b Y be the
Ceder product. Then P is a T0-space if and only if X and Ẏ are T0-spaces.

Proof. Necessity. Since X and Xb are homeomorphic, X is a T0-space. Similarly, Ẏ and Ẏa
are homeomorphic, where a ∈ X. So Ẏ is a T0-space.
Sufficiency. Let X and Ẏ be T0-spaces. Fix two distinct points p1 = (x1, y1) and p2 = (x2, y2)
of P . If x1 6= x2, then there is an open set U in X containing exactly one of the points x1, x2.
Then W = U × Y is open in P and contains exactly one of the points p1, p2.

If x1 = x2 = x, then y1 6= y2. Assume first that y1, y2 ∈ Ẏ . Since Ẏ is a T0-space, there is
an open set V in Ẏ , which contains exactly one of the points y1, y2. Thus the setW = {x}×V
is a neighborhood of one of the points p1, p2 and does not contain the other one.

Finally, consider the case where y1 = b or y2 = b. Suppose, for example, that y1 = b 6= y2.
Then the set W = X

x
×Y is a neighborhood of p1 = (x, b) which does not contain the point

p2 = (x, y2).

Theorem 2. Let X and Y be non-empty topological spaces, b ∈ Y and P = X ×b Y be the
Ceder product. Then P is a T1-space if and only if X and Ẏ are T1-spaces.

Proof. Necessity. Let P be a T1-space. As in the proof of Theorem 1 we obtain that X and
Ẏ are T1-spaces.
Sufficiency. Let X and Ẏ be T1-spaces. Fix two distinct points p1 = (x1, y1) and p2 = (x2, y2)
of P . If x1 6= x2, then there exists a neighborhood U of x1, such that x2 /∈ U . ThenW = U×Y
is a neighborhood of p1 in P , and p2 /∈ W .

Consider the case, where x1 = x2 = x. Then y1 6= y2. We first consider the subcase
y1, y2 ∈ Ẏ . Since Ẏ is a T1-space, there exists a neighborhood V of y1 in Ẏ , such that y2 /∈ V .
Thus, the set W = {x} × V is a neighborhood of p1 in P and p2 /∈ W .

Now let y1 = b 6= y2. Then the set W = X
x
×Y is a neighborhood of p1 = (x, b), which

does not contain p2 = (x, y2).
Finally, consider the case where y1 6= b = y2. The set W = {x} × Ẏ is a neighborhood of

p1 = (x, y1), which does not contain p2 = (x, b).
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5. L-separatedness of the Ceder product.

Theorem 3. Let L be a non-empty linearly ordered set, X and Y be non-empty topological
spaces, b ∈ Y , Ẏ = Y \ {b} and P = X ×b Y be the Ceder product. Then the following
conditions are equivalent:

(i) P is an L-separated space;

(ii) X and Ẏ are L-separated spaces.

Proof. (i) ⇒ (ii) Let P be an L-separated space. By Proposition 2, the subspaces Xb =
X ×{b} and Ẏa = {a}× Ẏ of the Ceder product P are L-separated, where a ∈ X. As in the
proof of Theorem 1, we obtain that X and Ẏ are L-separated.

(ii)⇒ (i) Consider two distinct points p = (x, y) and q = (u, v) of P .
Let x 6= u. There is an L-neighborhood (Uλ)λ∈L of x in X, such that u /∈ Uλ for every

λ ∈ L, by the L-separatedness of X. The sets Wλ = Uλ × Y are open neighborhoods of p in
P for all λ ∈ L, and

W λ ⊆ Uλ × Y ⊆ Uµ × Y = Wµ

for any elements λ < µ of L. So, the indexed family (Wλ)λ∈L is an L-neighborhood of p in P .
Moreover, q /∈ Wλ for every λ ∈ L, thus, this L-neighborhood separates the points p and q.

Now let x = u. Then y 6= v. Consider the following three logically possible cases.
Let {y, v} ⊆ Ẏ . Since Ẏ is an L-separated space, there is an L-neighborhood (Vλ)λ∈L of

y in Ẏ , which separates the points y and v. The sets Wλ = {x}×Vλ are open neighborhoods
of p in P for every λ ∈ L, and W λ = {x} × [Vλ]Ẏ ⊆ {x} × Vµ = Wµ for any elements λ < µ
of L. Moreover q /∈ Wλ for every λ ∈ L. Therefore (Wλ)λ∈L is an L-neighborhood of p in P ,
which separates the points p and q.

Let y = b. The set W = X
x
×Y is clopen in P , p ∈ W and q /∈ W . Put Wλ = W for every

λ ∈ L. Then the indexed family (Wλ)λ∈L is an L-neighborhood of p in P , which separates
the points p and q.

Finally, consider the case where v = b. Then the set W = {x}× Ẏ is clopen in P , p ∈ W
and q /∈ W . Put Wλ = W for every λ ∈ L. The indexed family (Wλ)λ∈L is the desired
L-neighborhood.

Therefore the space P is L-separated. 2

From Proposition 1 and Theorem 3 we immediately obtain the following consequence.

Corollary 1. Let X and Y be non-empty topological spaces and b ∈ Y . The Ceder product
P = X ×b Y is a Hausdorff (respectively Urysohn, functionally Hausdorff) space if and only
if X and Ẏ are Hausdorff (respectively Urysohn, functionally Hausdorff) spaces.

6. L-regularity of the Ceder product. Recall that a point x ∈ X of a topological space X
is called an accumulation point if every neighborhood U of x in X is infinite.

A point x ∈ X of a T1-space X is accumulating if and only if x is not isolated.
The following theorem provides sufficient conditions of L-regularity of the Ceder product.

Theorem 4. Let L be a non-empty linearly ordered set, X and Y be non-empty topological
spaces, b ∈ Y and P = X ×b Y be the Ceder product. Assume that

(i) X and Ẏ are L-regular spaces and

(ii) if X has an accumulation point, then Y is L-regular at the point b.

Then the Ceder product P = X ×b Y is L-regular.
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Proof. Let p = (x, y) ∈ P and W be a neighborhood of p in P . We are going to find an
L-neighborhood (Wλ)λ∈L of p in P , such that (Wλ)λ∈L ≺ W . First consider the case, where
y 6= b. There exists a neighborhood V of y in Y , such that {x}× V̇ ⊆ W . The set V̇ = Ẏ ∩V
is a neighborhood of y in Ẏ . Since Ẏ is L-regular, there exists an L-neighborhood (Vλ)λ∈L
of y in Ẏ , such that (Vλ)λ∈L ≺ V̇ . Then the sets Wλ = {x} × Vλ are open neighborhoods of
p in P for all λ ∈ L. Moreover,

W λ = {x} × [Vλ]Ẏ ⊆ {x} × Vµ = Wµ

for any elements λ < µ of L. Therefore (Wλ)λ∈L is an L-neighborhood of p in P . Since

Wλ = {x} × Vλ ⊆ {x} × V̇ ⊆ {x} × V ⊆ W,

we have (Wλ)λ∈L ≺ W .
If y = b, then we can find a neighborhood U ⊆ X of x, a neighborhood V ⊆ Y of b and

a finite subset F ⊆ U such that U
F
× V ⊆ W .

If x is a non-accumulation point of X, then there exists a finite neighborhood Ũ of x in X

such that Ũ ⊆ U . The set Ũ
Ũ
×V = Ũ ×{b} is open in P . Let (Ũλ)λ∈L be an L-neighborhood

of x such that (Ũλ)λ∈L ≺ Ũ . PutWλ = Ũλ×{b} for every λ ∈ L. The indexed family (Wλ)λ∈L
is the desired L-neighborhood of p in P .

Suppose that X is L-regular, x is an accumulation point of X, then Y is L-regular at
the point b. Then there exist L-neighborhoods (Uλ)λ∈L and (Vλ)λ∈L of x and b in X and Y

respectively, such that (Uλ)λ∈L ≺ U and (Vλ)λ∈L ≺ V . The set Wλ = Uλ
F
×Vλ is an open

neighborhood of p in P , Wλ ⊆ W for every λ ∈ L, and

W λ ⊆ Uλ

F
×V λ ⊆ Uµ

F
×Vµ = Wµ

for any elements λ < µ of L. Therefore (Wλ)λ∈L is an L-neighborhood of p in P , such that
(Wλ)λ∈L ≺ W . 2

A subsetM of a linearly ordered set L is called coinitial if for every λ ∈ L there is µ ∈M
such that µ ≤ λ. The smallest cardinality of a coinitial subset in L is called the coinitiality
of L and is denoted by ci(L). A linearly ordered set L is called a set of countable coinitiality
if ci(L) ≤ ℵ0. It is clear that for a non-empty linearly ordered set L of countable coinitiality
we have ci(L) = 1 or ci(L) = ℵ0. Indeed, if M = {µ0, µ1, . . . , µn} is a finite coinitial subset
of a linearly ordered set L, where µ0 < µ1 < · · · < µn, then the subset M0 = {µ0} is coinitial
in L. So, in this case we have ci(L) = 1. Note that µ0 is the smallest element of the set L.
If there is no subset of finite coinitiality of a linearly ordered set L and ci(L) ≤ ℵ0, then
ci(L) = ℵ0. In this case there is a sequence of elements ln in L, such that ln+1 < ln for every
n ∈ N and the subset L0 = {ln : n ∈ N} is coinitial in L. For example, ci(Q) = ci(R) = ℵ0.

In the case where L is an arbitrary linearly ordered set, it is easily seen that if the Ceder
product P = X ×b Y is L-regular, then X and Ẏ are L-regular.

For linearly ordered sets L of countable coinitiality the following theorem provides
necessary and sufficient conditions of L-regularity of the Ceder product.

Let E ⊆ X × Y and x ∈ X. We denote Ex = {y ∈ Y : (x, y) ∈ E}.

Theorem 5. Let L be a non-empty linearly ordered set of countable coinitiality and let
P = X ×b Y be the Ceder product of non-empty topological spaces X and Y , where b ∈ Y
and {b} = {b}. Then P is an L-regular space if and only if the following conditions hold:
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(i) X and Ẏ are L-regular;

(ii) if X has an accumulation point, then Y is L-regular at b.

Proof. The “if” part follows from Theorem 4. To prove the “only if” part let P be an L-re-
gular space. By Proposition 3, the subspaces Xb = X × {b} and Ẏa = {a} × Ẏ of the Ceder
product P are L-regular, where a ∈ X. Since X and Xb are homeomorphic, X is L-regular.
Analogously, Ẏ and Ẏa are homeomorphic, so Ẏ is L-regular.

Assuming that X contains an accumulation point a ∈ X, we shall prove that Y is L-
regular at b. Given any neighborhood V ⊆ Y of b, we shall construct an L-neighborhood
(Vλ)λ∈L of b in Y with (Vλ)λ∈L ≺ V .

If b is isolated in Y , then we put Vλ = {b} for every λ ∈ L.
We suppose that the point b is non-isolated in Y .
If ci(L) = 1, then the set L has the smallest element l ∈ L. Since the Ceder product

P is L-regular, for the neighborhood W = X × V of the point c = (a, b) in P there is an
L-neighborhood (Wλ)λ∈L of c in P such that (Wλ)λ∈L ≺ W . For the neighborhood Wl of c
in P there are neighborhoods Ũ of a in X, Ṽ of b in Y and a finite subset F ⊆ U such that

Ũ
F
×Ṽ ⊆ Wl. Since a is an accumulation point of X, there is a point x ∈ Ũ \ F . For every

λ ∈ L consider the set Vλ = W x
λ . We claim that (Vλ)λ∈L is the desired L-neighborhood of b

in Y .
Since x ∈ Ũ \ F , for any λ ∈ L we have

Ṽ = (Ũ
F
× Ṽ )x ⊆ W x

l ⊆ W x
λ = Vλ,

because l ≤ λ. Thus Ṽ ⊆ Vλ, and so Vλ is a neighborhood of b in Y .
For every λ ∈ L we have Wλ ⊆ W . Therefore Vλ = W x

λ ⊆ W x = V . We prove that
V λ ⊆ Vµ for any elements λ < µ of L. We have W λ ⊆ Wµ. We show that {x} × V λ ⊆ W λ.
Given any point y ∈ V λ, consider the point p = (x, y). Suppose that y 6= b. Consider a basic
neighborhood W ∗ = {x} × V̇ ∗ of p in P , where V ∗ is an open neighborhood of y in Y .
Since the singleton {b} is closed in Y , the set V̇ ∗ is open in Y and y ∈ V̇ ∗, because y 6= b.
Therefore V̇ ∗ is a neighborhood of y. Then V̇ ∗ ∩ Vλ 6= ∅. Thus there is y∗ ∈ V̇ ∗ ∩ Vλ.
Since y∗ ∈ V̇ ∗, we have p∗ = (x, y∗) ∈ W ∗. On the other hand y∗ ∈ Vλ = W x

λ and so
p∗ ∈ Wλ. Therefore p∗ ∈ W ∗ ∩Wλ, hence W ∗ ∩Wλ 6= ∅. In this way p ∈ W λ. If y = b, then

p = (x, b) ∈ Ũ
F
× Ṽ ⊆ Wl ⊆ Wλ ⊆ W λ.

Consequently,
V λ ⊆ W

x

λ ⊆ W x
µ = Vµ,

and so V λ ⊆ Vµ.
Therefore (Vλ)λ∈L is an L-neighborhood of b in Y , such that (Vλ)λ∈L ≺ V .
Now assume that ci(L) = ℵ0 and fix a strictly decreasing sequence (ln)n∈N, such that the

subset L0 = {ln : n ∈ N} is coinitial in L.
Put U0 = X, V0 = V and W0 = U0 × V0. The set W0 is a neighborhood of the point

c = (a, b) in P . By L-regularity of P , there is an L-neighborhood (W1,λ)λ∈L of c in P , such
that (W1,λ)λ∈L ≺ W0. The setW1,l1 is a neighborhood of c in P . Then there are neighborhoods

U1 of a in X, V1 of b in Y and a finite subset F1 ⊆ U1 such that W1 = U1

F1

× V1 ⊆ W1,l1 .
The set W1 is also a neighborhood of c in P . Then there is an L-neighborhood (W2,λ)λ∈L
of c in P , such that (W2,λ)λ∈L ≺ W1. Next, we consider the neighborhood W2,l2 of c in P
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and choose neighborhoods U2 of a in X, V2 of b in Y and a finite subset F2 ⊆ U2 such that

W2 = U2

F2

× V2 ⊆ W2,l2 . For every n ∈ N we can construct recursively neighborhoods Un of a
in X, Vn of b in Y , a finite subset Fn ⊆ Un and an L-neighborhood (Wn,λ)λ∈L of c in P such
that the following conditions are satisfied:

(a) Wn+1,λ ⊆ Wn = Un
Fn

× Vn for every λ ∈ L and n ∈ N;
(b) Wn ⊆ Wn,ln for every n ∈ N.

Note that Un+1 ⊆ Un and Vn+1 ⊆ Vn for every n ∈ N0 = N ∪ {0}. Indeed, for a fixed n
we have

Wn+1 = Un+1

Fn+1

× Vn+1 ⊆ Wn+1,ln+1 ⊆ Wn = Un
Fn

× Vn.

Then Un+1×{b} = Wn+1∩(X×{b}) ⊆ Wn∩(X×{b}) = Un×{b}. It follow that Un+1 ⊆ Un.
Since the point a is an accumulation point of X, there is x ∈ Un+1 \ Fn+1. By the above
x ∈ Un. Since Wn+1 ⊆ Wn and x /∈ Fn+1, we have x /∈ Fn because the point b is not isolated.
Hence

{x} × Vn+1 = Wn+1 ∩ ({x} × Y ) ⊆ Wn ∩ ({x} × Y ) = {x} × Vn.

In this way Vn+1 ⊆ Vn. In particular, Vn ⊆ V0 = V for every n ∈ N.
Since Un is a neighborhood of the accumulation point a in X, we can choose a point

xn ∈ Un \ Fn for every n ∈ N. Note that from Wn ⊆ Wn−1 and xn /∈ Fn it follows that
xn /∈ Fn−1 for every n ∈ N.

For every λ ∈ L there is the smallest number n = n(λ) such that ln ≤ λ. For this number
n the inequalities ln ≤ λ < ln−1 where n ≥ 2 and l1 ≤ λ where n = 1 are true. We put
V (λ) = W xn

n,λ for every λ ∈ L, where n = n(λ). We show that (V (λ))λ∈L is an L-neighborhood
of b in Y , such that (V (λ))λ∈L ≺ V .

Let us verify that V (λ) is a neighborhood of b in Y . Since ln ≤ λ, we have Wn =

Un
Fn

× Vn ⊆ Wn,ln ⊆ Wn,λ. Then

Vn = W xn
n ⊆ W xn

n,λ = V (λ).

Therefore, Vn ⊆ V (λ), and hence the set V (λ) is a neighborhood of b in Y , because Vn is
a neighborhood of b in Y .

We prove that V (λ) ⊆ V for every λ ∈ L. Suppose that n = n(λ) ≥ 2 for λ ∈ L. Then
ln ≤ λ < ln−1 and

Wn,λ ⊆ Wn,ln−1 ⊆ Wn−1 = Un−1
Fn−1

× Vn−1.

Since Un ⊆ Un−1 and xn ∈ Un, we have xn ∈ Un−1. Note that xn /∈ Fn−1. Therefore

V (λ) = W xn
n,λ ⊆ W xn

n−1 = Vn−1.

But Vn−1 ⊆ V then V (λ) ⊆ V . If n(λ) = 1, then

W1,λ ⊆ W0 = U0 × V0 and V (λ) = W x1
1,λ ⊆ W x1

0 = V0 = V.

Finally, let us prove that V (λ) ⊆ V (µ) for any elements λ < µ of L. Fix λ ∈ L and
verify that {xn} × V (λ) ⊆ W n,λ, where n = n(λ). Let pn = (xn, y) be an arbitrary point of
{xn} × V (λ). We shall prove that pn ∈ W n,λ. Let y 6= b. Consider any neighborhood V ∗ of y
in Y . The set W ∗ = {xn} × V̇ ∗ is a basic neighborhood of pn in P . Note that V̇ ∗ is an open



86 V. K. MASLYUCHENKO, O. V. MASLYUCHENKO, O. D. MYRONYK

neighborhood of y in Y . Since y ∈ V (λ), there is a point y∗ ∈ V̇ ∗ ∩ V (λ). It is clear that
p∗ = (xn, y

∗) ∈ {xn} × V̇ ∗ = W ∗ and p∗ ∈ {xn} × V (λ) ⊆ Wn,λ. Thus p∗ ∈ W ∗ ∩Wn,λ and

hence pn ∈ W n,λ. If y = b, then pn = (xn, b) ∈ Un
Fn

× Vn ⊆ Wn,ln ⊆ Wn,λ ⊆ W n,λ.
Let λ, µ ∈ L, λ < µ, n = n(λ) and m = n(µ). It is clear that n ≥ m.
Consider the case where n = m. Then V (λ) = W xn

n,λ and V (µ) = W xn
n,µ. SinceW n,λ ⊆ Wn,µ,

we have
{xn} × V (λ) ⊆ W n,λ ⊆ Wn,µ.

Therefore, {xn} × V (λ) ⊆ Wn,µ, and hence V (λ) ⊆ W xn
n,µ = V (µ).

Now let n > m. In this case n > 1, n− 1 ≥ m and

λ < ln−1 ≤ lm ≤ µ.

Then W n,λ ⊆ Wn,ln−1 ⊆ Wn−1 ⊆ Wn−1,ln−1 ⊆ Wn−2 ⊆ · · · ⊆ Wm ⊆ Wm,lm ⊆ Wm,µ. Thus,
W n,λ ⊆ Wm ⊆ Wm,lm ⊆ Wm,µ. Therefore

{xn} × V (λ) ⊆ W n,λ ⊆ Wm,

and we have V (λ) ⊆ W xn
m = Vm, because xn ∈ Un ⊆ Um and xn /∈ Fm. Therefore V (λ) ⊆ Vm.

On the other hand, if xm ∈ Um and xm /∈ Fm, then

Vm = W xm
m ⊆ W xm

m,µ = V (µ),

hence, V (λ) ⊆ Vm ⊆ V (µ). Thus V (λ) ⊆ V (µ).

Corollary 2. Let X be a topological space containing an accumulation point, Y be
a topological space, b ∈ Y , {b} = {b} and L be a non-empty countable linearly ordered
set. The Ceder product P = X ×b Y is L-regular if and only if X and Y are L-regular.

Problem 1. Let L be a non-empty linearly ordered set, X be a topological space containing
an accumulation point, Y be a topological space, b ∈ Y , {b} = {b} and the Ceder product
P = X ×b Y be an L-regular space. Is it true that Y is L-regular at the point b?

A topological space X is called regular at a point x ∈ X if for every neighborhood V of
x there exists a neighborhood U of x in X such that U ⊆ V .

A topological space X is called completely regular at a point x ∈ X if for every nei-
ghborhood U of x there exists a continuous function f : X → [0, 1] such that f(x) = 0 and
f(u) = 1 for every u ∈ X \ U .

From Proposition 1 and Corollary 2 we immediately obtain the following consequence.

Corollary 3. Let X, Y be topological spaces, X 6= ∅, b ∈ Y and {b} = {b}. The Ceder
product P = X ×b Y is a regular (completely regular) space if and only if the following
conditions are valid:

(i) X and Ẏ are regular (completely regular) spaces;

(ii) if X has an accumulation point, then Y is regular (completely regular) at b.
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