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This paper is devoted to some unsolved problems in the theory of entire functions of several
variables in connection with investigation of functions of bounded L-index in direction.

A. И. Бандура, О. Б. Скаскив. Открытые проблемы для целых функций ограниченного
индекса по направлению // Мат. Студiї. – 2015. – Т.43, №1. – C.103–109.

Статья посвящена некоторым нерешенным проблемам в теории целых функций не-
скольких переменных в связи с исследованием функций ограниченного L-индекса по на-
правлению.

Let L(z) be a positive continuous function on Cn, and let b ∈ Cn\{0}. An entire function
F (z), z ∈ Cn, is called (see [1]–[3]) a function of bounded L-index in the direction b if there
exists m0 ∈ Z+ such that for every m ∈ Z+ and every z ∈ Cn the following inequality is
valid

1

m!Lm(z)

∣∣∣∂mF (z)
∂bm

∣∣∣ ≤ max
{ 1

k!Lk(z)

∣∣∣∂kF (z)
∂bk

∣∣∣ : 0 ≤ k ≤ m0

}
, (1)

where ∂0F (z)
∂b0 = F (z), ∂F (z)

∂b
=
∑n

j=1
∂F (z)
∂zj

bj = 〈grad F, b〉, ∂
kF (z)
∂bk = ∂

∂b
(∂

k−1F (z)
∂bk−1 ), k ≥ 2.

The least such integer m0 = m0(b) is called the L-index in the direction b ∈ Cn of the
function F (z) and is denoted by Nb(F,L) = m0. If n = 1 and L(z) = l(z), z ∈ C, we obtain
the definition of a function of bounded l-index ([5]), and in the case L(z) ≡ 1 we get the
definition of a function of bounded index ([7]).

For η > 0, b = (b1, . . . , bn) ∈ Cn \ {0} and a positive continuous function L : Cn → R+

we define
λb1 (η) = inf

{
inf
{ L(z + tb)

L(z + t0b)
: t ∈ C, |t− t0| ≤

η

L(z + t0b)

}
: t0 ∈ C, z ∈ Cn

}
,

and also
λb2 (η) = sup

{
sup

{ L(z + tb)

L(z + t0b)
: t ∈ C, |t− t0| ≤

η

L(z + t0b)

}
: t0 ∈ C, z ∈ Cn

}
.

By Qn
b we denote the class of functions L which for all η ≥ 0 satisfy the condition

0 < λb1 (η) ≤ λb2 (η) < +∞.
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In [1], [2] we considered the following partial differential equation:

g0(z)
∂pw

∂bp
+ g1(z)

∂p−1w

∂bp−1
+ . . .+ gp(z)w = h(z), (2)

where gj(z), h(z) are entire functions, z ∈ Cn.
We investigated an L-index boundedness in direction of entire solutions of some partial

differential equations. There were obtained sufficient conditions of L-index boundedness of
a solution in the following two cases:

1. provided that the coefficients of equation (2) are functions of bounded L-index in di-
rection b ([1]);

2. did not provide that the coefficients of equation (2) are functions of bounded L-index
in direction b ([2]);

Nevertheless, equation (2) contains a derivative in one direction. It is obvious that equati-
ons with one directional derivative constitute a small subclass of partial differential equations.
But every partial derivative is a linear combination of directional derivatives. Thus, any parti-
al differential equation can be written as an equation with derivatives in various directions.
For example, we consider a partial differential equation with two directional derivatives

f1(z)
∂F

∂b1

+ f2(z)
∂F

∂b2

= h(z). (3)

Problem 1. Let f1(z), f2(z) be entire functions of bounded L-index in corresponding di-
rections b1, b2. What are direction b and additional conditions that an entire solution F (z)
of equation (3) has a bounded L-index in the direction b?

The following equation is a partial case of (3)

P1(z1, z2)
∂F

∂z1
+ P2(z1, z2)

∂F

∂z2
= h(z1, z2). (4)

Problem 2. Let g(z1, z2) be an entire function of bounded L-index in the directions b1

and b2. What are a function L∗ and a direction b∗ that an entire solution of equation
∂2F

∂b1∂b2
= g(z1, z2) has a bounded L∗-index in the direction b∗?

Problem 3. Let P1(z1, z2), P2(z1, z2) be entire functions of bounded L-index in the directions
(1, 0) and (0, 1), respectively. What are a direction b and additional assumptions such that
an entire solution F (z) of equation (4) has a bounded L-index in the direction b?

Consider the ordinary differential equation

w′ = f(z, w). (5)

Shah S. M., Fricke G., Sheremeta M. M., Kuzyk A. D. ([4]–[6]) and others did not investigate
an index boundedness of entire solution of (5) because the right hand side of it is a function
of two variables. But now in view of entire function theory of bounded L-index in direction
it is naturally to pose the following question.

Problem 4. Let f(z, w) be a function of bounded L-index in the directions (1, 0) and (0, 1).
What is a function l such that an entire solution w = w(z) of equation (5) has a bounded
l-index?
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B. Lepson ([7]) studied differential equations of infinite order with constant coefficients
and its solutions as hyper-Dirichlet series

∑
Pn(z)e

−λnz, where Pn(z) are polynomials of
degrees µn, respectively, and λn are positive numbers increasing monotonically to infinity.
He introduced a class of entire functions of bounded index to replace Pn(z). Thus we consider
the following linear differential equation of infinite order with constant coefficients

∞∑
k=0

akw
(k)(z) = f(z). (6)

Problem 5. Let f(z) be of bounded l-index. What are assumptions on ak and f(z) such
that an entire solution of (6) has a bounded l-index?

We remark that equation (6) can be rewritten for directional derivatives in Cn and
Problem 4 can be reformulated too.

There were obtained some criteria of L-index boundedness in direction ([1]). Later we
proved that Theorem 2 and 6 ([1]) have modified versions Theorem 5 ([8]) and Theorem 7
([1]) that are distinguished the universal quantifiers and the existential quantifiers.

The following theorems were obtained in [1].

Theorem 1 ([1]). Let L ∈ Qn
b. An entire function F (z) is of bounded L-index in a direction

b ∈ Cn if and only if for every R > 0 there exist P2(R) ≥ 1 and η(R) ∈ (0, R) such that
for all z0 ∈ Cn and every t0 ∈ C and some r = r(z0, t0) ∈ [η(R), R] the following inequality
holds

max

{
|F (z0 + tb)|: |t− t0| =

r

L(z0 + t0b)

}
≤ P2min

{
|F (z0 + tb)| : |t− t0| =

r

L(z0 + t0b)

}
.

(7)

Denote gz0(t) := F (z0 + tb). If for a given z0 ∈ Cn one has gz0(t) 6= 0 for all t ∈ C, then
Gb
r (F, z

0) := ∅; if for a given z0 ∈ Cn we get gz0(t) ≡ 0, then Gb
r (F, z

0) := {z0 + tb : t ∈ C}.
And if for a given z0 ∈ Cn we have gz0(t) 6≡ 0 and a0k are zeros of gz0(t), i. e. F (z0+a0kb) = 0,
then

Gb
r (F, z

0) :=
⋃
k

{
z0 + tb : |t− a0k| ≤

r

L(z0 + a0kb)

}
, r > 0.

Let
Gb
r (F ) =

⋃
z0∈Cn

Gb
r (F, z

0). (8)

By n
(
r, z0, t0, 1/F

)
=
∑
|a0k−t0|≤r

1 we denote the counting function of the zero sequence (a0k).

Theorem 2 ([1]). Let F (z) be an entire function on Cn, L ∈ Qn
b and Cn \Gb

r (F ) 6= ∅. Then
F (z) is a function of bounded L-index in the direction b ∈ Cn if and only if:
1) for every r > 0 there exists P = P (r) > 0 such that for each z ∈ Cn\Gb

r (F )∣∣∣∣ 1

F (z)

∂F (z)

∂b

∣∣∣∣ ≤ PL(z); (9)

2) for every r > 0 there exists ñ(r) ∈ Z+ such that for every z0 ∈ Cn, for which F (z0+tb) 6≡
0, and for all t0 ∈ C

n

(
r

|b|L(z0 + t0b)
, z0, t0,

1

F

)
≤ ñ(r). (10)
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Therefore the next problem arises.

Problem 6. Is Conjecture 1 true?

Conjecture 1. Let L ∈ Qn
b. An entire function F (z) is of bounded L-index in the direction

b ∈ Cn if and only if there exist R > 0, P2(R) ≥ 1 and η(R) ∈ (0, R) such that for all
z0 ∈ Cn and every t0 ∈ C and some r = r(z0, t0) ∈ [η(R), R] inequality (7) holds.

Problem 7. Is Conjecture 2 true?

Conjecture 2. Let F (z) be an entire in Cn function, L ∈ Qn
b and Cn \Gb

r (F ) 6= ∅. F (z) is
a function of bounded L-index in the direction b ∈ Cn if and only if:

1) there exist r > 0, P = P (r) > 0 such that for each z ∈ Cn\Gb
r (F ) inequality (9) holds;

2) there exist r > 0, ñ(r) ∈ Z+ such that for every z0 ∈ Cn, for which F (z0+ tb) 6≡ 0, and
for all t0 ∈ C inequality (10) holds.

Problem 8. Are there an entire function F (z), a positive continuous function L and
unbounded domains G1, G2, G1 ∪ G2 = Cn, G1 ∩ G2 = ∅ with the following properties:
inequality (1) holds for all z ∈ G1, b = b1, inequality (1) holds for all z ∈ G2, b = b2,
but inequality (1) does not hold for all z ∈ G1, b = b2, inequality (1) does not hold for all
z ∈ G2, b = b1, i. e. F is of bounded L-index in the direction b1 in the domain G1 and F
is of bounded L-index in the direction b2 in the domain G2, but F is of unbounded L-index
in the direction b2 in the domain G1 and F is of unbounded L-index in the direction b1 in
the domain G2?

If the answer to this question is the positive then we can consider entire functions of
bounded L-index in the direction b in some domain.

The following assertion can be easily obtained using the definition of bounded L-index
in direction.

Proposition 1. Let L(z) be a positive continuous function. An entire function F (z), z ∈ Cn,
is of bounded L-index in a direction b ∈ Cn if and only if the function G(z) = F (az + c) is
of bounded L∗-index in the direction b

a
for any c ∈ Cn and a ∈ Cn, such that aj 6= 0 (∀j),

where az + c = (a1z1 + c1, . . . , anzn + cn),
b
a
= ( b1

a1
, . . . , bn

an
), L∗(z) = L(az + c).

Proof of Proposition 1. Let an entire function F (z) be of bounded L-index in the direction
b ∈ Cn. Observe that

∂G(z)

∂(b
a
)

=
n∑
j=1

∂G(z)

∂zj

bj
aj

=
n∑
j=1

∂F (az + c)

∂zj
aj
bj
aj

=
∂F (az + c)

∂b
.

We can prove by induction that ∂kG(z)

∂(b
a
)k

= F (az+c)
∂bk for all k ∈ N. From inequality (1) at

az + c instead of z we have

1

m!Lm∗ (z)

∣∣∣∂mG(z)
∂(b

a
)m

∣∣∣ ≤ max
{ 1

k!Lk(az + c)

∣∣∣∂kF (az + c)

∂bk

∣∣∣ : 0 ≤ k ≤ m0

}
=

= max
{ 1

k!Lk∗(z)

∣∣∣∂kG(z)
∂(b

a
)k

∣∣∣ : 0 ≤ k ≤ m0

}
.

The last inequality means that the function G(z) is of bounded L∗-index in the direction
b
a
and vice versa.
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Proposition 1 induces the following problem.

Problem 9. Are there numbers a1, a2, c1, c2 ∈ C and a function F (z1, z2) such that F (z1, z2)
is of bounded L-index in a direction b = (b1, b2) but F (a1z1 + c1, a2z2 + c2) is of unbounded
L-index in the same direction b = (b1, b2)?

Problem 10 ([1]). What is the least set A with following property: if for every b ∈ A
an entire in Cn function F is of bounded L-index in the direction b then F is of bounded
L-index in any direction b ∈ Cn?

A partial answer to this question is contained in the following theorem.

Theorem 3 ([1]). An entire function F (z), z ∈ Cn, is a function of bounded L-index in
all directions in Cn if and only if this function is a function of bounded L-index in every
direction b ∈ Cn, |b| = 1, such that that the sum of the values of the main arguments of all
components of the vector b is a multiple of 2π, i. e.

∑n
j=1 arg(bj) = 2πm, where m ∈ Z.

Problem 11 ([1]). Is Conjecture 3 true?

Conjecture 3. Let {b1, . . . ,bn} be a basis in Cn and let F (z), z ∈ Cn, be an entire function
of bounded L-index in every direction bi ∈ Cn, L ∈ Qn

bi
, i ∈ {1, 2, . . . , n}. Then the function

F (z) is of bounded L-index in any direction b = λ1b1 + . . . + λnbn, where λi ∈ C (at least
one λi 6= 0).

Our proof of Conjecture 3 in [1, Theorem 11] contains a mistake and a correct proof is
unknown.

Problem 12 ([2]). What are minimal requirements on a set A such that

Nb(F,L)=max{N(gz0 , lz0): z0 ∈ A},

where lz0(t) ≡ L(z0 + tb), gz0(t) = F (z0 + tb), N(f, l) is the l-index of function f?

Our best result concerning this problem is the following

Proposition 2 ([2]). Let b ∈ Cn be a given direction, A0 be a dense subset of some
hyperplane, i. e. its closure satisfies A0 = {z ∈ Cn : 〈z, c〉 = 1}, where 〈c,b〉 6= 0. An entire
function F (z), z ∈ Cn is a function of bounded L-index in direction b ∈ Cn if and only if
there exists a number M > 0 such that for all z0 ∈ A0 the function gz0(t) = F (z0 + tb)
is of bounded lz0-index N(gz0 , lz0) ≤ M < +∞, as a function of one variable t ∈ C. Thus
Nb(F,L) = max{N(gz0 , lz0) : z

0 ∈ A0}.

But we do not know whether the density of the set A in a hyperplane can be replaced
with a weaker assumption.

Let π be an entire function in Cn of genus p with “planar” zeros

π(z) =
∞∏
k=1

g(〈z, ak|ak|−2〉, p), (11)

g(u, p) = (1−u) exp
{
u+

u2

2
+· · ·+u

p

p

}
, p 6= 0, g(u, 0) = (1−u),
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where ak ∈ Cn is a sequence of genus p, i.e.
∞∑
k=1

|ak|−p−1 < +∞,
∞∑
k=1

|ak|−p = +∞. (12)

We assume that the sequence (ak) is ordered such that |ak| ≤ |ak+1| (k ≥ 1). Besides we
suppose that the elements of the sequence (ak) are located on some ray

akj = mj|ak| for all k ≥ 1, (13)

m = (m1,m2, . . . ,mn).
We obtained some sufficient conditions of L-index boundedness in direction for entire

functions with “planar” zeros ([1], [9], [10]) with condition (13). It is obvious that (13) does
not provide the L-index boundedness in direction. In practice, it is related with the method
of proof. Thus, the following problem is interesting.

Problem 13. Are there sufficient conditions of L-index boundedness in direction for infinite
products (11) without condition (13)?

Problem 14. For given b1 ∦ b2 construct an entire function with ’planar’ zeros of bounded
L-index in the direction b1 and of unbounded L-index in the direction b2.

Problem 15. Let F : Cn+m → C be an entire function, L1 : Cn → R+, L2 : Cm → R+,
for all (zn+1, zn+2, . . . , zn+m) ∈ Cm, F be of uniformly bounded L1-index in the direction
b1 = (b1, b2, . . . , bn, 0, . . . , 0︸ ︷︷ ︸

m−times

) ∈ Cn+m, for all (z1, z2, . . . , zn) ∈ Cn, F be of uniformly bounded

L2-index in the direction b2 = (0, . . . , 0︸ ︷︷ ︸
n−times

, bn+1, bn+2, . . . , bn+m, ) ∈ Cn+m. What is a function

L : Cn+m → R+ such that F is of bounded L-index in the direction b = (b1, b2, . . . , bn+m)?

Denote ej = (0, . . . , 1︸︷︷︸
j-th place

, . . . , 0), lj = l(zj).

Problem 16. Prove the following Conjecture 4.

Conjecture 4. Let l : C→ R+ be a continuous function and for every j ∈ {1, . . . , n− 1} an
entire function F is of bounded lj-index in the direction ej, and for every (z1, . . . , zn−1) ∈
Cn−1, F is of bounded ln-index as a function of the variable zn. Then F is of bounded
ln-index in the direction en.

We proved the following assertion in [1].

Theorem 4 ([1]). An entire function F (z), z ∈ Cn is a function of bounded L-index in
a direction b ∈ Cn if and only if there exists a number M > 0 such that for all z0 ∈ Cn the
function gz0(t) = F (z0 + tb) is a function of bounded lz0-index N(gz0 , lz0) ≤M < +∞, as a
function of variable t ∈ C (lz0(t) ≡ L(z0+ tb)). Thus Nb(F,L) = max{N(gz0 , lz0) : z

0 ∈ Cn}.

In view of this theorem the following question naturally arises: are there an entire function
F (z), z ∈ Cn and b ∈ Cn such that N(gz0 , lz0) < +∞ for all z0 ∈ Cn, but Nb(F,L) = +∞?

Later we gave a positive answer ([3]): the function cos
√
z1z2 has the described properties

for b = (1, 1) and L(z) = 1.
But traditionally a solution of some problem leads to new problems. In our case there

are interesting questions:
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Problem 17. What are conditions on zero set and growth of entire functions providing the
index boundedness of F (z01+b1t, z02+b2t) for every (z01 , z

0
2) ∈ C2 and the index unboundedness

of F (z1, z2) in the direction b = (b1, b2)?

Problem 18. Construct an entire function F of n variables such that F (z0 + tb) is of
bounded lz0-index for any z0 ∈ Cn, but F (z) is of unbounded L-index in the direction
b = (b1, . . . , bn), where n ≥ 3, lz0(t) = L(z0 + tb).
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