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Let R be a ring with an identity, U a nonzero right d-ideal and d ∈ DerR. We prove
that if R is d-semiprime and d is a homomorphism (respectively an anti-endomorphism) of R
(respectively acts as a homomorphism on U), then d = 0. If R is d-prime and d acts as an
anti-homomorphism on U , then d = 0.

М. П. Лукашенко. Дифференцирования, действующие как гомоморфизмы или антигомо-
морфизмы на дифференциально полупервичных кольцах // Мат. Студiї. – 2015. – Т.43, №1.
– C.12–15.

Пусть R — ассоциативное кольцо с единицей, U — его ненулевой правый d-идеал и
d ∈ DerR. Доказано, что если R — d-полупервичное кольцо и d — гомоморфизм (соответ-
ственно антигомоморфизм) на R (соответственно гомоморфизм на U), то d = 0. Если же
R — d-первичное кольцо и d действует как антигомоморфизм на U , то d = 0.

1. Introduction. Let R be an associative ring with an identity. An additive mapping d : R→
R is called a derivation of R if

d(ab) = d(a)b+ ad(b)

for any a, b ∈ R. Let DerR be the set of all derivations of R. H. E. Bell and L. C. Kappe
([5]) proved that if d is a derivation of R which acts as either an endomorphism or an anti-
endomorphism on a ring R, then d = 0 is trivial. M. Yenigul and N. Argaç ([14]), M. Ashraf,
N. Rehman and M. A. Quadri ([1]) extended this result for (σ, τ)-derivations for a prime
ring. A. Asma and K. Deepak ([2]), A. Asma, N. Rehman and A. Shakir ([4]) obtained the
above result for a generalized (σ, τ)-derivations acting as a homomorphism or as an anti-
homomorphism on a nonzero Lie ideal U of a prime ring of characteristic 6= 2. Recently
A. Asma and K. Deepak ([3]), N. Rehman and M. A. Raza ([10, 11]), B. Dhara ([7]), Y. Wang
and H. You ([13]) and G. Scudo ([12]) extended these results for the generalized derivation
acting on an ideal (respectively Lie ideal) in prime and semiprime rings.

Recall that a ring R (with 1) is called

(i) d-semiprime (or differentialy semiprime) if, for a nonzero d-ideal I of R, the condition
aIdk(a) = 0 (where a ∈ R) for all k > 0 implies that a = 0,

(ii) d-prime (or differentialy prime) if, for a nonzero d-ideal I of R, the condition aIdk(b) = 0
for any integer k > 0 (where a, b ∈ R) implies that a = 0 or b = 0.
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In this paper we prove the following two theorems.

Theorem 1. Let R be a ring and d ∈ DerR. If R is d-semiprime and d is a homomorphism
(respectively an anti-endomorphism) of R, then d = 0.

Theorem 2. Let R be a ring, d ∈ DerR and U be a nonzero right d-ideal of R. Then the
following hold:

(1) if R is d-semiprime and d acts as a homomorphism on U , then d = 0,

(2) if R is d-prime and d acts as an anti-homomorphism on U , then d = 0.

Throughout the paper Z(R) is the center of an associative ring R, d ∈ DerR and P(R)
is the prime radical of R. More details about derivations can be found in [6] and [9].

2. Preliminaries. We extend Theorem 3 from [8] in the following

Proposition 1. Let R be a ring and d ∈ DerR. If R is a d-semiprime ring and (d(x))n = 0
for any x ∈ R, where n ≥ 1 is a fixed integer, then d = 0.

Proof. Assume that P is a prime ideal of R, a ∈ P and x ∈ R. Since

0 = (d(ax))n = (d(a)x)n mod P,

we have (d(a)x)n = 0 in the quotient ring R = R/P . This means that a prime ring R contains
the nilpotent ideal d(a) ·R. Consequently, d(a) ∈ P and d(P ) ⊆ P. The rule

d : R 3 x+ P → d(x) + P ∈ R

determines a derivation d of R such that (d(x))n = 0, and so, by Theorem 1 of [8], d = 0.
Hence d(R) ⊆ P . From this it follows that d(R) ⊆ P(R). Since d(P(R)) ⊆ P(R) and R is
d-semiprime, we deduce that d = 0.

Corollary 1. Let R be a 4-semiprime ring, where 4 ⊆ DerR. If any inner derivation of R
is its ring endomorphism, then R is commutative.

Proof. Let a, x, y ∈ R. Since ∂b ∈ EndR for any

b ∈ {δm1
1 . . . δmk

k (a) | δi ∈ 4, k ≥ 1 and mi ≥ 0 are integers (i ∈ {1, . . . , k})}, a ∈ CR(R
2)

by Lemma 1 of [5], where R2 = {ab | a, b ∈ R}. Then

[x, b][y, b] = xbxb− xb2x− bxyb− bxby = 0 = [xy, b] = xyb− bxy,
[x, b]y[x, b] = [x, b](yxb− ybx) = [x, b]([yx, b]− [y, b]x) = 0.

In view of 4-primeness of R, we deduce that [x, b] = 0 for any x ∈ R. Hence a ∈ Z(R).

3. Proofs. Proof of Theorem 1. 1) Assume that d is an endomorphism of R. By Lemma
2(a) of [5], we have that

d(x)x(y − d(y)) = 0 (1)

for any x, y ∈ R. The replacement of y with yt for an arbitrary t ∈ R yields that

d(x)x(y − d(y))t− d(x)xyd(t) = 0.
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From this, in view of (1), it follows that

d(x)xRd(R) = 0. (2)

By the same argument, substituting y2 for y in (1) we get

xd(y)y + xyd(y) + d(x)y2 = d(x)d(y)y + d(x)yd(y).

Recalling (1), we obtain that
(d(x)− x)yd(y) = 0. (3)

The replacement of x with rx in (3), where r ∈ R, gives (d(r)x + rd(x) − rx)yd(y) = 0 or
equivalently

d(r)xyd(y) = 0. (4)

Since

d(x)5 = (d(x2))2d(x) = (d(x)x+ xd(x))2d(x) = (xd(x)d(x)x)d(x) = 0

in view of (2) and (4), we deduce that d = 0 by Proposition 1.
2) Now assume that d is an anti-homomorphism of R. By the same reason as in the proof

of Theorem 2 from [5], [r, d(x)]R[r, d(x)] = 0 for any x, r ∈ R. Then I =
∑

x,r∈RR[r, d(x)]R
is a nil ideal. If a, b ∈ R, then

d(a[r, d(x)]b) = d(a)[r, d(x)]b+ a[r, d(x)]d(b) + a[d(r), d(x)]b+ a[r, d2(x)]b ∈ I.
Hence I is a d-ideal. Then I = 0 and d(R) ⊆ Z(R). Therefore d ∈ EndR. The rest follows
from the part 1).

Lemma 1 (Lemma 1.1, [9]). Let R be a ring and U a nonzero right ideal of R. Suppose
that, given a ∈ U , an = 0 for a fixed integer n; then R has a nonzero nilpotent ideal.

Proof of Theorem 2. 1) Assume that d acts as a homomorphism on U . By Lemma 2(a)
of [5], we obtain condition (1) for any x, y ∈ U . Replacing x with vx in (1), where v ∈ U ,
we obtain

v(xd(y) + d(x)y) + d(v)xy = d(v)xd(y) + vd(x)d(y).

Since d(xy) = d(x)d(y), from this it holds that vd(x)d(y) + d(v)xy = d(v)xd(y) + vd(x)d(y)
and so

d(v)x(y − d(y)) = 0. (5)

Substituting yr for y in (5), we obtain d(v)xyr−d(v)xd(y)r−d(v)xyd(r) = 0 or equivalently

d(v)xyd(r) = 0. (6)

Replacing r with rs in (6), where s ∈ R, we have d(v)xyRd(R) = 0 and therefore
(d(v)xyR)2 = 0. This means that I =

∑
x,v∈U d(v)xU is a nil ideal. Since I is a d–ideal, we

deduce that I = 0. Then d(x)xy = 0 and, in particular, d(x)xd(y) = 0. As in the proof of
Theorem 3 from [5] (see its equations (10) and (11)), we can obtain that x2d(y) = 0.

The replacement of y with yt for an arbitrary t ∈ R gives

0 = x2d(yt) = x2d(y)t+ x2yd(t) = x2yd(t).

Hence x2yRdk(R) = 0 for any integer k ≥ 0. Then x2y = 0. As a consequence, x3 = 0 for
any x ∈ U . By Lemma 1, we obtain a contradiction. Hence d = 0.
2) Now assume that d acting on U as an anti-homomorphism. As in the proof of Theorem 3
from [5], we can prove that xR[r, d(y)] = 0 for any x, y ∈ U and r ∈ R. Then xRdk([r, d(y)])=
0 for any integer k ≥ 0. Since U is nonzero, we deduce that [r, d(y)] = 0. This means that
d(U) ⊆ Z(R) and d acts on U as a homomorphism. The rest follows from the part 1).
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