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LetDp(λ) be the class of entire multiple Dirichlet series of the form F (z) =
∑+∞
‖n‖=0 ane

(z,λn),

z ∈ Cp, p ≥ 1, with exponents satisfying the conditions λn = (λ
(1)
n1 , . . . , λ

(p)
np ), n = (n1, . . . , np) ∈

Zp+, 0 ≤ λ
(j)
k < λ

(j)
k+1 → +∞ (0 ≤ k → +∞); w : [0,+∞) → [0,+∞) a nondecreasing

function, and ν1(t) =
∑
‖λn‖≤t e

w(‖λn‖), ‖a‖ = a1 + . . . + ap, (a, b) = a1b1 + . . . + apbp, for
a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ Cp. If

∫ +∞
1

t−1d ln ν1(t) < +∞ and Fw ∈ Dp(λ), Fw(z) =∑+∞
‖n‖=0 ane

w(‖λn‖)+(z,λn). Then lnmax{|an|ew(‖λn‖)+(σ,λn) : n ∈ Zp+} ∼ lnmax{|an|e(σ,λn) : n ∈
Zp+} as |σ| → +∞ (σ ∈ K \E), for an arbitrary cone K in Rp+ with vertex at the point O such
that K\{O} ⊂ Rp+, and a measurable set E ⊂ Rp+ such that τp(E∩K) =

∫
E∩K

dσ1...dσp

|σ|p−1 < +∞.
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Пусть Dp(λ) — класс целых кратных рядов Дирихле вида F (z) =
∑+∞
‖n‖=0 ane

(z,λn),

z ∈ Cp, p ≥ 1, с показателями, удовлетворяющими условиям λn = (λ
(1)
n1 , . . . , λ

(p)
np ), n =

(n1, . . . , np) ∈ Zp+, 0 ≤ λ
(j)
k < λ

(j)
k+1 → +∞ (0 ≤ k → +∞); w : [0,+∞) → [0,+∞)

неубывающая функция, а ν1(t) =
∑
‖λn‖≤t e

w(‖λn‖), ‖a‖ = a1 + . . . + ap, (a, b) = a1b1 +

. . . + apbp для a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ Cp. Если
∫ +∞
1

t−1d ln ν1(t) < +∞ и
Fw ∈ Dp(λ), Fw(z) =

∑+∞
‖n‖=0 ane

w(‖λn‖)+(z,λn), то lnmax{|an|ew(‖λn‖)+(σ,λn) : n ∈ Zp+} ∼
lnmax{|an|e(σ,λn) : n ∈ Zp+} при |σ| → +∞ (σ ∈ K \ E) для каждого конуса K в Rp+ с
вершиной в точке O такого, что K\{O} ⊂ Rp+, а измеримое множество E ⊂ Rp+ такое, что
τp(E ∩K) =

∫
E∩K

dσ1...dσp

|σ|p−1 < +∞.

1. Introduction. The stability of the Dirichlet series of one variable. Let D(λ) be
the class of Dirichlet series absolutely convergent in C of the form

F (z) =
+∞∑
n=0

ane
zλn , (1)

where λ = (λn) is some sequence such that 0 = λ0 < λn ↑ +∞ (1 ≤ n → +∞). By D∗(λ)
we denote the class of formal series of form (1) such that anexλn → 0 (n → +∞) for every
x ∈ R, i.e., for every x ∈ R there exists the maximal term

µ(x, F ) = max{|an|exλn : n ≥ 0} < +∞.
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Clearly, D(λ) ⊂ D∗(λ). Besides such elementary statement holds.

Proposition 1. If F ∈ D∗(λ) and the condition lnn = o(ln |an|) (n→ +∞) or the condition

lnn = o(λn) (n→ +∞) (2)

holds then F ∈ D(λ).

Indeed, the condition F ∈ D∗(λ) implies lim
n→+∞

− ln |an|
λn

= +∞. By condition (2) (or

lnn = o(ln |an|) (n → +∞), [3, p. 115], [4]), we can calculate the abscissa of absolute
convergence of the series (1) by formulae σa = lim

n→+∞

− ln |an|
λn

. Therefore, F ∈ D(λ).

For a Dirichlet series F ∈ D∗(λ) and any sequence (bn), bn ∈ C \ {0} (n ≥ 0) we consider

B+(z) =
+∞∑
n=0

anbne
zλn , B−(z) =

+∞∑
n=0

anb
−1
n ezλn .

Remark 1. If a sequence {bn : n ≥ 0} ⊂ C \ {0} satisfies the condition

b = lim
n→+∞

1

λn
ln(|bn|+ |bn|−1) < +∞, (3)

then F ∈ D(λ)⇐⇒ B+ ∈ D(λ)⇐⇒ B− ∈ D(λ).

Following A. M. Gaisin ([1]) we say that a Dirichlet series of form (1) is stable (stable by
Gaisin) if the relations

lnµ(σ, F ) = (1 + o(1)) lnµ(σ,B+) = (1 + o(1)) lnµ(σ,B−) (4)

hold as σ → +∞ outside some set E ⊂ [0,+∞) of finite Lebesgue measure, i.e.

measE :=

∫
E

dσ < +∞.

Let L be the class of positive continuous on [0,+∞) functions l(t) such that l(t)→ +∞
(t→ +∞). By L+ we denote the subclass of L of functions such that l(t) ↑ +∞ as x→ +∞,
and by W the class of functions w ∈ L+ such that

+∞∫
1

x−2w(x)dx < +∞.

The following theorem was announced and applied to investigation of the growth of entire
Dirichlet series on curves in [1].

Theorem A ([1]). Assume that conditions (3) and

lim
n→+∞

lnn

lnλn
= a < +∞ (5)
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hold. For any F ∈ D(λ) asymptotic equations (4) hold as σ → +∞ outside some set
E ⊂ [0; +∞), measE < +∞, if and only if there exists a function w ∈ W such that

ln(|bn|+ |bn|−1) ≤ w(λn) (n ≥ n1). (6)

Condition (5) in this statement is too “restrictive”. In [2] one can find weaker sufficient
conditions of the stability.

Theorem 1 (Skaskiv, Trakalo [2]). Let {F,B+, B−} ⊂ D(λ), w ∈ L and condition (6)
hold. If

+∞∫
0

t−2ln ν(t)dt < +∞, (7)

where ν(t) =
∫ t
0
ew(x)dn(x), n(x) =

∑
λn≤x 1, then the Dirichlet series of form (1) is stable.

Corollary 1 (Skaskiv, Trakalo [2]). Let for a sequence λ = (λn) we have

+∞∫
0

t−2 lnn(t)dt < +∞, n(t)
def
=
∑
λn≤t

1, (8)

and for a sequence (bn) condition (6) hold. If {F,B+, B−} ⊂ D(λ) and w ∈ W , then the
Dirichlet series F of form (1) is stable.

It is also proved in [2, Theorem 3] that the statement of Corollary 1 cannot be improved in
the following sense. For every sequence λ such that condition (8) holds and for each function
w ∈ L such that condition (7) does not hold there exists a function F ∈ D(λ) such that for
the function

Bw(z) =
+∞∑
n=0

ane
w(λn)+zλn

we get
(∃d > 0)(∀x ≥ x0) : lnµ(x,Bw) ≥ (1 + d) lnµ(x, F ),

i.e. the Dirichlet series F is not stable.

Remark 2. i) Since ln ν(t) ≤ w(t) + lnn(t) (t ≥ 0), conditions (8) and w ∈ W yield (7).
ii) Condition (8) implies relation (2).
iii) Using ν(t) ≥ ew(0)(n(t)− 1) (t ≥ 0), from condition (7) we get (8).

From Proposition 1 and Corollaries 1, 2 it follows that the condition {F,B+, B−} ⊂ D(λ)
in Theorem 1 and Corollary 1 one can replace with the condition F ∈ D∗(λ), because (8)
(as well as condition (7)) implies (2). So, the conjecture from [2] that in Theorem 1 and
Corollary 1, the condition {F,B+, B−} ⊂ D(λ) can be replaced with {F,B+, B−} ⊂ D∗(λ),
is true. Moreover, we can replace the condition {F,B+, B−} ⊂ D(λ) with Bw ∈ D∗(λ),
w ∈ L and reformulate Theorem 1 and Corollary 1 as follows.

Theorem 2. Let w ∈ L, Bw ∈ D∗(λ) and condition (7) be satisfied. Then the relation

lnµ(σ, F ) = (1 + o(1)) lnµ(σ,Bw) (9)

holds as σ → +∞ outside some set E ⊂ [0; +∞), measE < +∞.
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Corollary 2. Suppose that for a sequence λ = (λn) condition (8) holds. If w ∈ W and
Bw ∈ D∗(λ), then relation (9) is satisfied as σ → +∞ outside some set E ⊂ [0; +∞),
measE < +∞.

Remark 3. Condition (7) does not imply that w ∈ W .

Indeed, in order to prove this statement it is enough to consider the sequence λn =
exp{n2} and the function w(t) = t/ ln(t + 1). Obviously w ∈ L \ W . Remark that ν(t) =∫ t
0
ew(x)dn(x) =

∑
λn≤t e

w(λn) and condition (7) holds if and only if
∫ +∞
0

t−1d ln ν(t) < +∞.
Then

t∫
0

d ln ν(x)

x
=
∑
λn≤t

1

λn
ln

(
1 +

ew(λn)∑
k≤n−1

ew(λk)

)
. (10)

The inequalities

1

λn
ln

(
1 +

ew(λn)∑
k≤n−1

ew(λk)

)
≤ (w(λn) + o(1))

λn
≤ 2w(λn)

λn
≤ 1

n2
(n→ +∞),

imply (7).
Suppose now that for the counting function n(t) of the sequence λ the condition

(∃ θ > 0)(∃ t0 > 0)(∃ d > 0)(∀ t ≥ t0) : n((1 + θ)t)− n(t) ≥ d (11)

holds. Using

ln ν((1 + θ)t) ≥ ln

(1+θ)t∫
t

ew(u)dn(u) ≥ w(t) + ln d (t ≥ t0),

one can show that (7) yields w ∈ W .
Taking into account Remark 2, we obtain the following statement.

Proposition 2. If conditions (7) and (11) hold, then we get (8) and w ∈ W .

For example, condition (11) is satisfied for the following sequences: λn = en, λn = nα

(α > 0), λn = lnα(n + 1) (α > 0), λn = ln ln(n + e), n ≥ 0. But from the example above
we deduce that for the sequence λn = en

2
, condition (11) does not hold because for this

sequence we have lim
n→+∞

n/lnλn = 0, however, (11) implies that

lim
n→+∞

n

lnλn
≥ d

ln(1 + θ)
> 0.

In addition, examples of sequences λ indicate independence of conditions (11), (8).

2. The stability of the Dirichlet series of several variables. Let p ∈ N, p ≥ 2 and

λ = (λn), λn = (λ(1)n1
, . . . , λ(p)np

), n = (n1, . . . , np) ∈ Zp+, ‖n‖ =
p∑
j=1

nj,

(u, v) =

p∑
j=1

ujvj, for u = (u1, . . . , up), v = (v1, . . . , vp) ∈ Cp.
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Everywhere we continue to assume that the sequence (λn) satisfies the condition

(∀ j, 1 ≤ j ≤ p) : 0 ≤ λ
(j)
k ↑ +∞ (0 ≤ k ↑ +∞).

By Dp(λ) we denote the class of absolutely convergent in Cp Dirichlet series

F (z) =
+∞∑
‖n‖=0

ane
(z,λn), z ∈ Cp, (12)

Dp
∗(λ) is the class of formal series of form (12) such that

(∀ z ∈ Cp) : ane
(z,λn) → 0 (‖n‖ → +∞).

For F ∈ Dp
∗(λ) and σ ∈ Rp we denote

µ(σ, F ) = max{|an|e(σ,λn) : n ≥ 0}.

For z ∈ Cp, w ∈ L and a sequence of complex numbers (bn)n∈Zp
+
, bn 6= 0 (n ∈ Zp+), we put

B±(z) =
+∞∑
‖n‖=0

an(bn)
±1e(z,λn), Fw(z) =

+∞∑
‖n‖=0

|an|ew(‖λn‖)+(z,λn).

2.1. Sufficient conditions of stability.

Theorem 3. Let F ∈ Dp
∗(λ). If there exists a function w ∈ L such that Fw ∈ Dp

∗(λ),
ln ν1 ∈ W (here ν1(t) =

∑
‖λn‖≤t e

w(‖λn‖)) and

e−w(‖λn‖) ≤ |bn| ≤ ew(‖λn‖) (‖n‖ ≥ k1), (13)

then there exists a Lebesgue measurable set E ⊂ Rp
+ such that

lnµ(σ, F ) = (1 + o(1)) lnµ(σ,B+) = (1 + o(1)) lnµ(σ,B−) (14)

as |σ| → +∞ (σ ∈ K \ E) and

τp(E ∩K)
def
=

∫
E∩K

dσ1 . . . dσp
|σ|p−1

< +∞

for an arbitrary cone K in Rp
+ with vertex at the origin O such that K\{O} ⊂ Rp

+.

Corollary 3. Suppose that for λ = (λn)n∈Zp
+
, λn = (λ

(1)
n1 , . . . , λ

(p)
np ) (n = (n1, . . . , np)), we

have

(∀ j, 1 ≤ j ≤ p) :
+∞∑
k=1

1

kλ
(j)
k

< +∞, (15)

w ∈ W , and for (bn), Fw, F the assumptions of Theorem 3 hold. Then the statement of
Theorem 3 is true.
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The assertion of Theorem 3 confirms the conjecture expressed by the second author at
the conference dedicated to the 125th anniversary of H. Hans ([5]) (Chernivtsi, June 2004).

In the proof of Theorem 3 we use asymptotic estimates of the form

I(σ) =

∫
Rp
+

a(x)e(σ,x)ν(dx), σ ∈ Rp
+, (16)

where ν is a nonnegative locally finite measure on Rp, and a : Rp → R+ is a ν-measurable
function ([8, Theorem 1, p. 130], [9, Theorem 1, p. 134]).

By Ip(ν) we denote the class of the functions I : Rp → R+ of form (16). For σ ∈ Rp we
put

µ∗(σ)
def
= sup{a(x)e〈σ,x〉 : x ∈ supp ν},

where supp ν is the support of the measure ν. For the function F , without loss of generality
we may assume that a(x) > 0 for every x ∈ supp ν.

In [9] the following statement is proved, which completes the corresponding statement
from [8] in the description of the exceptional set.

Lemma 1 ([8, 9]). Let I ∈ Ip(ν). If
+∞∫
0

t−2ln ν0(t)dt < +∞, ν0(0, t]
def
= ν({x ∈ Rp : 0 < ‖x‖ ≤ t}), (17)

then there exists a set E ⊂ Rp
+ such that for an arbitrary cone K ⊂ Rp

+ with vertex at the
origin O such that K\{O} ⊂ Rp

+ the relation

ln I(σ) ≤ (1 + o(1)) lnµ∗(σ) (18)

holds for |σ| → +∞ (σ ∈ K\E), and τp(E ∩K) < +∞.

Proof of Theorem 3. We prove first that

lnµ(σ, F ) = (1 + o(1)) lnµ(σ, Fw) (19)

as |σ| → +∞ (σ ∈ K\E), where the set E and the cone K are the same as in Lemma 1. Let
a(t), b(t) be measurable nonnegative functions on Rp

+ such that a(λn) = |an|, b(λn) = ew(‖λn‖)

and

µ(σ, F ) = sup{a(t)e(t,σ) : t ∈ Rp
+}, µ(σ,Bw) = sup{a(t)b(t)e(t,σ) : t ∈ Rp

+}.

It is enough to put a(t) = 0 for t /∈ {λn : n ∈ Zp+}.
Then for all σ ∈ Rp we get

µ(σ, F ) ≤ µ(σ, Fw) ≤ Fw(σ) =
+∞∑
‖n‖=0

|an|b(λn)e(σ,λn) =
∫
Rp
+

a(x)e(x,σ)ν(dx), (20)

where the measure ν is such that ν(G) =
∑+∞
‖n‖=0 b(λn)δλn(G) for each bounded set G ⊂ Rp

+

and δλ(G) = 1 for λ ∈ G and δλ(G) = 0 for λ 6∈ G. Clearly,

ν0(0, t] = ν({x ∈ Rp
+ : 0 < ‖x‖ ≤ t}) ≤

∑
‖λn‖≤t

b(λn) =
∑
‖λn‖≤t

ew(‖λn‖) = ν1(t).
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Observe that the condition ln ν1 ∈ W immediately implies assumption (17) of Lemma 1.
Using Lemma 1 to the integral in (20), as |σ| → +∞ (σ ∈ K\E) (here the set E and the

cone K are the same as in Lemma 1) we obtain

lnµ(σ, F ) ≤ lnµ(σ, Fw) ≤ (1 + o(1)) lnµ∗(σ),

where µ∗(σ) = max{a(x)e(x,σ) : x ∈ Rp
+}. By the choice of the function a(t) we get µ∗(σ) =

µ(σ, F ) and obtain relation (19).
Set

B−w(x) :=
+∞∑
‖n‖=0

|an|e−w(‖λn‖)e(x,λn).

Using inequalities (13), we get

µ(σ,B−w) ≤ µ(σ,B+) ≤ µ(σ, Fw), µ(σ,B−w) ≤ µ(σ,B−) ≤ µ(σ, Fw). (21)

Therefore, applying just proved statement to the function B−w, as |σ| → +∞ (σ ∈ K\E),
(here the set E and the cone K are the same as in Lemma 1) we have

lnµ(σ,B−w) = (1 + o(1)) lnµ(σ, (B−w)w) = (1 + o(1)) lnµ(σ, F ),

because µ(σ, (B−w)w) = µ(σ, F ). From the previous relation and inequalities (21) we deduce
(14).

Proof of Corollary 3. Note that for each t > 0

ln ν1(t) ≤ w(t) + ln
( ∑
‖λn‖≤t

1
)
≤ w(t) +

p∑
j=1

lnnj(t) := w0(t),

where nj(t) =
∑

λ
(j)
k ≤t

1 is the counting function of the sequence of j-th coordinates of the

vector sequence (λn). It remains to note that the conditions 0 < λ
(j)
k ↑ +∞ (1 ≤ k ↑ +∞)

and (15) imply lnnj ∈ W ([10]). So, w0 ∈ W , and we conclude that ln ν1 ∈ W .

2.2. Necessity of the condition w ∈ W. Analysis of the proof of Theorem 3 from [9] and
Theorem 3 from [2] gives that the statement of Theorem 3 ([9]) holds in a stronger form.

Lemma 2 ([9]). Let ν be a nonnegative countably additive measure on Rp, which is a direct
product of countably-additive measures νj on R+, ν = ν1 × ν2 × . . . × νj. If condition (17)
does not hold and ln ν0(0, t] = O(t) (t → +∞) then there exist a function I ∈ Ip(ν) and
constants d > 0, t0 > 0 such that for all

σ ∈ E0 := {x = (x1, . . . , xp) ∈ Rp
+ : x1 ≥ t0, t0 ≤ xj ≤ x1, j ∈ {2, . . . , p}},

we get

ln I(σ) ≥ (1 + d) lnµ(σ), µ(σ) := max{a(x)e(x,σ) : x ∈ Rp
+}, (22)

and τp(E0) = +∞.
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Remark that K0 := {x = (x1, . . . , xp) ∈ Rp
+ : xj ≤ x1, j ∈ {2, . . . , p}} is a cone in Rp

+

with vertex at the origin and

E0 = K0 \ {x ∈ Rp
+ : x1 < t0 ∨ x2 < min{t0, x1} ∨ . . . ∨ xp < min{t0, x1}}.

Suppose that condition (15) holds for a sequence λ = (λn) but ln ν1 /∈ W , ν1(t) =∑
‖λn‖≤t e

w(‖λn‖). Using

ν1(t) =
∑
‖λn‖≤t

ew(‖λn‖) = ν({x ∈ Rp
+ : 0 < ‖x‖ ≤ t})+

+ν({x ∈ Rp : ‖x‖ = 0}) = ν0(0, t] + ν({x ∈ Rp : ‖x‖ = 0}),

we conclude that (17) does not hold. By Lemma 2, there exists a positive function I ∈ Ip(ν)
such that ln I(σ) > (1 + d) lnµ(σ) (σ ∈ E), where

I(σ) =

∫
Rp
+

a(x)e(σ,x)ν(dx) =

∫
Rp
+

a(x)ew(‖x‖)e(σ,x)ν2(dx) := B(σ), (23)

and the measure ν2 is such that ν2(G) =
∑+∞
‖n‖=0 δλn(G) for each bounded set G ⊂ Rp

+. Note
now that the measure ν2 satisfies (17). So, if we choose an = a(λn) and apply the statement
of Lemma 1 to the second integral in (23), then for the Dirichlet series F ∈ Dp(λ) of form
(12) we obtain as |σ| → +∞ (σ ∈ K0 \ E, τp(E) < +∞)

(1 + d) lnµ(σ, F ) ≤ (1 + d) lnµ∗(σ, I) ≤ ln I(σ) = lnB(σ) ≤
≤ (1 + o(1)) ln sup{a(x)ew(‖x‖)e(σ,x) : x ∈ supp ν2} =

= (1 + o(1)) ln sup{anew(‖λn‖)e(σ,λn) : n ∈ Zp+} = (1 + o(1)) lnµ(σ, Fw).

It remains to remark that K0 is a cone in Rp
+ with vertex at the origin and τp(K0\E) = +∞.

So, from Corollary 3 we deduce the following statement.

Theorem 4. Let λ = (λn) be a vector sequence such that condition (15) holds. Then the
following assertions are equivalent.

1. For every function F ∈ Dp
∗(λ) there exists a Lebesgue measurable set E ⊂ Rp

+ such
that τp(E ∩K) < +∞ and asymptotic relations (14) hold as |σ| → +∞ (σ ∈ K \ E)
for an arbitrary cone K in Rp

+ with vertex at the origin O such that K\{O} ⊂ Rp
+

2. There exists a function w ∈ L such that ln ν1 ∈ W , Fw ∈ Dp
∗(λ) and inequalities (13)

hold.

REFERENCES

1. Gaisin A.M. The estimate of a Dirichlet series with Fejer gaps// Dokl. RAN. – 2000. – V.370, №6. –
P. 735–737.

2. Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the entire Dirichlet series// Ukr.
Mat. Zh. – 2005. – V.57, №4. – P. 571–576. (in Ukrainian); English transl. in Ukr. Math. J. – 2005. –
V.57, №4. – P. 686–693.



ON THE STABILITY OF ENTIRE MULTIPLE DIRICHLET SERIES 179

3. Leont’ev A.F. Exponential series. – Мoscow: Nauka, 1976. – 536 p.
4. Mulyava O.M. On the abscissa of the convergence of the Dirichlet series// Mat. Stud. – 1998. – V.8, №2.

– P. 171–176. (in Ukrainian)
5. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// International conference

dedicated to 125-th anniversary of Hans Hahn: Book of abstracts. – International conf. (Chernivtsi, June
27–July 3, 2004). – P. 100–101. (in Ukrainian)

6. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// Mat. Visn. NTSh. – 2004.
– V.1. – P. 120–129. (in Ukrainian)

7. Dolynyuk M., Skaskiv O. The stability of the maximal term of entire multiple Dirichlet series//
International V.Ya. Skorobohatko mathematical conference: Book of abstracts. – International conf.
(Drohobych, September 24–28, 2007). – Lviv, 2007. – P. 94. (in Ukrainian)

8. Skaskiv O.B., Trakalo O.M. Asymptotic estimates for Laplace integrals// Mat. Stud. – 2002. – V.18, №2.
— P. 125–146. (in Ukrainian)

9. Skaskiv O.B., Zikrach D.Yu. On the best possible description of exceptional set in asymptotic estimates
for Laplace–Stieltjes integrals// Mat. Stud. – 2011. – V.35, №2. – P. 131–141.

10. Skaskiv O.B. On the behaviour of the maximum term of a Dirichlet series defining an entire function//
Mat. Zametki. – 1985. – V.37, №1. – P. 41–47.; English transl. in Math. Notes, 1985, V.37, №1, 24–28.

Ivan Franko National University of Lviv
mira0201@rambler.ru
olskask@gmail.com

Received 15.01.2015


