УДК 517.5

M. M. DOLYNYUK, O. B. SKASKIV

ON THE STABILITY OF ENTIRE MULTIPLE DIRICHLET SERIES

M. M. Dolynyuk, O. B. Skaskiv. On the stability of entire multiple Dirichlet series, Mat. Stud. 43 (2015), 171–179.

Let $D^p(\lambda)$ be the class of entire multiple Dirichlet series of the form $F(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{(z,\lambda_n)}$, $z \in \mathbb{C}^p$, $p \ge 1$, with exponents satisfying the conditions $\lambda_n = (\lambda_{n_1}^{(1)}, \dots, \lambda_{n_p}^{(p)})$, $n = (n_1, \dots, n_p) \in \mathbb{Z}_+^p$, $0 \le \lambda_k^{(j)} < \lambda_{k+1}^{(j)} \to +\infty$ $(0 \le k \to +\infty)$; $w : [0, +\infty) \to [0, +\infty)$ a nondecreasing function, and $\nu_1(t) = \sum_{\|\lambda_n\| \le t} e^{w(\|\lambda_n\|)}$, $\|a\| = a_1 + \dots + a_p$, $(a, b) = a_1b_1 + \dots + a_pb_p$, for $a = (a_1, \dots, a_p)$, $b = (b_1, \dots, b_p) \in \mathbb{C}^p$. If $\int_1^{+\infty} t^{-1}d\ln\nu_1(t) < +\infty$ and $F_w \in D^p(\lambda)$, $F_w(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{w(\|\lambda_n\|) + (z,\lambda_n)}$. Then $\ln \max\{|a_n|e^{w(\|\lambda_n\|) + (\sigma,\lambda_n)}: n \in \mathbb{Z}_+^p\} \sim \ln \max\{|a_n|e^{(\sigma,\lambda_n)}: n \in \mathbb{Z}_+^p\}$ as $|\sigma| \to +\infty$ $(\sigma \in K \setminus E)$, for an arbitrary cone K in \mathbb{R}_+^p with vertex at the point O such that $\overline{K} \setminus \{O\} \subset \mathbb{R}_+^p$, and a measurable set $E \subset \mathbb{R}_+^p$ such that $\tau_p(E \cap K) = \int_{E \cap K} \frac{d\sigma_1 \dots d\sigma_p}{|\sigma|^{p-1}} < +\infty$.

М. М. Долынюк, О. Б. Скаскив. *Об устойчивости целых кратных рядов Дирихле* // Мат. Студії. – 2015. – Т.43, №2. – С.171–179.

Пусть $D^p(\lambda)$ — класс целых кратных рядов Дирихле вида $F(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{(z,\lambda_n)},$ $z \in \mathbb{C}^p, p \ge 1$, с показателями, удовлетворяющими условиям $\lambda_n = (\lambda_{n_1}^{(1)}, \ldots, \lambda_{n_p}^{(p)}), n = (n_1, \ldots, n_p) \in \mathbb{Z}_+^p, 0 \le \lambda_k^{(j)} < \lambda_{k+1}^{(j)} \to +\infty (0 \le k \to +\infty); w: [0, +\infty) \to [0, +\infty)$ неубывающая функция, а $\nu_1(t) = \sum_{\|\lambda_n\| \le t} e^{w(\|\lambda_n\|)}, \|a\| = a_1 + \ldots + a_p, (a, b) = a_1b_1 + \ldots + a_pb_p$ для $a = (a_1, \ldots, a_p), b = (b_1, \ldots, b_p) \in \mathbb{C}^p$. Если $\int_1^{+\infty} t^{-1}d \ln \nu_1(t) < +\infty$ и $F_w \in D^p(\lambda), F_w(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{w(\|\lambda_n\|) + (z,\lambda_n)},$ то $\ln \max\{|a_n|e^{w(\|\lambda_n\|) + (\sigma,\lambda_n)}: n \in \mathbb{Z}_+^p\} \sim \ln \max\{|a_n|e^{(\sigma,\lambda_n)}: n \in \mathbb{Z}_+^p\}$ при $|\sigma| \to +\infty (\sigma \in K \setminus E)$ для каждого конуса K в \mathbb{R}_+^p с вершиной в точке O такого, что $\overline{K} \setminus \{O\} \subset \mathbb{R}_+^p$, а измеримое множество $E \subset \mathbb{R}_+^p$ такое, что $\tau_p(E \cap K) = \int_{E \cap K} \frac{d\sigma_1 \dots d\sigma_p}{|\sigma|^{p-1}} < +\infty.$

1. Introduction. The stability of the Dirichlet series of one variable. Let $D(\lambda)$ be the class of Dirichlet series absolutely convergent in \mathbb{C} of the form

$$F(z) = \sum_{n=0}^{+\infty} a_n e^{z\lambda_n},\tag{1}$$

where $\lambda = (\lambda_n)$ is some sequence such that $0 = \lambda_0 < \lambda_n \uparrow +\infty$ $(1 \le n \to +\infty)$. By $D_*(\lambda)$ we denote the class of formal series of form (1) such that $a_n e^{x\lambda_n} \to 0$ $(n \to +\infty)$ for every $x \in \mathbb{R}$, i.e., for every $x \in \mathbb{R}$ there exists the maximal term

$$\mu(x,F) = \max\{|a_n|e^{x\lambda_n} \colon n \ge 0\} < +\infty.$$

doi:10.15330/ms.43.2.171-179

²⁰¹⁰ Mathematics Subject Classification: 30B50.

Keywords: Dirichlet series; maximal term; stability; exceptional set; asymptotic estimate; Laplace-Stieltjes integral.

Clearly, $D(\lambda) \subset D_*(\lambda)$. Besides such elementary statement holds.

Proposition 1. If $F \in D_*(\lambda)$ and the condition $\ln n = o(\ln |a_n|) \ (n \to +\infty)$ or the condition

$$\ln n = o(\lambda_n) \quad (n \to +\infty) \tag{2}$$

holds then $F \in D(\lambda)$.

Indeed, the condition $F \in D_*(\lambda)$ implies $\lim_{n \to +\infty} \frac{-\ln |a_n|}{\lambda_n} = +\infty$. By condition (2) (or $\ln n = o(\ln |a_n|)$ $(n \to +\infty)$, [3, p. 115], [4]), we can calculate the abscissa of absolute convergence of the series (1) by formulae $\sigma_a = \lim_{n \to +\infty} \frac{-\ln |a_n|}{\lambda_n}$. Therefore, $F \in D(\lambda)$.

For a Dirichlet series $F \in D_*(\lambda)$ and any sequence $(b_n), b_n \in \mathbb{C} \setminus \{0\}$ $(n \ge 0)$ we consider

$$B^{+}(z) = \sum_{n=0}^{+\infty} a_n b_n e^{z\lambda_n}, \quad B^{-}(z) = \sum_{n=0}^{+\infty} a_n b_n^{-1} e^{z\lambda_n}.$$

Remark 1. If a sequence $\{b_n : n \ge 0\} \subset \mathbb{C} \setminus \{0\}$ satisfies the condition

$$b = \lim_{n \to +\infty} \frac{1}{\lambda_n} \ln(|b_n| + |b_n|^{-1}) < +\infty,$$
(3)

then $F \in D(\lambda) \iff B^+ \in D(\lambda) \iff B^- \in D(\lambda).$

Following A. M. Gaisin ([1]) we say that a Dirichlet series of form (1) is *stable (stable by Gaisin)* if the relations

$$\ln \mu(\sigma, F) = (1 + o(1)) \ln \mu(\sigma, B^+) = (1 + o(1)) \ln \mu(\sigma, B^-)$$
(4)

hold as $\sigma \to +\infty$ outside some set $E \subset [0, +\infty)$ of finite Lebesgue measure, i.e.

$$\operatorname{meas} E := \int_{E} d\sigma < +\infty.$$

Let L be the class of positive continuous on $[0, +\infty)$ functions l(t) such that $l(t) \to +\infty$ $(t \to +\infty)$. By L_+ we denote the subclass of L of functions such that $l(t) \uparrow +\infty$ as $x \to +\infty$, and by \mathcal{W} the class of functions $w \in L_+$ such that

$$\int_{1}^{+\infty} x^{-2} w(x) dx < +\infty.$$

The following theorem was announced and applied to investigation of the growth of entire Dirichlet series on curves in [1].

Theorem A ([1]). Assume that conditions (3) and

$$\overline{\lim_{n \to +\infty} \frac{\ln n}{\ln \lambda_n}} = a < +\infty \tag{5}$$

hold. For any $F \in D(\lambda)$ asymptotic equations (4) hold as $\sigma \to +\infty$ outside some set $E \subset [0; +\infty)$, meas $E < +\infty$, if and only if there exists a function $w \in \mathcal{W}$ such that

$$\ln(|b_n| + |b_n|^{-1}) \le w(\lambda_n) \quad (n \ge n_1).$$
(6)

Condition (5) in this statement is too "restrictive". In [2] one can find weaker sufficient conditions of the stability.

Theorem 1 (Skaskiv, Trakalo [2]). Let $\{F, B^+, B^-\} \subset D(\lambda)$, $w \in L$ and condition (6) hold. If

$$\int_{0}^{+\infty} t^{-2} \ln \nu(t) dt < +\infty, \tag{7}$$

where $\nu(t) = \int_0^t e^{w(x)} dn(x)$, $n(x) = \sum_{\lambda_n \le x} 1$, then the Dirichlet series of form (1) is stable.

Corollary 1 (Skaskiv, Trakalo [2]). Let for a sequence $\lambda = (\lambda_n)$ we have

$$\int_{0}^{+\infty} t^{-2} \ln n(t) dt < +\infty, \quad n(t) \stackrel{def}{=} \sum_{\lambda_n \le t} 1,$$
(8)

and for a sequence (b_n) condition (6) hold. If $\{F, B^+, B^-\} \subset D(\lambda)$ and $w \in \mathcal{W}$, then the Dirichlet series F of form (1) is stable.

It is also proved in [2, Theorem 3] that the statement of Corollary 1 cannot be improved in the following sense. For every sequence λ such that condition (8) holds and for each function $w \in L$ such that condition (7) does not hold there exists a function $F \in D(\lambda)$ such that for the function

$$B_w(z) = \sum_{n=0}^{+\infty} a_n e^{w(\lambda_n) + z\lambda_n}$$

we get

 $(\exists d > 0)(\forall x \ge x_0): \quad \ln \mu(x, B_w) \ge (1+d) \ln \mu(x, F),$

i.e. the Dirichlet series F is not stable.

Remark 2. i) Since $\ln \nu(t) \le w(t) + \ln n(t)$ $(t \ge 0)$, conditions (8) and $w \in \mathcal{W}$ yield (7). ii) Condition (8) implies relation (2). iii) Using $\nu(t) \ge e^{w(0)}(n(t) - 1)$ $(t \ge 0)$, from condition (7) we get (8).

From Proposition 1 and Corollaries 1, 2 it follows that the condition $\{F, B^+, B^-\} \subset D(\lambda)$ in Theorem 1 and Corollary 1 one can replace with the condition $F \in D_*(\lambda)$, because (8) (as well as condition (7)) implies (2). So, the *conjecture from* [2] that in Theorem 1 and Corollary 1, the condition $\{F, B^+, B^-\} \subset D(\lambda)$ can be replaced with $\{F, B^+, B^-\} \subset D_*(\lambda)$, is true. Moreover, we can replace the condition $\{F, B^+, B^-\} \subset D(\lambda)$ with $B_w \in D_*(\lambda)$, $w \in L$ and reformulate Theorem 1 and Corollary 1 as follows.

Theorem 2. Let $w \in L$, $B_w \in D_*(\lambda)$ and condition (7) be satisfied. Then the relation

$$\ln \mu(\sigma, F) = (1 + o(1)) \ln \mu(\sigma, B_w) \tag{9}$$

holds as $\sigma \to +\infty$ outside some set $E \subset [0; +\infty)$, meas $E < +\infty$.

Corollary 2. Suppose that for a sequence $\lambda = (\lambda_n)$ condition (8) holds. If $w \in \mathcal{W}$ and $B_w \in D_*(\lambda)$, then relation (9) is satisfied as $\sigma \to +\infty$ outside some set $E \subset [0; +\infty)$, meas $E < +\infty$.

Remark 3. Condition (7) does not imply that $w \in \mathcal{W}$.

Indeed, in order to prove this statement it is enough to consider the sequence $\lambda_n = \exp\{n^2\}$ and the function $w(t) = t/\ln(t+1)$. Obviously $w \in L \setminus \mathcal{W}$. Remark that $\nu(t) = \int_0^t e^{w(x)} dn(x) = \sum_{\lambda_n \leq t} e^{w(\lambda_n)}$ and condition (7) holds if and only if $\int_0^{+\infty} t^{-1} d\ln\nu(t) < +\infty$. Then

$$\int_{0}^{t} \frac{d\ln\nu(x)}{x} = \sum_{\lambda_n \le t} \frac{1}{\lambda_n} \ln\left(1 + \frac{e^{w(\lambda_n)}}{\sum\limits_{k \le n-1} e^{w(\lambda_k)}}\right).$$
(10)

The inequalities

$$\frac{1}{\lambda_n} \ln \left(1 + \frac{e^{w(\lambda_n)}}{\sum\limits_{k \le n-1} e^{w(\lambda_k)}} \right) \le \frac{(w(\lambda_n) + o(1))}{\lambda_n} \le \frac{2w(\lambda_n)}{\lambda_n} \le \frac{1}{n^2} \quad (n \to +\infty),$$

imply (7).

Suppose now that for the counting function n(t) of the sequence λ the condition

$$(\exists \theta > 0)(\exists t_0 > 0)(\exists d > 0)(\forall t \ge t_0): n((1+\theta)t) - n(t) \ge d$$
(11)

holds. Using

$$\ln \nu((1+\theta)t) \ge \ln \int_{t}^{(1+\theta)t} e^{w(u)} dn(u) \ge w(t) + \ln d \quad (t \ge t_0)$$

one can show that (7) yields $w \in \mathcal{W}$.

Taking into account Remark 2, we obtain the following statement.

Proposition 2. If conditions (7) and (11) hold, then we get (8) and $w \in \mathcal{W}$.

For example, condition (11) is satisfied for the following sequences: $\lambda_n = e^n$, $\lambda_n = n^{\alpha}$ $(\alpha > 0)$, $\lambda_n = \ln^{\alpha}(n+1)$ $(\alpha > 0)$, $\lambda_n = \ln \ln(n+e)$, $n \ge 0$. But from the example above we deduce that for the sequence $\lambda_n = e^{n^2}$, condition (11) does not hold because for this sequence we have $\lim_{n \to +\infty} n/\ln \lambda_n = 0$, however, (11) implies that

$$\lim_{n \to +\infty} \frac{n}{\ln \lambda_n} \ge \frac{d}{\ln(1+\theta)} > 0$$

In addition, examples of sequences λ indicate independence of conditions (11), (8). 2. The stability of the Dirichlet series of several variables. Let $p \in \mathbb{N}, p \ge 2$ and

$$\lambda = (\lambda_n), \ \lambda_n = (\lambda_{n_1}^{(1)}, \dots, \lambda_{n_p}^{(p)}), \ n = (n_1, \dots, n_p) \in \mathbb{Z}_+^p, \ \|n\| = \sum_{j=1}^p n_j,$$
$$(u, v) = \sum_{j=1}^p u_j v_j, \quad \text{for } u = (u_1, \dots, u_p), v = (v_1, \dots, v_p) \in \mathbb{C}^p.$$

Everywhere we continue to assume that the sequence (λ_n) satisfies the condition

$$(\forall j, 1 \le j \le p): 0 \le \lambda_k^{(j)} \uparrow +\infty \quad (0 \le k \uparrow +\infty).$$

By $D^p(\lambda)$ we denote the class of absolutely convergent in \mathbb{C}^p Dirichlet series

$$F(z) = \sum_{\|n\|=0}^{+\infty} a_n e^{(z,\lambda_n)}, \quad z \in \mathbb{C}^p,$$
(12)

 $D^p_*(\lambda)$ is the class of formal series of form (12) such that

$$(\forall z \in \mathbb{C}^p): a_n e^{(z,\lambda_n)} \to 0 \quad (||n|| \to +\infty).$$

For $F \in D^p_*(\lambda)$ and $\sigma \in \mathbb{R}^p$ we denote

$$\mu(\sigma, F) = \max\{|a_n|e^{(\sigma,\lambda_n)}: n \ge 0\}.$$

For $z \in \mathbb{C}^p$, $w \in L$ and a sequence of complex numbers $(b_n)_{n \in \mathbb{Z}^p_+}$, $b_n \neq 0$ $(n \in \mathbb{Z}^p_+)$, we put

$$B_{\pm}(z) = \sum_{\|n\|=0}^{+\infty} a_n(b_n)^{\pm 1} e^{(z,\lambda_n)}, \quad F_w(z) = \sum_{\|n\|=0}^{+\infty} |a_n| e^{w(\|\lambda_n\|) + (z,\lambda_n)}.$$

2.1. Sufficient conditions of stability.

Theorem 3. Let $F \in D^p_*(\lambda)$. If there exists a function $w \in L$ such that $F_w \in D^p_*(\lambda)$, $\ln \nu_1 \in \mathcal{W}$ (here $\nu_1(t) = \sum_{\|\lambda_n\| \leq t} e^{w(\|\lambda_n\|)}$) and

$$e^{-w(\|\lambda_n\|)} \le |b_n| \le e^{w(\|\lambda_n\|)} \quad (\|n\| \ge k_1),$$
(13)

then there exists a Lebesgue measurable set $E \subset \mathbb{R}^p_+$ such that

$$\ln \mu(\sigma, F) = (1 + o(1)) \ln \mu(\sigma, B_{+}) = (1 + o(1)) \ln \mu(\sigma, B_{-})$$
(14)

as $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$) and

$$\tau_p(E \cap K) \stackrel{def}{=} \int\limits_{E \cap K} \frac{d\sigma_1 \dots d\sigma_p}{|\sigma|^{p-1}} < +\infty$$

for an arbitrary cone K in \mathbb{R}^p_+ with vertex at the origin O such that $\overline{K} \setminus \{O\} \subset \mathbb{R}^p_+$.

Corollary 3. Suppose that for $\lambda = (\lambda_n)_{n \in \mathbb{Z}_+^p}$, $\lambda_n = (\lambda_{n_1}^{(1)}, \ldots, \lambda_{n_p}^{(p)})$ $(n = (n_1, \ldots, n_p))$, we have

$$(\forall j, 1 \le j \le p): \qquad \sum_{k=1}^{+\infty} \frac{1}{k\lambda_k^{(j)}} < +\infty, \tag{15}$$

 $w \in \mathcal{W}$, and for $(b_n), F_w, F$ the assumptions of Theorem 3 hold. Then the statement of Theorem 3 is true.

The assertion of Theorem 3 confirms the conjecture expressed by the second author at the conference dedicated to the 125th anniversary of H. Hans ([5]) (Chernivtsi, June 2004). In the proof of Theorem 2 we was computation actimates of the form

In the proof of Theorem 3 we use asymptotic estimates of the form

$$I(\sigma) = \int_{\mathbb{R}^p_+} a(x)e^{(\sigma,x)}\nu(dx), \quad \sigma \in \mathbb{R}^p_+,$$
(16)

where ν is a nonnegative locally finite measure on \mathbb{R}^p , and $a: \mathbb{R}^p \to \mathbb{R}_+$ is a ν -measurable function ([8, Theorem 1, p. 130], [9, Theorem 1, p. 134]).

By $\mathcal{I}^p(\nu)$ we denote the class of the functions $I: \mathbb{R}^p \to \mathbb{R}_+$ of form (16). For $\sigma \in \mathbb{R}^p$ we put

$$\mu_*(\sigma) \stackrel{def}{=} \sup\{a(x)e^{\langle \sigma, x \rangle} \colon x \in \text{supp } \nu\},\$$

where supp ν is the support of the measure ν . For the function F, without loss of generality we may assume that a(x) > 0 for every $x \in \text{supp } \nu$.

In [9] the following statement is proved, which completes the corresponding statement from [8] in the description of the exceptional set.

Lemma 1 ([8, 9]). Let $I \in \mathcal{I}^p(\nu)$. If

$$\int_{0}^{+\infty} t^{-2} \ln \nu_0(t) dt < +\infty, \quad \nu_0(0,t] \stackrel{def}{=} \nu(\{x \in \mathbb{R}^p \colon 0 < \|x\| \le t\}), \tag{17}$$

then there exists a set $E \subset \mathbb{R}^p_+$ such that for an arbitrary cone $K \subset \mathbb{R}^p_+$ with vertex at the origin O such that $\overline{K} \setminus \{O\} \subset \mathbb{R}^p_+$ the relation

$$\ln I(\sigma) \le (1+o(1)) \ln \mu_*(\sigma) \tag{18}$$

holds for $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$), and $\tau_p(E \cap K) < +\infty$.

Proof of Theorem 3. We prove first that

$$\ln \mu(\sigma, F) = (1 + o(1)) \ln \mu(\sigma, F_w) \tag{19}$$

as $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$), where the set E and the cone K are the same as in Lemma 1. Let a(t), b(t) be measurable nonnegative functions on \mathbb{R}^p_+ such that $a(\lambda_n) = |a_n|, b(\lambda_n) = e^{w(||\lambda_n||)}$ and

$$\mu(\sigma, F) = \sup\{a(t)e^{(t,\sigma)}: t \in \mathbb{R}^p_+\}, \ \mu(\sigma, B_w) = \sup\{a(t)b(t)e^{(t,\sigma)}: t \in \mathbb{R}^p_+\}.$$

It is enough to put a(t) = 0 for $t \notin \{\lambda_n : n \in \mathbb{Z}_+^p\}$.

Then for all $\sigma \in \mathbb{R}^p$ we get

$$\mu(\sigma, F) \le \mu(\sigma, F_w) \le F_w(\sigma) = \sum_{\|n\|=0}^{+\infty} |a_n| b(\lambda_n) e^{(\sigma, \lambda_n)} = \int_{\mathbb{R}^p_+} a(x) e^{(x, \sigma)} \nu(dx), \qquad (20)$$

where the measure ν is such that $\nu(G) = \sum_{\|n\|=0}^{+\infty} b(\lambda_n) \delta_{\lambda_n}(G)$ for each bounded set $G \subset \mathbb{R}^p_+$ and $\delta_{\lambda}(G) = 1$ for $\lambda \in G$ and $\delta_{\lambda}(G) = 0$ for $\lambda \notin G$. Clearly,

$$\nu_0(0,t] = \nu(\{x \in \mathbb{R}^p_+ : 0 < \|x\| \le t\}) \le \sum_{\|\lambda_n\| \le t} b(\lambda_n) = \sum_{\|\lambda_n\| \le t} e^{w(\|\lambda_n\|)} = \nu_1(t).$$

Observe that the condition $\ln \nu_1 \in \mathcal{W}$ immediately implies assumption (17) of Lemma 1.

Using Lemma 1 to the integral in (20), as $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$) (here the set E and the cone K are the same as in Lemma 1) we obtain

$$\ln \mu(\sigma, F) \le \ln \mu(\sigma, F_w) \le (1 + o(1)) \ln \mu_*(\sigma),$$

where $\mu_*(\sigma) = \max\{a(x)e^{(x,\sigma)} : x \in \mathbb{R}^p_+\}$. By the choice of the function a(t) we get $\mu_*(\sigma) = \mu(\sigma, F)$ and obtain relation (19).

Set

$$B_{-w}(x) := \sum_{\|n\|=0}^{+\infty} |a_n| e^{-w(\|\lambda_n\|)} e^{(x,\lambda_n)}$$

Using inequalities (13), we get

$$\mu(\sigma, B_{-w}) \le \mu(\sigma, B_{+}) \le \mu(\sigma, F_{w}), \quad \mu(\sigma, B_{-w}) \le \mu(\sigma, B_{-}) \le \mu(\sigma, F_{w}).$$

$$(21)$$

Therefore, applying just proved statement to the function B_{-w} , as $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$), (here the set E and the cone K are the same as in Lemma 1) we have

$$\ln \mu(\sigma, B_{-w}) = (1 + o(1)) \ln \mu(\sigma, (B_{-w})_w) = (1 + o(1)) \ln \mu(\sigma, F).$$

because $\mu(\sigma, (B_{-w})_w) = \mu(\sigma, F)$. From the previous relation and inequalities (21) we deduce (14).

Proof of Corollary 3. Note that for each t > 0

$$\ln \nu_1(t) \le w(t) + \ln \left(\sum_{\|\lambda_n\| \le t} 1\right) \le w(t) + \sum_{j=1}^p \ln n_j(t) := w_0(t),$$

where $n_j(t) = \sum_{\lambda_k^{(j)} \leq t} 1$ is the counting function of the sequence of *j*-th coordinates of the vector sequence (λ_n) . It remains to note that the conditions $0 < \lambda_k^{(j)} \uparrow +\infty$ $(1 \leq k \uparrow +\infty)$ and (15) imply $\ln n_j \in \mathcal{W}$ ([10]). So, $w_0 \in \mathcal{W}$, and we conclude that $\ln \nu_1 \in \mathcal{W}$. \Box

2.2. Necessity of the condition $w \in \mathcal{W}$. Analysis of the proof of Theorem 3 from [9] and Theorem 3 from [2] gives that the statement of Theorem 3 ([9]) holds in a stronger form.

Lemma 2 ([9]). Let ν be a nonnegative countably additive measure on \mathbb{R}^p , which is a direct product of countably-additive measures ν_j on \mathbb{R}_+ , $\nu = \nu_1 \times \nu_2 \times \ldots \times \nu_j$. If condition (17) does not hold and $\ln \nu_0(0, t] = O(t)$ $(t \to +\infty)$ then there exist a function $I \in \mathcal{I}^p(\nu)$ and constants d > 0, $t_0 > 0$ such that for all

$$\sigma \in E_0 := \{ x = (x_1, \dots, x_p) \in \mathbb{R}^p_+ : x_1 \ge t_0, t_0 \le x_j \le x_1, j \in \{2, \dots, p\} \},\$$

we get

$$\ln I(\sigma) \ge (1+d) \ln \mu(\sigma), \quad \mu(\sigma) := \max\{a(x)e^{(x,\sigma)} \colon x \in \mathbb{R}^p_+\},\tag{22}$$

and $\tau_p(E_0) = +\infty$.

Remark that $K_0 := \{x = (x_1, \ldots, x_p) \in \mathbb{R}^p_+ : x_j \leq x_1, j \in \{2, \ldots, p\}\}$ is a cone in \mathbb{R}^p_+ with vertex at the origin and

$$E_0 = K_0 \setminus \{ x \in \mathbb{R}^p_+ : x_1 < t_0 \lor x_2 < \min\{t_0, x_1\} \lor \ldots \lor x_p < \min\{t_0, x_1\} \}.$$

Suppose that condition (15) holds for a sequence $\lambda = (\lambda_n)$ but $\ln \nu_1 \notin \mathcal{W}, \nu_1(t) = \sum_{\|\lambda_n\| \leq t} e^{w(\|\lambda_n\|)}$. Using

$$\nu_1(t) = \sum_{\|\lambda_n\| \le t} e^{w(\|\lambda_n\|)} = \nu(\{x \in \mathbb{R}^p_+ : 0 < \|x\| \le t\}) + \nu(\{x \in \mathbb{R}^p : \|x\| = 0\}) = \nu_0(0, t] + \nu(\{x \in \mathbb{R}^p : \|x\| = 0\}),$$

we conclude that (17) does not hold. By Lemma 2, there exists a positive function $I \in \mathcal{I}^p(\nu)$ such that $\ln I(\sigma) > (1+d) \ln \mu(\sigma) \quad (\sigma \in E)$, where

$$I(\sigma) = \int_{\mathbb{R}^{p}_{+}} a(x)e^{(\sigma,x)}\nu(dx) = \int_{\mathbb{R}^{p}_{+}} a(x)e^{w(\|x\|)}e^{(\sigma,x)}\nu_{2}(dx) := B(\sigma),$$
(23)

and the measure ν_2 is such that $\nu_2(G) = \sum_{\|n\|=0}^{+\infty} \delta_{\lambda_n}(G)$ for each bounded set $G \subset \mathbb{R}^p_+$. Note now that the measure ν_2 satisfies (17). So, if we choose $a_n = a(\lambda_n)$ and apply the statement of Lemma 1 to the second integral in (23), then for the Dirichlet series $F \in D^p(\lambda)$ of form (12) we obtain as $|\sigma| \to +\infty$ ($\sigma \in K_0 \setminus E$, $\tau_p(E) < +\infty$)

$$(1+d)\ln\mu(\sigma,F) \le (1+d)\ln\mu_*(\sigma,I) \le \ln I(\sigma) = \ln B(\sigma) \le \\ \le (1+o(1))\ln\sup\{a(x)e^{w(||x||)}e^{(\sigma,x)} : x \in \text{supp } \nu_2\} = \\ = (1+o(1))\ln\sup\{a_n e^{w(||\lambda_n||)}e^{(\sigma,\lambda_n)} : n \in \mathbb{Z}_+^p\} = (1+o(1))\ln\mu(\sigma,F_w).$$

It remains to remark that K_0 is a cone in \mathbb{R}^p_+ with vertex at the origin and $\tau_p(K_0 \setminus E) = +\infty$. So, from Corollary 3 we deduce the following statement.

Theorem 4. Let $\lambda = (\lambda_n)$ be a vector sequence such that condition (15) holds. Then the following assertions are equivalent.

- 1. For every function $F \in D^p_*(\lambda)$ there exists a Lebesgue measurable set $E \subset \mathbb{R}^p_+$ such that $\tau_p(E \cap K) < +\infty$ and asymptotic relations (14) hold as $|\sigma| \to +\infty$ ($\sigma \in K \setminus E$) for an arbitrary cone K in \mathbb{R}^p_+ with vertex at the origin O such that $\overline{K} \setminus \{O\} \subset \mathbb{R}^p_+$
- 2. There exists a function $w \in L$ such that $\ln \nu_1 \in \mathcal{W}$, $F_w \in D^p_*(\lambda)$ and inequalities (13) hold.

REFERENCES

- Gaisin A.M. The estimate of a Dirichlet series with Fejer gaps// Dokl. RAN. 2000. V.370, №6. -P. 735-737.
- Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the entire Dirichlet series// Ukr. Mat. Zh. - 2005. - V.57, №4. - P. 571-576. (in Ukrainian); English transl. in Ukr. Math. J. - 2005. - V.57, №4. - P. 686-693.

- 3. Leont'ev A.F. Exponential series. Moscow: Nauka, 1976. 536 p.
- Mulyava O.M. On the abscissa of the convergence of the Dirichlet series// Mat. Stud. 1998. V.8, №2. – P. 171–176. (in Ukrainian)
- Skaskiv O.B. The stability of the maximum of a sequence of linear functions// International conference dedicated to 125-th anniversary of Hans Hahn: Book of abstracts. – International conf. (Chernivtsi, June 27–July 3, 2004). – P. 100–101. (in Ukrainian)
- Skaskiv O.B. The stability of the maximum of a sequence of linear functions// Mat. Visn. NTSh. 2004. – V.1. – P. 120–129. (in Ukrainian)
- Dolynyuk M., Skaskiv O. The stability of the maximal term of entire multiple Dirichlet series// International V.Ya. Skorobohatko mathematical conference: Book of abstracts. – International conf. (Drohobych, September 24–28, 2007). – Lviv, 2007. – P. 94. (in Ukrainian)
- Skaskiv O.B., Trakalo O.M. Asymptotic estimates for Laplace integrals// Mat. Stud. 2002. V.18, №2. – P. 125–146. (in Ukrainian)
- Skaskiv O.B., Zikrach D.Yu. On the best possible description of exceptional set in asymptotic estimates for Laplace-Stieltjes integrals// Mat. Stud. - 2011. - V.35, №2. - P. 131-141.
- Skaskiv O.B. On the behaviour of the maximum term of a Dirichlet series defining an entire function// Mat. Zametki. – 1985. – V.37, №1. – P. 41–47.; English transl. in Math. Notes, 1985, V.37, №1, 24–28.

Ivan Franko National University of Lviv mira0201@rambler.ru olskask@gmail.com

Received 15.01.2015