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Let G be an abelian group, and F a downward directed family of subsets of G. In [6],
I. Protasov and E. Zelenyuk describe the finest group topology T on G under which F converges
to 0; in particular, their description yields a criterion for T to be Hausdorff. They then show
that if F is the filter of cofinite subsets of a countable subset X ⊆ G (the Fréchet filter on X),
there is a simpler criterion: T is Hausdorff if and only if for every g ∈ G − {0} and positive
integer n, there is an S ∈ F such that g does not lie in the n-fold sum n (S ∪ {0} ∪ −S).

In this note, their proof is adapted to a larger class of families F. In particular, if X is any
infinite subset of G, κ any regular infinite cardinal ≤ card(X), and F the set of complements
in X of subsets of cardinality < κ, then the above criterion holds.

We also give some negative examples, including a countable downward directed set F (not
of the above sort) of subsets of Z which satisfies the “g /∈ n (S ∪{0}∪−S)” condition but does
not induce a Hausdorff topology.

We end with a version of our main result for noncommutative G.

Г. М. Бергман. О групповых топологиях, порождённых семействами множеств // Мат.
Студiї. – 2015. – Т.43, №2. – C.115–128.

Пусть G — абелева группа и F — семейство подмножеств группы G, образующее убы-
вающую направленность. В [6], И. Протасов и Е. Зеленюк дали описание сильнейшей
групповой топологии T на G, в которой семейство F сходится к 0; в частности, ими
бил установлен критерий хаусдорфовости этой топологии. Они доказали, что если F —
фильтр Фреше на счётном бесконечном подмножестве X ⊆ G, то существуэт простой кри-
терийхаусдорфовости: топология T хаусдорфова тогда и только тогда, если для каждого
елемента g 6= 0 и произвольного натурального n, существует такой елемент S семейства F ,
что g 6∈ n(S ∪ {0} ∪ −S).

В этой статье мы переносим результати из [6] на широкий класс семейств F. В част-
ности, если X — произвольное бесконечное подмножество в G, κ-регулярний бесконечний
кардинал < card(X), тогда вышеуказанный критерий виполняется.

Также мы даём некоторые отрицательные примери счётних направленностей семейств
F (иного рода, чем вышеупомянутые) в Z котрие удовлетворяют условию “g /∈ n(S ∪{0}∪
−S)” но не порождают хаусдорфовую топологию.

В заключении мы рассматриваем некоммутативную версию главного результата ста-
тьи.

1. Introduction. Let G be a group, let F be a set of subsets of G which is downward
directed, i.e., such that whenever S1, S2 ∈ F, there is an S3 ∈ F which is contained in
S1 ∩ S2, and let T be a group topology on G; that is, a (not necessarily Hausdorff) topology
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under which the group multiplication and inverse operation are continuous. We say that F
converges to an element x ∈ G under T if every T -neighborhood of x contains a member
of F.

Given G and F, it is not hard to show that there will exist a finest group topology TF
on G under which F converges to the identity element of G. The explicit description of TF
is simpler and easier to study for abelian G than for general G, so we shall assume, until §6,
that

G is an abelian group, with operations written additively. (1)

To describe the topology TF , let us set up some notation. For any subset S ⊆ G, let

S∗ = S ∪ {0} ∪ −S. (2)

For any sequence of subsets S0, S1, · · · ⊆ G indexed by the set ω of natural numbers, let

U(S0, S1, . . . ) =
⋃
n∈ω

∑
i<n S

∗
i = {x0 + · · · + xn−1 | n ∈ ω, xi ∈ S∗i for

i ∈ {0, . . . , n− 1}}. (3)

(The n = 0 term of the above union, i.e., the sum of the vacuous sequence of sets, is
understood to be {0}.)

Then one has

[6, Lemma 2.1.1] The sets U(S0, S1, . . . ), as (Si)i∈ω runs over all sequences of
elements of F, form a basis of open neighborhoods of 0 under TF , the finest group
topology on G under which F converges to 0.

(4)

Thus, as noted in [6, Theorem 2.1.3], the topology TF is Hausdorff (equivalently, there
exists a Hausdorff group topology under which F converges to 0) if and only if⋂

S0, S1, ...∈F U(S0, S1, . . . ) = {0}. (5)

(Our formulations of these statements are different from those in [6] because there,
group topologies are by definition Hausdorff. Though Hausdorff topologies are what we
are interested in, it will convenient, for making statements like (4), to allow non-Hausdorff
topologies. Incidentally, a topological group is Hausdorff if and only if it is T0 [5, p. 32,
Proposition 4 and preceding Exercise].)

From the fact that (5) is necessary and sufficient for TF to be Hausdorff, we get a weaker
condition which is necessary.

Corollary 1. A necessary condition for the topology TF to be Hausdorff is⋃
n>0

⋂
S∈F nS

∗ = {0}. In other words, for every g ∈ G− {0} and every n > 0,

there exists S ∈ F with g /∈ nS∗.
(6)

Proof. Assuming (5), consider any g ∈ G − {0} and any n > 0. By (5) we can choose
S0, S1, . . . such that g /∈ U(S0, S1, . . . ). In particular, g /∈ S∗0 + · · · + S∗n−1. Letting S be
a common lower bound for S0, . . . , Sn−1 in the downward directed set F, we have g /∈ nS∗,
as required.
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As illustrated by the notation “G− {0}” in the above proof, a “−” sign between sets in
this note indicates relative complement; thus, X − Y never denotes X + (−Y ).

In §4, we shall see by example that (6) is not in general sufficient for TF to be Hausdorff.
However, I. Protasov and E. Zelenyuk [6, Theorem 2.1.4] show that it is sufficient if F is the
filter of cofinite subsets of a countable subset X = {x0, x1, . . . } ⊆ G; in other words, if TF
is the finest group topology on G making limi→∞ xi = 0. Generalizing their argument, we
shall obtain below the corresponding result for a wider class of F. In §6 we shall extend this
result to nonabelian G.

2. Co-κ filters, and a peculiar condition that they satisfy. Here is our generalization
of the class of filters considered in [6].

Definition 1 ([3, Example II.2.5]). Let X be an infinite set and κ an infinite cardinal
≤ card(X). Then by the co-κ filter on X we shall mean the (downward directed) set of
complements in X of subsets with cardinality < κ. For κ = ℵ0, this will be called the cofinite
filter on X.

(Remark: The cofinite filter on an infinite set X is often called the Fréchet filter on X.
In some places, the co-card(X) filter on X has been called the “generalized Fréchet filter”;
in [2, p. 197] the term “Fréchet filter” is used, instead, for the latter construction.)

To state the property of these filters that we will use, we make the following definition.
It has the same form as the definition of convergence of a family of points under a group
topology on G, but with the system of neighborhoods of 0 replaced by a more general family.

Definition 2. Suppose F is any downward directed family of subsets of the abelian group G,
and (xi)i∈I a family of elements of G indexed by a downward directed partially ordered set I.
We shall say that (xi)i∈I “converges strongly” to an element x ∈ G with respect to F if for
every S ∈ F, there exists i ∈ I such that for all j ≤ i, xj − x ∈ S∗.

(Since F is not assumed to be a neighborhood basis of a group topology, this is not
a very natural condition. I use the modifier “strongly” because the condition is stronger than
convergence in the group topology determined by F as in (4). Note, incidentally, that the
way in which the ordering on I is used in Definition 2 is the reverse of the usual. This is
not essential; it will simply spare us reversing a certain natural ordering below. In any case,
when an index set I is described as downward rather than upward directed, it is natural to
adjust what one understands convergence of an I-indexed family to mean.)

We can now state the condition around which our main result will center.

Definition 3. A downward directed family F of subsets of the abelian group G will be
called self-indulgent if for every S ∈ F, and every family (xT )T∈F ′ of elements of S∗ indexed
by a downward cofinal subset F ′ ⊆ F, there exist an x ∈ S∗, and a downward cofinal subset
F ′′ ⊆ F ′, such that (xT )T∈F ′′ converges strongly to x with respect to F.

A strange feature of this condition (which motivates its name) is that it involves the
family F in three unrelated ways: first, S is taken to be a member of F ; second, the family
of points xT ∈ S∗ is indexed by a subfamily of F, and third, the convergence asked for is
strong convergence with respect to F.

Lemma 1. Let X be any infinite subset of the abelian group G, and κ any regular infinite
cardinal ≤ card(X). Then the co-κ filter F on X is self-indulgent as a family of subsets of
G.
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Proof. Let S ∈ F, and let (xT )T∈F ′ be a family of elements of S∗ indexed by a downward
cofinal subset F ′ ⊆ F. If there exists an x ∈ S∗ which occurs “frequently” as a value of xT ,
in the sense that {T ∈ F ′ | xT = x} is downward cofinal in F ′, then for this x, and
F ′′ = {T ∈ F ′ | xT = x}, the condition of Definition 3 is trivially satisfied: for T ∈ F ′′ we
have x− xT = 0, which belongs to R∗ for every R ∈ F.

If there is no such “frequently occurring” value, then I claim we can use F ′′ = F ′ and
x = 0. Indeed, again writing R where the definition of strong convergence refers to a set
S ∈ F (since we already have a set we are calling S), note that for every R ∈ F we have
card(S∗ − R∗) < κ; and for each s ∈ S∗ − R∗, the fact that s does not occur “frequently”
among the xT tells us that we can find Ts ∈ F ′ such that no xT with T ⊆ Ts and T ∈ F ′ is
equal to s. If we let T0 be the intersection of these Ts over all s ∈ S∗−R∗, then by regularity
of the cardinal κ, we have T0 ∈ F, hence by downward cofinality of F ′ in F, the set F ′
contains some TR ⊆ T0. For all T ⊆ TR in F ′, we have xT ∈ R∗, completing the proof that
(xT )T∈F ′ converges strongly to 0 with respect to F.

It is strange that the above proof makes essentially no use of the operation of G. The role
played by F in the definition of strong convergence is used nontrivially only for convergence
to 0, while the criterion by which we obtain convergence to other points is the fact that
a system of elements with constant value x converges strongly to x. (This involves one small
use of the operation of G : x− x = 0 ∈ S∗.) However, in our application of the above result,
it will be combined with standard facts about how a group topology behaves with respect
to the group operation.

3. Our main result. We shall now prove that for F a self-indulgent family, and TF the
topology it determines, we have (5)⇐⇒ (6). We know that (5)=⇒ (6) by Corollary 1. The
plan of our proof of the converse will be to show that, given g ∈ G − {0} which we want
to exclude from the intersection in (5), we can build up, in a recursive manner, a sequence
S0, S1, . . . with g /∈ U(S0, S1, . . . ). The recursive step is given by the next lemma. (The
corresponding recursive step in the proof of [6, Theorem 2.1.4] uses an “either/or” argument
at each substep. These were collapsed here into the single either/or argument in the above
proof that co-κ filters on subsets of G are self-indulgent.)

Lemma 2. Let F be a self-indulgent downward directed system of subsets ofG satisfying (6).
Suppose g ∈ G− {0}, and that for some n ≥ 0, S0, . . . , Sn−1 are members of F such that

g /∈ S∗0 + · · ·+ S∗n−1. (7)

Then there exists Sn ∈ F such that

g /∈ S∗0 + · · ·+ S∗n−1 + S∗n. (8)

Proof. Assume the contrary. Then for each T ∈ F, the fact that (8) does not hold with
Sn = T shows that we may choose n+ 1 elements,

g0,T ∈ S∗0 , . . . , gn−1,T ∈ S∗n−1, gn,T ∈ T ∗ (9)

such that

g = g0,T + · · ·+ gn−1,T + gn,T . (10)
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Assuming for the moment that n > 0, let us focus on the first term on the right-hand
side of (10), and apply the assumption that F is self-indulgent to the family of elements
g0,T ∈ S∗0 , as T ranges over F. This tells us that we can find a g0 ∈ S∗0 and a downward
cofinal subset F0 ⊆ F such that

(g0,T )T∈F0 converges strongly to g0 with respect to F. (11)

If n > 1, we then go through the same process for the values g1,T ∈ S∗1 , as T ranges over
the above downward cofinal subset F0 ⊆ F. By the self-indulgence of F, we can find g1 ∈ S∗1
and a downward cofinal subset F1 of F0, such that

(g1,T )T∈F1 converges strongly to g1 with respect to F. (12)

We continue this way, through the construction of gn−1 and Fn−1. At the next step, we
simply set Fn = Fn−1 (or if n = 0, Fn = F ), and gn = 0, since the assumption gn,T ∈ T ∗
in (9) says that the family (gn,T )T∈F already converges strongly to 0, whence the same holds
when we restrict the index T to the cofinal subset Fn−1 ⊆ F.

Now since gi ∈ S∗i for i < n, while gn = 0, we have g0 + · · · + gn ∈ S∗1 + · · · + S∗n−1, so
by (7), g 6= g0 + · · ·+ gn. Letting g′ = g − (g0 + · · ·+ gn) 6= 0, condition (10) becomes

g′ = (g0,T − g0) + · · ·+ (gn,T − gn) for all T ∈ Fn. (13)

We now apply our hypothesis that F satisfies (6). Since g′ 6= 0, this says there is some
S ∈ F such that

g′ /∈ (n+ 1)S∗. (14)

But since for each i, the system (gi,T−gi)T∈Fn converges strongly to 0, we can find T ∈ Fn
such that each element gi,T − gi (0 ≤ i ≤ n) lies in S∗. Thus, (13) contradicts (14), and this
contradiction completes the proof of the lemma.

We deduce such statement.

Theorem 1 (cf. [6, Theorem 2.1.4]). Let F be a self-indulgent downward directed system of
subsets of an abelian group G. (In particular, by Lemma 1, for any infinite X ⊆ G and any
κ ≤ card(X), such an F is given by the co-κ filter on X.) Then the finest group topology on
G under which F converges to 0 is Hausdorff if and only if F satisfies (6).

Proof. By Corollary 1, (6) is necessary for our topology to be Hausdorff. Conversely, assu-
ming (6), we can use Lemma 2 recursively to build up, for any g ∈ G − {0}, a sequence
S0, S1, . . . of members of F, starting with the vacuous sequence, such that for all n, g /∈∑

i<n S
∗
i . Thus, g /∈ U(S0, S1, . . . ), giving (5), which is equivalent to our topology being

Hausdorff.

One may ask whether allowing co-κ filters with κ strictly less than card(X) provides any
useful examples. Such a filter only “scratches the surface” of X, so it might seem implau-
sible that it could converge to 0 in a group topology. But in fact, if G is the group ZI for
an uncountable set I, under the product topology, and X the set of elements of G which
have value 1 at a single point, and 0 everywhere else, then we see that the cofinite (i.e.,
co-ℵ0) filter determined by X does converge to 0 in G.

4. Some counterexamples. Before giving the rather complicated example showing that
Theorem 1 fails if the assumption that F is self-indulgent is removed, let us note a couple
of easier examples of things that go wrong in the absence of self-indulgence.
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Example 1. An abelian group G with an element g, a downward directed family F of
subsets, and a sequence S0, . . . , Sn−1 ∈ F satisfying (7), which cannot, as in Lemma 2, be
extended so as to satisfy (8).

Construction and proof. Let G be the additive group of the real line, F the set of nei-
ghborhoods (−ε, ε) of 0 (ε > 0), and g = 1 ∈ G. Then the 1-term sequence given by S0 =
(−1, 1) satisfies g /∈ S∗0 , but cannot be extended to a 2-term sequence with g /∈ S∗0 + S∗1 .

Indeed, whenever, as in the above example, F consists of neighborhoods of the identity in
the topology we are constructing, then the conclusion of Lemma 2 implies that S∗0+· · ·+S∗n−1
is closed in that topology. So if, starting with a topological group G, we take a basis F of
neighborhoods of 0 not all of which are closed sets, the conclusion of that lemma must fail.

Getting closer to our main example, we give

Example 2. An abelian group G and a downward directed family F of subsets of G such
that the union in (6) is a proper subgroup of G, but the intersection in (5) is all of G.

Construction and proof. Let G be the countable direct product group
∏

n>0 Z/nZ, and for
each positive integer m, let S(m) ⊆ G consist of all elements whose first through m-th
coordinates lie in {1, 0,−1}, the remaining coordinates being unrestricted. Thus, S(1) ⊇
S(2) ⊇ . . . , so F = {S(m)} is downward directed. (These sets satisfy S(m)∗ = S(m), but I
will write S(m)∗ below when the conditions we want to verify refer to sets S∗.)

To show that the intersection in (5) is all of G, we will in fact show that for any
m0, m1, . . . , we have

S(m0)
∗ + · · ·+ S(mm0)

∗ = G. (15)

Indeed, let g ∈ G. To describe the summands comprising an expression for g as a member
of S(m0)

∗ + · · · + S(mm0)
∗, we shall begin by describing their first m0 coordinates (in

Z/1Z, . . . , Z/m0Z), then describe their remaining coordinates. We take the former coordi-
nates all to lie in {1, 0,−1}, and to be chosen so that for each i ≤ m0, the i-th coordinates
of these m0 elements sum to the i-th coordinate of g. This is possible because the relevant
coordinates of g are members of groups Z/nZ with n ≤ m0.

We then choose the coordinates after the m0-th by taking these coordinates of the sum-
mand in S(m0) to agree with those of g, and those in the other summands to be zero. It
is easy to see that the elements we have constructed belong to the desired S(mi)

∗ and sum
to g.

On the other hand, consider any g in the union in (6). Say it lies in the member of
that union indexed by n ∈ ω. Thus, for every m, g lies in nS(m)∗; i.e., for every m, the
first m coordinates of g are sums of n terms in {1, 0,−1}; in other words, g is the image in∏

m Z/mZ of an element of
∏

m Z the absolute values of whose coordinates admit a common
bound n. Such elements clearly form a proper subgroup of G.

Finally, here is our example showing that in the absence of self-indulgence, Theorem 1
fails. In the development below, where we use square roots of 7 modulo powers of 3, we
could, more generally, replace 3 by any prime p, take any invertible irrational element α of
the ring Zp of p-adic integers, and look at the images of α, 0, −α ∈ Zp in the rings Z/pkZ.
But the choice of a quadratic irrationality makes the presentation a little simpler.
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Example 3. A countable, downward directed family F of subsets of Z for which (6) holds,
but (5) does not.

Construction and proof. For each integer k > 0, let

S(k) = {x ∈ Z | the image of x in Z/3kZ is either 0, or a square root of 7 in that
ring}. (16)

Since S(1) ⊇ S(2) ⊇ . . . , the set F = {S(k)} is downward directed. To show that (6)
holds, let g be any nonzero member of Z, and n any positive integer. Choose a positive
integer k large enough so that

3k does not divide any of the n+ 1 nonzero integers g2 − 7m2 with 0 ≤ m ≤ n. (17)

(E.g., take any k such that 3k > max(g2, 7n2).) Then I claim that g /∈ nS(k).
Indeed, suppose we had

g = g0 + · · ·+ gn−1, with all gi ∈ S(k). (18)

If we let c denote a square root of 7 in Z/3k Z, (which exists, by Hensel’s Lemma [4,
Theorem 3.4.1], and is unique up to sign), then by (16), each of the gi in (18) has resi-
due modulo 3k either 0, c, or −c. Hence (18) implies that the residue of g modulo 3k has the
form mc for some integer m of absolute value ≤ n. Squaring, we conclude that g2 ≡ 7m2

(mod 3k), contradicting (17). So (18) fails for all g 6= 0, establishing (6).
To show that (5) does not hold, consider any sequence S(m0), S(m1), . . . of elements of F,

determined by nonnegative integers m0, m1, . . . . I claim that U(S(m0), S(m1), . . . ) = Z; in
fact, that

S(m0)
∗ + S(m1)

∗ + . . . + S(m3m0 )
∗ = Z. (19)

For let c be a square root of 7 in Z/3m0 Z. I claim that every S(mi) contains an integer ci
whose residue modulo 3m0 is c. For if mi ≤ m0, then S(mi) contains S(m0), and so contains
every integer whose residue class modulo 3m0 is c, while if mi ≥ m0, then the residue class
c in Z/3m0Z can be lifted to a square root of 7 in Z/3miZ (cf. proof of Hensel’s Lemma),
a representative of which in Z will be the desired ci.

For any g ∈ Z, the element g/c ∈ Z/3m0Z is the residue of an integer h satisfying

0 ≤ h < 3m0 and h c is the residue of g in Z/3m0Z. (20)

Given such h, let us choose elements gi ∈ S(mi) for i ∈ {1, . . . , 3m0} such that for exactly h
values of i, gi is the element ci chosen in the preceding paragraph, while for the remaining
values, gi = 0. Then the sum g1 + · · · + g3m0 has residue h c in Z/3m0Z, which by (20) is
the residue of g. On the other hand, S(m0) contains all multiples of 3m0 (see (16)), so by
choosing g0 ∈ S(m0) to be an appropriate one of these, we can get exact equality,

g = g0 + g1 + · · ·+ g3m0 , (21)

as required to establish (19), and hence falsify (5).
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One can get similar examples by replacing the group of 3-adic integers implicit in the
above construction with other examples of a topological group K containing a subgroup G
and a dense cyclic subgroup H having trivial intersection. (In the above example, K = Z3

(the group of 3-adic integers), G = Z, and H =
√
7 Z.) For instance, one can take K = R/Z,

let G be its dense subgroup Q/Z, and let H be the subgroup generated by the image β of
an irrational b ∈ R. Letting F consist of the intersections of G with a family of neighborhoods
of {β, 0, −β} ⊆ K under the usual topology, one gets the same sort of behavior as in
Example 3.

5. Remarks on self-indulgent sets. Though the concept of a self-indulgent set of subsets
ofG has proved useful, it is not clear that we have formulated the best version of it. Originally,
I thought it would be enough to require that for every family (xT )T∈F there should exist
a cofinal subset F ′ ⊆ F making (xT )T∈F ′ converge strongly to x: I thought this would imply
the condition now used, that for every such family indexed by a cofinal subset F ′ ⊆ F, one
can get strong convergence on a smaller cofinal subset F ′′ ⊆ F ′. But I was unable to prove
this.

Before settling on the present fix for that problem, I considered other possibilities. For
instance, instead of looking at cofinal subsets of F, one might look at isotone maps f of
arbitrary downward directed posets I into F, having downward cofinal images. Convergence
of the system (cf(i))i∈I with respect to the ordering on I would be a weaker condition than
convergence with respect to the ordering on the image set f(I). But if we require this for all
such I, we have, in particular, the case I = F, giving the condition we have used.

One may also ask whether examples can be found of self-indulgent families essentially
different from our co-κ filters. The answer is, “Yes, but . . . ”. The lemma below gives such
examples, but they require knowing in advance the topology one is aiming at, so they are of
no evident use in getting new applications of Theorem 1.

Lemma 3. Let G be a locally compact Hausdorff topological abelian group, and let F be
the set of all compact neighborhoods of 0 in G (or any downward cofinal subset thereof ).
Then F is self-indulgent.

Proof. Because G is locally compact, F is a neighborhood basis of 0 in G, so strong conver-
gence with respect to F is equivalent to convergence.

Now for all S ∈ F, compactness of S∗ implies that every system of points indexed by
a directed set has a cofinal subsystem which converges to a point of S∗; so in particular, we
have the cases of this condition required by the definition of self-indulgence.

One may ask whether for F a self-indulgent family that yields a Hausdorff topology on
a group G, the members of F must become compact under that topology. The difficulty, when
one tries to prove this, is that the self-indulgence condition only applies to families of points
indexed by cofinal subsets of F, while compactness would require a like condition for families
indexed by arbitrary directed sets. In a similar vein, I. V. Protasov (personal communication)
has asked whether under a topology so induced, the group G must be complete. I do not
know the answer.

6. The nonabelian case. Let us now drop the assumption that G is abelian, and see how
the statement and proof of Theorem 1 can be adapted to this situation. Thus, in this section,

G is a not necessarily abelian group, written multiplicatively. (22)
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In particular, we shall denote the identity element of G by e, and for S ⊆ G write

S∗ = S ∪ {e} ∪ S−1. (23)

In [6, §3.1-§3.2] I. Protasov and E. Zelenyuk likewise generalize their results to noncom-
mutative groups. (Cf. also [7, §1.3].) As the analog of the sums

∑
i<n S

∗
i of (3), they use the

union, over all permutations of the index set n, of the corresponding permuted product of
the S∗i (and then, as in (3), take the union of this over all n).

We will take a different approach here. Let us first note that it will not work to simply
replicate the definition (3) with sums S∗0+S∗1+· · ·+S∗n−1 replaced by (unpermuted) products
S∗0 S

∗
1 . . . S

∗
n−1. The trouble is that we cannot say that a set of the form

⋃
n∈ω S

∗
0 S
∗
1 . . . S

∗
n−1

will contain the product of two sets of that same form; essentially because ω does not contain
a union of two successive copies of itself as an ordered set.

So let us use an index set which does. Let

Q = a totally ordered set of the order-type of the rational numbers. (24)

(We do not call this Q because we are not interested in its algebraic structure, but only in
its order-type. In fact, in our one explicit calculation, in the proof of Lemma 5, a different
realization of this order-type will be used.)

Given any Q-tuple (Sq)q∈Q of subsets of G, let

U((Sq)q∈Q) =
⋃
q0<···<qn∈Q S∗q0 . . . S

∗
qn , (25)

where the union is over all finite increasing sequences in Q. The sets (25) have the property
which we just noted that ω-indexed products lack; namely, it is easy to see

Lemma 4. Let (Sq)q∈Q be a family of subsets of G, and let σ, τ : Q → Q be two order-
embeddings such that σ(q) < τ(q′) for all q, q′ ∈ Q. Then

U((Sσ(q))q∈Q) U((Sτ(q))q∈Q) ⊆ U((Sq)q∈Q). (26)

The next result shows that sets of the form U((Sq)q∈Q) can be made small enough to do
what we will need.

Lemma 5. If T is a group topology on G, and S a neighborhood of e under T , then one
can choose for each q ∈ Q a neighborhood Sq of e under T so that U((Sq)q∈Q) ⊆ S.

Proof. (Cf. [6, proof of Lemma 3.1.1].) Let T0 = S, and choose recursively for each i > 0
a neighborhood Ti of e in T so that Ti Ti Ti ⊆ Ti−1. Identify Q as an ordered set with the
set of those rational numbers in the unit interval (0, 1) of the form m/2i, and

for each q = m/2i, written in lowest terms, let Sq = Ti. (27)

Then I claim that U((Sq)q∈Q) ⊆ S.
To show this, it suffices to show that for all finite sequences q0 < · · · < qn ∈ Q we

have S∗q0 . . . S
∗
qn ⊆ S. If we take a common denominator 2j for all members of such a finite

sequence, then by enlarging the sequence we can assume without loss of generality that
{q0, . . . , qn} is the whole set

{m/2j | 0 < m < 2j}. (28)
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Let us now enlarge the finite product of sets Sq determined by (27) and (28) still further, by
changing those factors whose index q has the largest possible denominator, 2j, from Sq = Tj
to the larger set Tj−1. (This will help in an induction to come.)

If we now classify the elements of (28) into those which, expressed in lowest terms, have
denominator 2j, those having denominator 2j−1, and those with smaller denominators, we see
that each term with denominator 2j−1 is flanked on each side by terms with denominator 2j,
and that the resulting 3-term strings of indices with denominators 2j, 2j−1, 2j are disjoint.
In the modified product of subsets of G that we have described, the factors corresponding
to these strings of three terms have the form Tj−1 Tj−1 Tj−1. By assumption, this product is
contained in Tj−2. Replacing each product Tj−1 Tj−1 Tj−1 with the possibly larger set Tj−2,
we conclude that our product of subsets is contained in a product of the same form, but with
subscripts now running not over (28) but over the elements of Q with denominator ≤ 2j−1.
Here the qualifier “of the same form” includes the condition that elements q with largest
possible denominator, now 2j−1, are assigned the set Tj−2 rather than Tj−1.

Iterating this reduction, we conclude that our product is contained in one with the single
index element 1/21, which is assigned the set T1−1 = T0 = S, giving the desired inclusion.

(Tangential observation: The set Q used in the above proof has a natural order-isomor-
phism with the set of intervals deleted in the “middle third” construction of the Cantor set
(arranged from left to right); and if we think of the relation Ti Ti Ti ⊆ Ti−1 in the above proof
intuitively as saying that Ti has one-third the “weight” of Ti−1, then the weights of these sets
can be taken to agree with the lengths of those deleted intervals. Thus, the above proof is
related to the fact that the total length of those deleted intervals is 1.)

In studying the finest group topology under which a given downward directed set F
converges to e, it will be convenient to require that F be closed under conjugation by elements
of G; i.e., that for every S ∈ F and g ∈ G we have g S g−1 ∈ F. If, given an F not satisfying
this condition, we simply replaced it with {g S g−1 | S ∈ F, g ∈ G}, we could lose downward
directedness. On the other hand, if we passed to the sets

⋃
g∈G Sg (S ∈ F ), these could be

much too large. (A group topology on G need not be generated by G-invariant neighborhoods
of e.) The construction of the next lemma gives what we really need.

Lemma 6. Let F be a downward directed family of nonempty subsets of G, and (following
[6, Definition 3.1.6]) let us write FG for the set of all subsets of G of the form

⋃
g∈G g Sg g

−1,
for G-tuples (Sg)g∈G of members of F.

Then FG is again a downward directed family of nonempty subsets of G, it is invariant
under conjugation by elements of G, and for every group topology T on G, the family FG

converges to e under T if and only if F does.

Proof. That FG is downward directed is easily seen to follow from the fact that F is; and the
set FG is conjugation invariant by construction. From the fact that each set

⋃
g∈G g Sg g

−1 ∈
FG contains a member of F, namely Se, it follows that if FG converges to e under T (i.e., if
it has members contained in every T -neighborhood of e), then so does F.

Now suppose, conversely, that F converges to e under T , and let S be any neighborhood
of e in T . For each g ∈ G, the set g−1S g is also a neighborhood of e, hence contains some
member of F, which we may denote Sg; thus S contains g Sg g−1. Hence S will contain⋃
g∈G g Sg g

−1 ∈ FG; so FG also converges to e, as required.

Restricting attention to conjugation-invariant families F, we can now get the analog
of (4).
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Proposition 1 (cf. [6, Theorem 3.1.4], [7, Theorem 1.17]). Let F be a downward directed
family of nonempty subsets of G, which is closed under conjugation by members of G. Then
the sets U((Sq)q∈Q) defined by (25), where (Sq)q∈Q ranges over all Q-tuples of members
of F, form a basis of open neighborhoods of e in a group topology TF on G, which is the
finest group topology under which F converges to e.

Proof. It is easy to see that the family of sets U((Sq)q∈Q) is downward directed and closed
under conjugation by elements of G (because F is), is closed under inverses (since for each
q ∈ Q, (S∗q )

−1 = S∗q , hence if we let σ : Q → Q be an order-antiautomorphism, we get
U((Sq)q∈Q)

−1 = U((Sσ(q))q∈Q), ) and has the property that each member of the family con-
tains a product of two other members (by Lemma 4).

To conclude that these sets give a basis of open neighborhoods of e in a group topology
on G, it remains to show that for every set U((Sq)q∈Q) and element x ∈ U((Sq)q∈Q), there
exists a set U((Tq)q∈Q) with

xU((Tq)q∈Q) ⊆ U((Sq)q∈Q). (29)

To see that this holds, note that by (25), x ∈ U((Sq)q∈Q) lies in a finite product S∗q0 . . . S
∗
qn

with q0 < · · · < qn ∈ Q. Now {q ∈ Q | q > qn} is order-isomorphic to Q; let us write it τ(Q)
where τ : Q→ Q is an order embedding. Then letting Tq = Sτ(q), we get (29).

So our sets give a basis of open sets for a group topology TF . Moreover, F converges
to e in this topology, since each U((Sq)q∈Q) contains members of F ; indeed, contains each of
the Sq.

To show that TF is the finest group topology on G under which F converges to e, suppose
T is any such topology. For every open neighborhood S of e in T , Lemma 5 gives us a set
of the form U((S ′q)q∈Q) contained in S, with each S ′q an open neighborhood of e under T .
By the assumption that F converges to e under T , each S ′q contains some Sq ∈ F, hence
U((Sq)q∈Q) ⊆ U((S ′q)q∈Q) ⊆ S is a neighborhood of e under TF contained in S; so TF is at
least as fine as T .

We have thus generalized to nonabelian groups G the concepts and results on abelian
G quoted in §1 as (1)–(4). The definitions and results that immediately followed these (the
remaining material in §§1–2 go over to the nonabelian case with minimal change. Indeed,
the argument that gave us Corollary 1, applied to Proposition 1, gives

Corollary 2. If F is a conjugation-invariant downward directed family of subsets of G, then
a necessary condition for the topology TF to be Hausdorff is⋃

n>0

⋂
S∈F (S

∗)n = {e}. In other words, for every g ∈ G− {e} and every n > 0,

there exists S ∈ F with g /∈ (S∗)n.
(30)

The analogs of Definitions 2 and 3 are

Definition 4. If F is a downward directed family of subsets of G, and (xi)i∈I a family of
elements of G indexed by a downward directed partially ordered set I, we shall say that (xi)
converges strongly to an element x ∈ G with respect to F if for every S ∈ F, there exists
i ∈ I such that for all j ≤ i, xj x

−1 ∈ S∗.
A downward directed family F of subsets of G will be called self-indulgent if for every

S ∈ F, and every family (xT )T∈F ′ of elements of S∗ indexed by a downward cofinal subset
F ′ ⊆ F, there exist an x ∈ S∗ and a downward cofinal subset F ′′ ⊆ F ′ such that (xT )T∈F ′′

converges strongly to x with respect to F.
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(The above definition of strong convergence is not right-left symmetric, since it uses xj x−1
rather than x−1xj. However, the family (xj x

−1)j∈I is conjugate, by x, to (x−1 xj)j∈I , hence
when F is closed under conjugation by members of G, the condition becomes symmetric.)

The proof that co-κ filters are self-indulgent also goes over with no change. (Recall that
the proof made essentially no use of the group operation.) We state this below, along with
another fact, immediate to verify, that we will need.

Lemma 7. Let X be any infinite subset of G, and κ any regular cardinal ≤ card(X). Then
the co-κ filter F on X is self-indulgent.

Moreover, if X is invariant under conjugation by elements of G, then that filter F is
likewise closed under conjugation by elements of G.

We now come to the analogs of the material of §3. A little care is needed in generalizing
Lemma 2, though the ideas are the same.

Lemma 8. Let F be a self-indulgent downward directed system of subsets of G which is
closed under conjugation by members of G, and satisfies (30). Let g ∈ G, and suppose that
for some n ≥ 0 and 0 ≤ m ≤ n, S0, . . . , Sm−1, Sm+1, . . . , Sn are members of F such that

g /∈ S∗0 . . . S∗m−1 S∗m+1 . . . S
∗
n. (31)

Then there exists Sm ∈ F such that

g /∈ S∗0 . . . S∗m−1 S∗m S∗m+1 . . . S
∗
n. (32)

Proof. As before, the contrary assumption says that for each T ∈ F, we can choose n + 1
elements

g0,T ∈ S∗0 , . . . , gm−1,T ∈ S∗m−1, gm,T ∈ T ∗, gm+1,T ∈ S∗m+1, . . . , gn,T ∈ S∗n (33)

(note how the m-th condition differs from the others), such that

g = g0,T . . . gm−1,T gm,T gm+1,T . . . gn,T . (34)

(However, from this point on, in writing expressions like the above we will omit the terms
indexed by m− 1 and m+ 1, and only show those indexed by 0, m and n.)

Making n successive applications of our self-indulgence assumption on F (we did these
from left to right in proving Lemma 2; but the order makes no difference), we can get
elements gi (0 ≤ i ≤ n) such that

for i 6= m, gi ∈ S∗i , while gm = e, (35)

and a cofinal subfamily F ′ ⊆ F, such that for each i, the family (gi,T )T∈F ′ converges strongly
to gi with respect to F. Defining

g′i,T = gi,T g
−1
i , (36)

we conclude that

for each i ∈ {0, . . . , n}, the family of elements (g′i,T )T∈F ′ converges strongly to e
with respect to F.

(37)
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Now (31) and (35) imply that g 6= g0 . . . gm . . . gn, so let us write

g′ = g · (g0 . . . gm . . . gn)
−1 6= e. (38)

Since F satisfies (30), we can find S ∈ F such that

g′ /∈ (S∗)n+1. (39)

On the other hand, note that if in the right-hand side of (38) we expand the initial
factor g using (34), and then use (36) to rewrite each of the factors gi,T from (34) as g′i,T gi,
we get

g′ = (g′0,T g0) . . . (g
′
m,T gm) . . . (g

′
n,T gn) (g0 . . . gm . . . gn)

−1 for all T ∈ F ′. (40)

Letting hi = g0 . . . gi−1 for 0 ≤ i ≤ n, this becomes

g′ = (h0 g
′
0,T h

−1
0 ) . . . (hm g

′
m,T h

−1
m ) . . . (hn g

′
n,T h

−1
n ) for all T ∈ F ′. (41)

From the facts that the g′i,T all converge strongly to e with respect to F, and that F is closed
under conjugation by members of G, it follows that in (41), each of the factors hi g′i,T h

−1
i

converges strongly to e. Hence for some T ∈ F ′, all the factors of (41) lie in the S∗ of (39).
That instance of (41) therefore contradicts (39), proving the lemma.

Given F as in the above lemma, and any g ∈ G − {e}, we can use that lemma to build
up, by recursion with respect to any enumeration of Q by the natural numbers, a system
(Sq)q∈Q such that g /∈ U(Sq)q∈Q. We deduce

Theorem 2. Let F be a downward directed system of subsets of G which is self-indulgent,
and closed under conjugation by all elements of G. (In particular, by Lemma 7 this is true
if for some conjugation-invariant X ⊆ G and some κ ≤ card(X), F is the co-κ filter on X.)
Then the finest group topology on G under which F converges to e is Hausdorff if and only
if F satisfies (30).

It is not clear to me how closely related this is to the nearest result in [6], Theorem 3.2.1.
That result is restricted to countable groups G, but concerns the finest group topology under
which a general sequence (equivalently, the cofinite (i.e., co-ℵ0) filter on a general subset,
not necessarily conjugation invariant) converges. The criterion given for that topology to
be Hausdorff uses, in place of the n-fold products implicit in (30), arbitrary group words
f(x0, . . . , xn) in n+ 1 variables, and constants from G, which satisfy f(e, . . . , e) = e. These
two sorts of expressions ultimately reduce to the same thing; but the quantification of the
conditions is subtly different. Perhaps this is not surprising: (5) and (6) can also be looked
at as similar conditions which involve different quantifications, but which become equivalent
in the case of self-indulgent F.

In [6, §§3.3, 3.4], topologies on rings determined by families of subsets are similarly
studied.

7. A Fibonacci connection. Many interesting applications are given in [6] of the criterion
obtained there for the cofinite filter on a countable subset of an abelian group to converge
to 0 in a Hausdorff group topology. In particular, it is shown that there exist such topo-
logies on Z under which various integer sequences — for instance the Fibonacci sequence [6,
Corollary 2.2.8] — converge to 0.
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Note that in the free nonabelian group G = x, y on two generators, one can define
a Fibonacci-like sequence by

f0 = x, f1 = y, fn+1 = fn−1fn (n ∈ Z). (42)

I had hopes of proving that there was a Hausdorff group topology on x, y under which this
sequence converged to e. However, if we define an automorphism ϕ of x, y by ϕ(x) = y,
ϕ(y) = xy, then we see that in (42), fn = ϕn(x); so the result I hoped for would imply that
every g ∈ x, y satisfied limn→∞ ϕ

n(g) = e. But calculation shows that the commutator
x y x−1y−1 is fixed by ϕ2; so this cannot be true. Indeed, there cannot even exist a Hausdorff
group topology under which the sequence fn approaches some fixed element c of G, or of
a topological overgroup of G, since then we would have

ϕn(x y x−1y−1) = ϕn(x)ϕn+1(x)ϕn(x)−1ϕn+1(x)−1 → c c c−1c−1 = e, (43)

though as noted, the left-hand side has, for every even n, the value x y x−1y−1. However, I
don’t see any obstruction to there being a topological overgroup of G under which the values
of f2n and f2n+1 each approach constant values.

For another context in which the “Fibonacci automorphism” ϕ of x, y (there called
σ1/2) comes up, see [1].

8. Final remark, and acknowledgements. I do not know of interesting applications
of the results of this note. My motivation has been structural: “What ideas underlie the
arguments of [6]; and in what more general contexts are those ideas applicable?” Perhaps
group theorists will find such applications.

I am indebted to D. Dikranjan, P. Nielsen, I. V. Protasov, K. M. Rangaswamy and
Ye. Zelenyuk for helpful comments and corrections to previous versions of this note, and for
references to the literature.
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