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We construct a free abelian monogenic digroup and describe its endomorphism semigroup.

Ю. В. Жучок. Эндоморфизмы свободных абелевых моногенных дигрупп // Мат. Студiї. –
2015. – Т.43, №2. – C.144–152.

Определяется конструкция свободной абелевой моногенной дигруппы и описывается
ее полугруппа эндоморфизмов.

1. Introduction. The notion of a digroup first appeared in the work of Jean-Louis Loday
([1]). An algebraic system (D,a,`) with two binary associative operations a and ` is called
a digroup if for all x, y, z ∈ D the following conditions hold:

(D1) (xay)az = xa(y`z),

(D2) (x`y)az = x`(yaz),

(D3) (xay)`z = x`(y`z),

(D4) there exists e ∈ D such that for all x ∈ D, e ` x = x = x a e,
(D5) for all x ∈ D there exists a unique element x−1 ∈ D such that x ` x−1 = e = x−1 a x.

An element e is called a bar-unit of (D,a,`) and x−1 is said to be inverse to x with
respect to e. It should be noted that this definition does not imply that e is the unique
bar-unit of D. In general the digroup can have many bar-units. If operations of a digroup
coincide, the digroup becomes a group. One of the first results about digroups is the proof of
the fact that Cayley’s theorem for groups has an analogue in the class of all digroups ([2]).
M. K. Kinyon modified Loday’s terminology to give a much cleaner definition of a digroup
and then used semigroup theory to show that every digroup is the product of a group and a
trivial digroup ([3]). An even simpler basis of independent axioms for the variety of digroups
was obtained by J. D. Phillips ([4]). Some structural properties of digroups were studied in [5].
More information on digroups and their examples can be found, for example, in [6], [7].

It is well-known that the notion of a digroup is closely related with the notion of a di-
monoid ([1]). Recall that a nonempty set D equipped with two binary associative operations
a and ` satisfying the axioms (D1)–(D3) is called a dimonoid. Dimonoids have been studied
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by many authors (see, e.g., [8]–[10]). Dimonoids and in particular digroups play a prominent
role in problems from the theory of Leibniz algebras. In this paper we study a free abelian
monogenic digroup and its endomorphism semigroup.

The paper is organized as follows. In Section 2, we give necessary definitions and construct
a free abelian monogenic digroup. In Section 3, we define the least congruence on a free
dimonoid such that the corresponding quotient is isomorphic to the free abelian monogenic
digroup. In Section 4, we describe all endomorphisms of the free abelian monogenic digroup
and construct a semigroup which is isomorphic to the endomorphism monoid of the given
free digroup.

2. The free abelian monogenic digroup. A digroup (D,a,`) is called abelian if x a y =
y ` x for all x, y ∈ D [6]. A digroup generated by one element is called monogenic.

Let G be an arbitrary abelian additive group, X1, X2, ..., Xn−1 be non-empty subsets of
G and Xn = G (n ≥ 2). We denote by

∏n
i=1Xi the direct product X1 ×X2 × ... ×Xn and

set x+ = x1 + x2 + ...+ xn for all x = (x1, x2, ..., xn) ∈
∏n

i=1Xi.
We take arbitrary x, y ∈

∏n
i=1Xi and define two binary operations a and ` on

∏n
i=1Xi

as follows: x a y = (x1, x2, ..., xn−1, xn + y+), x ` y = (y1, y2, ..., yn−1, yn + x+).

Proposition 1. The algebraic system (
∏n

i=1Xi,a,`) is an abelian digroup.

Proof. Let x, y, z ∈
∏n

i=1Xi. Then

(x a y) a z = (x1, ..., xn−1, xn + y+) a (z1, z2, ..., zn) = (x1, ..., xn−1, xn + y+ + z+) =

= (x1, x2..., xn) a (y1, ..., yn−1, yn + z+) = x a (y a z),

(x ` y) ` z = (y1, ..., yn−1, yn + x+) ` (z1, z2, ..., zn) = (z1, ..., zn−1, zn + y+ + x+) =

= (x1, x2..., xn) ` (z1, ..., zn−1, zn + y+) = x ` (y ` z).

Thus, operations a and ` are associative. Show that axioms (D1)–(D3) hold:

(x a y) a z = (x1, ..., xn−1, xn + y+ + z+) =

= (x1, x2..., xn) a (z1, ..., zn−1, zn + y+) = x a (y ` z),

(x ` y) a z = (y1, ..., yn−1, yn + x+) a (z1, z2, ..., zn) = (y1, ..., yn−1, yn + x+ + z+) =

= (x1, x2..., xn) ` (y1, ..., yn−1, yn + z+) = x ` (y a z),

(x a y) ` z = (x1, ..., xn−1, xn + y+) ` (z1, z2, ..., zn) =

= (z1, ..., zn−1, zn + y+ + x+) = x ` (y ` z).

Therefore, (
∏n

i=1Xi,a,`) is a dimonoid.
Let e be an arbitrary bar-unit of (

∏n
i=1Xi,a,`). Then for all x ∈

∏n
i=1Xi we obtain

e ` x = (x1, ..., xn−1, xn + e+) = (x1, x2, ..., xn) = x a e.

It follows that e+ = 0. It is clear, if e ∈
∏n

i=1Xi such that e+ = 0, then e is a bar-unit of
(
∏n

i=1Xi,a,`).
Fix a bar-unit e of (

∏n
i=1Xi,a,`) and assume that for some x ∈

∏n
i=1Xi there exists

x−1 = (y1, y2, ..., yn) ∈
∏n

i=1Xi such that x ` x−1 = (y1, ..., yn−1, yn + x+) = (e1, e2, ..., en) =
x−1 a x.

Hence x−1 = (e1, ..., en−1, en − x+). Besides, x−1 is a unique inverse element to x with
respect to e. So, (

∏n
i=1Xi,a,`) is a digroup.

Finally, we have x a y = (x1, ..., xn−1, xn + y+) = y ` x for all x, y ∈
∏n

i=1Xi.
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Let N be the set of all natural numbers, N0 = N∪{0} and E = {1,−1}. Denote by (Z,+)
the additive group of all integer numbers.

By Proposition 1, the algebraic sysytem (E×Z,a,`) is an abelian digroup. Bar-units of
(E × Z,a,`) are (1,−1) and (−1, 1).

For every element x of an arbitrary digroup (D,a,`) we use denotations:

xn` = x ` x ` ... ` x︸ ︷︷ ︸
n

, xna = x a x a ... a x︸ ︷︷ ︸
n

(n ∈ N).

Lemma 1. Each of sets {(1, 0)}, {(−1, 0)} is generating for the digroup (E × Z,a,`).

Proof. Show that {(1, 0)} is a generating set of (E × Z,a,`). We take the bar-unit (−1, 1)
as the acting of a nullary operation on (E × Z,a,`). Note that (−1, 0) is inverse to (1, 0)
with respect to (−1, 1). It is not hard to check by an induction that for all n ∈ N0,

(1, 0)n+1
` = (1, n) = (1, 0)n+1

a , (−1, 0)n+1
` = (−1,−n) = (−1, 0)n+1

a .

Then for all n ∈ N0 we obtain (1, 0) a (−1,−n) = (1,−1 − n), (−1, 0) a (1, n) =
(−1, 1 + n).

Therefore, 〈(1, 0)〉 = E ×Z. Analogously we can prove that {(−1, 0)} is a generating set
of the digroup (E × Z,a,`).

From this lemma immediately follows

Corollary 1. Let (i, 0)0a be the fixed bar-unit of (E × Z,a,`) for all i ∈ E. Each element
(a,m) of (E × Z,a,`) can be uniquely represented as (a,m) = (a, 0) a (i, 0)ma for suitable
i ∈ E.

It is not hard to check that for every element x of an abelian digroup (D,a,`) we have
xn` = xna for all n ∈ N. Therefore, for abelian digroups we write xn instead of xn`.

Remark 1. For abelian digroups the identity xm a xn = xm+n is not true for integers m,n.
In order to satisfy this identity, it is enough that both its sides would have one common
multiplier on the left (on the right) with respect to an operation a (respect. `).

For example, take the digroup (E × Z,a,`), x = (1, 0) ∈ E × Z and m = 2, n = −4.
Then with respect to the bar-unit (−1, 1) we have xm+n = (1, 0)−2 = (−1,−1) 6= (1,−3) =
(1, 0)2 a (1, 0)−4 = xm a xn, however for all (a, b) ∈ E × Z, (a, b) a xm+n = (a, b − 2) =
(a, b) a xm a xn.

For arbitrary digroups D1 = (D1,a1,`1) and D2 = (D2,a2,`2), a mapping ϕ : D1 → D2

is called a homomorphism of D1 into D2 if for all x, y ∈ D1 we have (x a1 y)ϕ = xϕ a2
yϕ, (x `1 y)ϕ = xϕ `2 yϕ.

A bijective homomorphism ϕ : D1 → D2 is called an isomorphism of D1 into D2. In this
case digroups D1 and D2 are called isomorphic.

Theorem 1. The digroup (E × Z,a,`) is a free abelian monogenic digroup.

Proof. Let (D′,a′,`′) be an arbitrary abelian digroup, (1, 0)ξ = t ∈ D′, and (−1, 0)ξ = t−1,
where t−1 is inverse to t with respect to the fixed bar-unit e′ ∈ D′. Further, we naturally
extend ξ to a mapping Ξ of E×Z into D′ using the fact that {(1, 0)} is the generating set of
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(E × Z,a,`) and (1, 0)−1 = (−1, 0) (see Lemma 1), that is, (a,m)Ξ = ((a, 0) a (i, 0)m)Ξ =
ta a′ ti|m| = ta a′ tm for all (a,m) ∈ E × Z.

Assume that (a,m), (b, n) ∈ E × Z. Taking into account Remark 1,

((a,m) a (b, n))Ξ = (a,m+ b+ n)Ξ = ta a′ tm+b+n = ta a′ (tm a′ tb a′ tn) =

= (ta a′ tm) a′ (tb a′ tn) = (a,m)Ξ a′ (b, n)Ξ.

By Proposition 1, the digroup (E × Z,a,`) is abelian. Since (D′,a′,`′) is an abelian
digroup also, we obtain

((a,m) ` (b, n))Ξ = ((b, n) a (a,m))Ξ = (b, n)Ξ a′ (a,m)Ξ = (a,m)Ξ `′ (b, n)Ξ.

Thus, Ξ is a homomorphism of (E × Z,a,`) into (D′,a′,`′). In addition, (E × Z)Ξ is
generated by one element t.

3. The least abelian digroup congruence. Let (D,a,`) be an arbitrary dimonoid, ρ be
an equivalence relation on D which is stable on the left and on the right with respect to each
of operations a,`. In this case ρ is called a congruence on (D,a,`).

For a congruence ρ on a dimonoid (D,a,`) the corresponding quotient-dimonoid is
denoted by (D,a,`)/ρ. A congruence ρ on a dimonoid (D,a,`) is called abelian digroup
if the quotient-dimonoid (D,a,`)/ρ is an abelian digroup.

Now we define a free dimonoid on an arbitrary set Y . Put Ỹ = {ỹ|y ∈ Y }. Two binary
operations a and ` are defined on the set

Fd(Y ) = Ỹ ∪ (Ỹ × Y ) ∪ (Y × Ỹ ) ∪ (Ỹ × Y × Y ) ∪ (Y × Ỹ × Y ) ∪ (Y × Y × Ỹ ) ∪ ...

as follows:

(y1, ..., ỹi, ..., yk) ≺ (yk+1, ..., ỹj, ..., yl) = (y1, ..., ỹi, ..., yl),

(y1, ..., ỹi, ..., yk) � (yk+1, ..., ỹj, ..., yl) = (y1, ..., ỹj, ..., yl).

The algebra (Fd(Y ),≺,�) is the free dimonoid (see [1]). Elements of Fd(Y ) are called
words and Ỹ is the generating set of (Fd(Y ),≺,�).

Let X = {x, x−1} and (Fd(X),≺,�) be the free dimonoid on X. By qt̃(w), t ∈ X,
we denote the quantity of all letters t̃ that are included in the canonical form of w =
(w1, ..., w̃k, ..., wl): w = w̃1 � ... � w̃k ≺ ... ≺ w̃l.

For every w ∈ Fd(X) we put q(w) = qx̃(w)−q
x̃−1(w). Define a binary relation σ on Fd(X)

as follows: words u = (u1, ..., ũi, ..., un) and v = (v1, ..., ṽj, ..., vm) of Fd(X) are σ-equivalent
if ui = vj and q(u) = q(v).

A word u = (ũ1, ..., ui, ..., un) ∈ Fd(X) we call irreducible if it do not contain any
subword of the form (x, x−1), (x−1, x). For example, irreducible words of Fd(X) are x̃,
(x̃, x, x), (x̃, x−1, x−1, x−1) and x̃−1, (x̃−1, x−1), (x̃−1, x, x, x, x).

Lemma 2. The relation σ is a congruence on the free dimonoid (Fd(X),≺,�) such that for
any class [w] ∈ (Fd(X),≺,�)/σ there exists a unique irreducible word w′ ∈ [w] of the form
w′ = ỹv, y ∈ X, v ∈ X∗ ∪ (X−1)∗, where X∗ and (X−1)∗ are free monoids on X and X−1,
respectively.
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Proof. It easy to see that σ is an equivalence relation. Assume that u = (u1, ..., ũi, ..., un), v =
(v1, ..., ṽj, ..., vm) ∈ Fd(X) such that uσv and w = (w1, ..., w̃k, ..., wl) ∈ Fd(X). Then

u ≺ w = (u1, ..., ũi, ..., un, w1, ..., wl), v ≺ w = (v1, ..., ṽj, ..., vm, w1, ..., wl),

u � w = (u1, ..., un, w1, ..., w̃k, ..., wl), v � w = (v1, ..., vm, w1, ..., w̃k, ..., wl).

Since ui = vj and q(u ≺ w) = q(v ≺ w), q(u � w) = q(v � w), we have (u ≺ w)σ(v ≺ w)
and (u � w)σ(v � w). Analogously we can show that (w ≺ u)σ(w ≺ v) and (w � u)σ
(w � v). Thus, σ is a congruence.

Let [w] ∈ (Fd(X),≺,�)/σ be an arbitrary congruence class, w = (w1, ..., w̃k, ..., wl). By
the definition of σ, such words as w′′ = (w̃k, w1, ..., wk−1, wk+1, ..., wl) and

(w̃k, x, x
−1, w1, ..., wk−1, wk+1, ..., wl), ..., (w̃k, w1, ..., wk−1, wk+1, ..., wl, x, x

−1),

(w̃k, x
−1, x, w1, ..., wk−1, wk+1, ..., wl), ..., (w̃k, w1, ..., wk−1, wk+1, ..., wl, x

−1, x)

are σ-equivalent to w. Thus, deleting from w′′ all subwords of the form (x, x−1), (x−1, x) (in
the case if such subwords there exist), we obtain the irreducible word w′ which is σ-equivalent
to w. Uniqueness of w′ is obvious, besides w′ can be represented as (x̃m, xn, xn, ..., xn︸ ︷︷ ︸

s

), where

m,n = ±1, s ≥ 0.

For convenient irreducible words of Fd(X) we will write as x̃αxβ, where α ∈ E, β ∈ Z, in
particular x̃αx0 = x̃α.

Lemma 3. The quotient-dimonoid (Fd(X),≺,�)/σ is an abelian digroup isomorphic to the
free digroup (E × Z,a,`).

Proof. Lemma 2 implies (Fd(X),≺,�)/σ is a dimonoid. Since (u a v)σ(v ` u) for all
u, v ∈ Fd(X), we have (Fd(X),≺,�)/σ is abelian. Let [e] ∈ (Fd(X),≺,�)/σ such that
qx̃(e) = q

x̃−1(e). Then for all [w] ∈ (Fd(X),≺,�)/σ, [e] � [w] = [e � w] = [w] = [w] ≺ [e].
Thus, [e] is a bar-unit of (Fd(X),≺,�)/σ for all e ∈ Fd(X) with q(e) = 0. Moreover, for

the fixed bar-unit [e] ∈ (Fd(X),≺,�)/σ, e = x̃e1xe2 , and [w], [u] ∈ (Fd(X),≺,�)/σ, where
w = x̃w1xw2 , u = x̃u1xu2 , the equalities [w] � [u] = [x̃w1xw2 � x̃u1xu2 ] = [x̃u1xw1+w2+u2 ] =
[x̃e1xe2 ] = [u] ≺ [w] imply [u] = [x̃e1xe2−w1−w2 ] = [w]−1. Uniqueness of [w]−1 is obvious.

Now define a mapping ϕ of (Fd(X),≺,�)/σ into (E×Z,a,`) by [w]ϕ = (w1, w2) for all
irreducible words w = x̃w1xw2 ∈ Fd(X). Taking into account Lemma 2, it is clear that ϕ is
a bijective mapping.

Further for all [u], [v] ∈ (Fd(X),≺,�)/σ, where u = x̃u1xu2 , v = x̃v1xv2 , we have

([u] ≺ [v])ϕ = [x̃u1xu2 ≺ x̃v1xv2 ]ϕ = [x̃u1xu2+v1+v2 ]ϕ = (u1, u2 + v1 + v2) =

= (u1, u2) a (v1, v2) = [u]ϕ a [v]ϕ.

Since digroups (Fd(X),≺,�)/σ and (E × Z,a,`) are abelian,

(A � B)ϕ = (B ≺ A)ϕ = Bϕ a Aϕ = Aϕ ` Bϕ

for all A,B ∈ (Fd(X),≺,�)/σ.

From this lemma it follows that for (Fd(X),≺,�)/σ there exist only two distinct bar-
units e1 = [(x̃, x−1)] and e2 = [(x̃−1, x)].
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Theorem 2. The binary relation σ is the least abelian digroup congruence on the free
dimonoid (Fd(X),≺,�) with X = {x, x−1}.

Proof. The proof of this statement follows from Lemma 2 and Lemma 3.

4. Endomorphisms of the free abelian digroup of rank 1. For an arbitrary digroup
D = (D,a,`) by End(D) we denote the endomorphism monoid of D. First, we describe all
endomorphisms of the free abelian monogenic digroup.

Lemma 4. Let e be the fixed bar-unit of the free abelian digroup (E×Z,a,`) and t ∈ E×Z.
A transformation ξe,t of (E × Z,a,`) defined by

(a, n)ξe,t =

{
(t1, nt

+ + t2), if a = 1,

(e1, (n− 1)t+ + e2), if a = −1

is an endomorphism.

Proof. For all (a, n), (a′, n′) ∈ E × Z, we have the following cases:

1) a = a′ = 1, then

((1, n) a (1, n′))ξe,t = (1, n+ 1 + n′)ξe,t = (t1, (n+ 1 + n′)t+ + t2) =

= (t1, nt
+ + t2) a (t1, n

′t+ + t2) = (1, n)ξe,t a (1, n′)ξe,t;

2) a = 1, a′ = −1, then

((1, n) a (−1, n′))ξe,t = (1, n− 1 + n′)ξe,t = (t1, (n− 1 + n′)t+ + t2) =

= (t1, nt
+ + t2) a (e1, (n

′ − 1)t+ + e2) = (1, n)ξe,t a (−1, n′)ξe,t;

3) a = −1, a′ = 1, then

((−1, n) a (1, n′))ξe,t = (−1, n+ 1 + n′)ξe,t = (e1, (n+ n′)t+ + e2) =

= (e1, (n− 1)t+ + e2) a (t1, n
′t+ + t2) = (−1, n)ξe,t a (1, n′)ξe,t;

4) a = a′ = −1, then

((−1, n) a (−1, n′))ξe,t = (−1, n− 1 + n′)ξe,t = (e1, (n+ n′ − 2)t+ + e2) =

= (e1, (n− 1)t+ + e2) a (e1, (n
′ − 1)t+ + e2) = (−1, n)ξe,t a (−1, n′)ξe,t.

From 1)–4) it follows that ξe,t ∈ End(E×Z,a). Since (E×Z,a,`) is an abelian digroup,
ξe,t ∈ End(E × Z,a,`) for all e, t ∈ E × Z, e2 = e.

Note that endomorphisms ξe,t, e, t ∈ E × Z, where e+ = 0, are not injective in general.
For example, if e = t, e2 = e, we have xξe,t = e for all x ∈ E × Z.

Lemma 5. Let x = (x1, x2) ∈ E × Z and m ∈ N. Then xm = (x1, x2 + (m− 1)x+).

Proof. The proof of this statement is obvious.

Lemma 6. Let ξ be an arbitrary endomorphism of (E × Z,a,`) and (1, 0)ξ = t. Then
ξ = ξe,t for some bar-unit e ∈ E × Z.



150 YU. V. ZHUCHOK

Proof. Assume that (−1, 1)ξ = e. It is clear that e2 = e, i.e. e is the bar-unit of (E×Z,a,`).
Then there exists a unique inverse element t−1 = (e1, e2 − t+) to t with respect to e. By
Corollary 1, for all (a, n) ∈ E × Z we have (a, n) = (a, 0) a (j, 0)n for suitable j ∈ E. Using
Lemma 5, we obtain the following cases:

1) n ≥ 0, a = 1, then (1, n)ξ = ((1, 0)n+1)ξ = tn+1 = (t1, t2 + nt+);
2) −n < 0, a = 1, then

(1,−n)ξ = ((1, 0) a (−1, 0)n)ξ = t a t−n =

= (t1, t2) a (e1, e2 − t+ + (n− 1)(e+ − t+)) = (t1, t2 − nt+);

3) n ≥ 0, a = −1, then

(−1, n)ξ = ((−1, 0) a (1, 0)n)ξ = t−1 a tn =

= (e1, e2 − t+) a (t1, t2 + (n− 1)t+) = (e1, e2 + (n− 1)t+);

4) −n < 0, a = −1, then

(−1,−n)ξ = (−1, 0)n+1)ξ = (e1, e2− t+)n+1 = (e1, e2− t+ +n(e+− t+)) = (e1, e2−(n+1)t+).

From 1)–4) it follows that ξ coincides with ξe,t (see Lemma 4), where e = (−1, 1)ξ.

LetW be the set of all bar-units of (E×Z,a,`), that isW = {(1,−1), (−1, 1)}. Consider
a binary operation ◦ on W × (E × Z) defined as follows

(e, t) ◦ (i, s) =


((s1,−s1), (s1, t2s+ + s2)), if e1 = t1 = 1,

((s1,−s1), (i1, t+s+ − i1)), if e1 = 1, t1 = −1,

((i1,−i1), (s1, t2s+ + s2)), if e1 = −1, t1 = 1,

((i1,−i1), (i1, t+s+ − i1)), if e1 = t1 = −1.

It is clear that the operation ◦ is completed on W × (E × Z).

Lemma 7. The algebra (W × (E × Z), ◦) is a monoid with the identity ((−1, 1), (1, 0)).

Proof. Take arbitrary (e, t), (i, s), (j, r) ∈ W × (E × Z) and put A = ((e, t) ◦ (i, s)) ◦ (j, r),
B = (e, t) ◦ ((i, s) ◦ (j, r)).

Assume that e1 = t1 = i1 = s1 = 1. Then

A = ((s1,−s1), (s1, t2s+ + s2)) ◦ (j, r) = ((r1,−r1), (r1, t2s+r+ + s2r
+ + r2)) =

= ((r1,−r1), (r1, t2(r+ + s2r
+) + s2r

+ + r2)) = (e, t) ◦ ((r1,−r1), (r1, s2r+ + r2)) = B.

For e1 = t1 = i1 = s1 = −1 we have

A = ((i1,−i1), (i1, t+s+ − i1)) ◦ (j, r) =

= ((j1,−j1), (j1, t+s+r+ − j1)) = (e, t) ◦ ((j1,−j1), (j1, s+r+ − j1)) = B.

Let e1 = i1 = 1, t1 = s1 = −1. Then

A = ((s1,−s1), (i1, t+s+ − i1)) ◦ (j, r) = ((j1,−j1), (r1, r2 + (t+s+ − i1)r+)) =

= ((j1,−j1), (r1, t+s+r+ − r1)) = (e, t) ◦ ((r1,−r1), (j1, s+r+ − j1)) = B.
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If e1 = i1 = −1, t1 = s1 = 1, then

A = ((i1,−i1), (s1, t2s+ + s2)) ◦ (j, r) = ((j1,−j1), (r1, t2s+r+ + s2r
+ + r2)) =

= ((j1,−j1), (r1, t2(r+ + s2r
+) + s2r

+ + r2)) = (e, t) ◦ ((j1,−j1), (r1, s2r+ + r2)) = B.

In similar way all other cases are proved. Thus, (W × (E×Z), ◦) is a semigroup. A direct
verification shows that an identity of (W × (E × Z), ◦) is ((−1, 1), (1, 0)).

The main result of this paper is the following theorem.

Theorem 3. (i) For any (e, t) ∈ W × (E × Z) a transformation ξe,t of the free abelian
monogenic digroup (E × Z,a,`) defined by

(a, n)ξe,t =

{
(t1, nt

+ + t2), if a = 1,

(e1, (n− 1)t+ + e2), if a = −1

is an endomorphism. And every endomorphism of (E × Z,a,`) has the above form.
(ii) The endomorphism monoid End(E × Z,a,`) is isomorphic to (W × (E × Z), ◦).

Proof. The proof of (i) immediately follows from Lemmas 4 and 6. Show that the statement
(ii) holds. Define a bijection Υ of End(E × Z,a,`) into (W × (E × Z), ◦) by

ξe,tΥ = (e, t) for all ξe,t ∈ End(E × Z,a,`).

Let ξe,t, ξi,s ∈ End(E × Z,a,`) and (a, n) ∈ E × Z. We have the following four cases.

1) e1 = t1 = 1. Then

(1, n)ξe,tξi,s = (1, nt+ + t2)ξi,s = (s1, s2 + (nt+ + t2)s
+) =

= (s1, nt
+s+ + (t2s

+ + s2)) = (1, n)ξ(s1,−s1),(s1,s2+t2s+),

(−1, n)ξe,tξi,s = (1, (n− 1)t+ + e2)ξi,s = (s1, s2 + ((n− 1)t+ + e2)s
+) =

= (s1, (n− 1)t+s+ + (s2 − s+)) = (−1, n)ξ(s1,−s1),(s1,s2+t2s+).

Thus, ξ(1,−1),(1,t2)ξi,s = ξ(s1,−s1),(s1,s2+t2s+).
2) e1 = 1, t1 = −1. Then

(1, n)ξe,tξi,s = (−1, nt+ + t2)ξi,s = (i1, i2 + (nt+ + t2 − 1)s+) =

= (i1, nt
+s+ + (t+s+ − i1)) = (1, n)ξ(s1,−s1),(i1,t+s+−i1),

(−1, n)ξe,tξi,s = (1, (n− 1)t+ + e2)ξi,s = (s1, ((n− 1)t+ + e2)s
+ + s2) =

= (s1, (n− 1)t+s+ − s1) = (−1, n)ξ(s1,−s1),(i1,t+s+−i1).

So, ξ(1,−1),(−1,t2)ξi,s = ξ(s1,−s1),(i1,t+s+−i1).
3) e1 = −1, t1 = 1. Then

(1, n)ξe,tξi,s = (1, nt+ + t2)ξi,s = (s1, nt
+s+ + (t2s

+ + s2)) = (1, n)ξ(i1,−i1),(s1,t2s++s2),

(−1, n)ξe,tξi,s = (−1, (n− 1)t+ + e2)ξi,s = (i1, i2 + ((n− 1)t+ + e2 − 1)s+) =

= (i1, (n− 1)t+s+ − i1) = (−1, n)ξ(i1,−i1),(s1,t2s++s2).

Therefore, ξ(−1,1),(1,t2)ξi,s = ξ(i1,−i1),(s1,t2s++s2).
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4) e1 = t1 = −1. Then

(1, n)ξe,tξi,s = (−1, nt+ + t2)ξi,s = (i1, (nt
+ + t2 − 1)s+ + i2)) =

= (i1, nt
+s+ + (t+s+ − i1)) = (1, n)ξ(i1,−i1),(i1,t+s+−i1),

(−1, n)ξe,tξi,s = (−1, (n− 1)t+ + e2)ξi,s = (i1, i2 + ((n− 1)t+ + e2 − 1)s+) =

= (i1, (n− 1)t+s+ − i1) = (−1, n)ξ(i1,−i1),(i1,t+s+−i1).

Thus, ξ(−1,1),(−1,t2)ξi,s = ξ(i1,−i1),(i1,t+s+−i1).

Finally, using equalities from cases 1)–4), we obtain

(ξe,tξi,s)Υ =


((s1,−s1), (s1, t2s+ + s2)), if e1 = t1 = 1,

((s1,−s1), (i1, t+s+ − i1)), if e1 = 1, t1 = −1,

((i1,−i1), (s1, t2s+ + s2)), if e1 = −1, t1 = 1,

((i1,−i1), (i1, t+s+ − i1)), if e1 = t1 = −1

for all ξe,t, ξi,s ∈ End(E × Z,a,`).
On the other hand,

ξe,tΥ ◦ ξi,sΥ =


((1,−1), (1, t2)) ◦ (i, s) = ((s1,−s1), (s1, t2s+ + s2)), if e1 = t1 = 1,

((1,−1), (−1, t2)) ◦ (i, s) = ((s1,−s1), (i1, t+s+ − i1)), if e1 = 1, t1 = −1,

((−1, 1), (1, t2)) ◦ (i, s) = ((i1,−i1), (s1, t2s+ + s2)), if e1 = −1, t1 = 1,

((−1, 1), (−1, t2)) ◦ (i, s) = ((i1,−i1), (i1, t+s+ − i1)), if e1 = t1 = −1,

which completes the proof of this theorem.

Observe that the automorphism group of the free abelian digroup (E × Z,a,`) is two-
element, that is, Aut(E × Z,a,`) = {ξ(−1,1),(1,0), ξ(1,−1),(−1,0)}.
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