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For entire Dirichlet series and entire characteristic functions of a probability law in terms of
multi-term power asymptotics it is investigated the relation between the growth of the maxi-
mum modulus and the behavior of coefficients and the function of the distribution respectively.

Л. В. Кулявець, Ю. В. Стец, М. М. Шеремета. Многочленная степенная асимптотика
целых рядов Дирихле и характеристических функцый вероятностных законов // Мат.
Студiї. – 2015. – Т.43, №2. – C.160–170.

Для целых рядов Дирихле и целых характеристических функций вероятностных за-
конов в терминах многочленной степенной асимптотики иследована связь между ростом
максимума модуля и поведением соответственно коэффициентов и функции распределе-
ния.

1. Introduction. Let Λ = (λn) be a sequence of nonnegative integers increasing to +∞
(λ0 = 0), and S(Λ) be a class of entire Dirichlet series

F (s) =
∞∑
n=0

ane
sλn , s = σ + it. (1)

For σ ∈ R and F ∈ S(Λ) we put M(σ, F ) = sup{|F (σ + it)| : t ∈ R}, and µ(σ) =
max{|an| exp(σλn) : n ≥ 0} be the maximal term of (1). For entire Dirichlet series of the
R-order ρR ∈ (0,+∞) and the R-type TR ∈ (0,+∞) in [1–2] it is obtained the conditions
on an and λn, under which

lnM(σ, F ) = TR exp{ρRσ}+ (T + o(1)) exp{ρσ}, σ → +∞,

where 0 < ρ < ρR and T ∈ R\{0}. Multi-term exponential asymptotics of lnM(σ, F ) is
investigated in [3–4].

Two-term power asymptotics for the maximal term of entire Dirichlet series of the form

lnµ(σ, F ) = T1σ
p1 + (τ + o(1))σp, σ → +∞,
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where p1 > 1, 0 < p < p1, T1 > 0 and τ ∈ R, is indicated in [6]. In [6] it is established also
conditions on an and λn, under which

lnµ(σ, F ) = T1σ
p1 + T2σ

p2 + (τ + o(1))σp, σ → +∞, (2)

where p1 > 1, 0 < p < p2 < p1, T1 > 0, T2 ∈ R\{0} and τ ∈ R\{0}. We put

τ ∗ = τI{p : p≥2p2−p1}(p)−
T2p2

2T1p1(p1 − 1)
I{p : p≤2p2−p1}(p),

where IE(p) = 1 for p ∈ E and IE(p) = 0 for p 6∈ E, in [6] the following theorem is proved.

Theorem A. In order that the relation (2) hold, it is necessary and in the case p+ p1 ≥ 2p2
sufficient that for every ε > 0 the inequality

ln |an| ≤ −T1(p1 − 1)
( λn
T1p1

)p1/(p1−1)
+ T2

( λn
T1p1

)p2/(p1−1)
+ (τ ∗ + ε)

( λn
T1p1

)max{p, 2p2−p1}
p1−1

is valid and there exists a sequence (nk) of positive integers such that

λnk+1
− λnk

= o
(
λ

p1+max{p, 2p2−p1}−2
2(p1−1)

nk

)
, k →∞, ln |ank

| ≥ −T1(p1 − 1)
( λnk

T1p1

)p1/(p1−1)
+

+T2

( λnk

T1p1

)p2/(p1−1)
+ (τ ∗ − ε)

( λnk

T1p1

)max{p, 2p2−p1}
p1−1

.

Here we are going to find conditions under which lnM(σ, F ) has the following asymptotics

lnM(σ, F ) =
m∑
j=1

Tjσ
pj + (τ + o(1))σp, σ → +∞, (3)

where p1 > 1, 0 < p < pm < · · · < p2 < p1 for m ≥ 2, T1 > 0, Tj ∈ R\{0} for 2 ≤ j ≤ m
and τ ∈ R\{0}.

A non-decreasing function F continuous on the left on (−∞, +∞) is said ([7, p. 10])
to be a probability law if limx→+∞ F (x) = 1 and limx→−∞ F (x) = 0, and the function
ϕ(z) =

∫ +∞
−∞ eizxdF (x) defined for real z is called ([7, p. 12]) a characteristic function of this

law. If ϕ has an analytic continuation on C, then we call ϕ an entire characteristic function
of the law F . It is known ([7, p. 37–38]) that ϕ is an entire characteristic function of the
law F if and only if for every r ≥ 0

WF (x) =: 1− F (x) + F (−x) = O(e−rx), x→ +∞. (4)

Hence it follows that
lim

x→+∞

1

x
ln

1

WF (x)
= +∞. (5)

For 0 ≤ r < +∞ we put Mϕ(r) = max{|ϕ(z)| : |z| = r}. Then [7, p. 45] there exists
limr→+∞ r

−1 lnMϕ(r) > 0, that is ϕ has the growth not below of normal type of the order
% = 1. Therefore, we can investigate conditions, under which

lnMϕ(r) =
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞, (6)
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where %1 > 1, 0 < % < %m < · · · < %2 < %1 for m ≥ 2, T1 > 0, Tj ∈ R\{0} for 2 ≤ j ≤ m
and τ ∈ R\{0}.

2. Preliminary results. In [8] (see also [9]) the following result is obtained.

Lemma 1. In order that relations

lnM(σ, F ) ≤
m∑
j=1

Tjσ
pj + (τ + o(1))σp, σ → +∞,

lnµ(σ, F ) ≤
m∑
j=1

Tjσ
pj + (τ + o(1))σp, σ → +∞,

be equivalent for each F ∈ S(Λ), it is necessary and sufficient that lnn = o(λ
p/(p1−1)
n ) as

n→∞. The condition is sufficient for the equivalence of the asymptotic equalities (3) and

lnµ(σ, F ) =
m∑
j=1

Tjσ
pj + (τ + o(1))σp, σ → +∞, (7)

For an entire characteristic function ϕ of a law F we put µϕ(r) = sup{WF (x)erx : x ≥ 0}.
Then ([7, p. 55]) µϕ(r) ≤ 2Mϕ(r). On the other hand ([7, p. 52]),

Mϕ(r) ≤
∫ ∞
0

WF (x)erxdx+ 1 +WF (0)

for all r ≥ 0. Using this inequality we prove the following theorem.

Lemma 2. The relations

lnMϕ(r) =
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞, (8)

lnµϕ(r) =
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞, (9)

are equivalent.

Proof. At first we prove that if

lnµϕ(r) ≤
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞, (10)

then

lnMϕ(r) ≤
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞. (11)

Indeed,

Mϕ(r − r%−%1) ≤
∫ ∞
0

WF (x)erx exp{−r%−%1x}dx+ 1 +WF (0) ≤ µϕ(r)r%1−% + 1 +WF (0),
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whence in view of (10)

lnMϕ(r − r%−%1) ≤ lnµϕ(r) + (1 + o(1))(%1 − %) ln r ≤
m∑
j=1

Tjr
%j + (τ + o(1))r%, r → +∞.

If we put r − r%−%1 = t then r = t+ (1 + o(1))t%−%1 as t→ +∞. Therefore,

lnMϕ(t) ≤
m∑
j=1

Tj(t+ (1 + o(1))t%−%1)%j + (τ + o(1))t% =
m∑
j=1

Tjt
%j(1 + (1 + o(1))t%−%1−1)%j+

+(τ + o(1))t% =
m∑
j=1

Tjt
%j(1 + (1 + o(1))%jt

%−%1−1)+

+(τ + o(1))t% =
m∑
j=1

Tjt
%j + (τ + o(1))t%, t→ +∞. (12)

Thus, (10) implies (11). In view of the inequality lnµϕ(r) ≤ lnMϕ(r)+ln 2 (11) implies (10).
Hence it follows that (9) implies (8). We remark also that if (10) holds for some sequence
(rk) increasing to +∞ then there exists an increasing to +∞ sequence (tk), for which (12)
holds. Hence we obtain that (8) implies (9). Theorem 1 is prowed.

Since lnµ(σ) = max{ln |an| + σλn : n ≥ 0} for Dirichlet series and lnµϕ(r) =
= sup{lnWF (x)+ rx : x ≥ 0} for characteristic functions, we need to investigate the connec-
tion between the growth of Young conjugated functions.

Thus, let Q(σ) = sup{P (t) + σt : t ≥ 0}, where P is an arbitrary function defined on
[0, +∞) and 6= +∞ (can take on the value −∞, but P 6≡ −∞). The functions Q and P are
said to be Young conjugated.

As in [10–11] by Ω we denote the class of positive unbounded functions Φ on (−∞, +∞)
such that the derivative Φ′ is positive, continuous and increasing to +∞ on (−∞, +∞). For
Φ ∈ Ω let Ψ(σ) = σ −Φ(σ)/Φ′(σ) be the function associated with Φ in the sense of Newton
and φ be the inverse function to Φ′. It is known ([10–11]) that the function Ψ is continuous
and increasing to +∞ on (−∞, +∞), and the function φ is continuous and increasing to
+∞ on (0, +∞).

For Φ ∈ Ω and 0 < a < b < +∞ we put

G1(a, b,Φ) =
ab

b− a

∫ b

a

Φ(φ(t))

t2
dt, G2(a, b,Φ) = Φ

(
1

b− a

∫ b

a

φ(t)dt

)
.

It is known [10] that G1(a, b,Φ) < G2(a, b,Φ), and in [11] the following lemmas are proved.

Lemma 3. Let Φ ∈ Ω. In order that Q(σ) ≤ Φ(σ) for all σ ≥ σ0 it is necessary and sufficient
that P (t) ≤ −tΨ(φ(t)) for all t ≥ t0.

Lemma 4. Let Φ ∈ Ω and P (tk) ≥ −tkΨ(φ(tk)) for some sequence (tk) of positive integers
increasing to +∞. Then for all k ≥ k0 and all σ ∈ [φ(tk), φ(tk+1)] the inequality

Q(σ) ≥ Φ(σ)−G1(tk, tk+1,Φ) +G2(tk, tk+1,Φ) (13)

is valid.
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Lemma 5. Let Φj ∈ Ω (j ∈ {1, 2}), Φ1(σ) ≤ Q(σ) ≤ Φ2(σ) for all σ ≥ σ0 i P (t) ≤
−tΨ2(φ2(t)) for all t ≥ t0. Then there exists a sequence (tk) of positive integers increasing
to +∞ such that P (t) ≥ −tkΨ1(φ1(tk)) and

G1(tk, tk+1,Φ2) ≥ Φ1

(
1

tk+1 − tk

∫ tk+1

tk

φ2(t)dt

)
. (14)

Suppose Φ ∈ Ω and Φ is a function of the form

Φ(σ) =
m∑
j=1

Tjσ
pj + τσp, σ ≥ σ0, (15)

where p1 > 1, 0 < p < pm < · · · < p2 < p1 for m ≥ 2, T1 > 0, Tj ∈ R\{0} for 2 ≤ j ≤ m
and τ ∈ R\{0}.

3. Asymptotic behavior of φ and Gj(tk, tk+1,Φ). The following lemma is true.

Lemma 6. Suppose that function Φ ∈ Ω is of the form (15) and 2p2 < p1 + p. Then

φ(x) =

=

(
x

T1p1

) 1
p1−1

−
m∑
j=2

Tjpj
T1p1(p1 − 1)

(
x

T1p1

) pj−p1+1

p1−1

− (τ + o(1))p

T1p1(p1 − 1)

(
x

T1p1

) p−p1+1
p1−1

, x→ +∞.

For m = 2 Lemma 6 is proved in [6]. In the general case the proof is analogous.
Since (xΨ(φ(x)))′ = φ(x), from (16) it follows that

xΨ(φ(x)) = T1(p1 − 1)

(
x

T1p1

) p1
p1−1

−
m∑
j=2

Tj

(
x

T1p1

) pj
p1−1

−

−(τ + o(1))

(
x

T1p1

) p
p1−1

, x→ +∞. (16)

Let (tk) be an increasing to +∞ sequence of positive integers and tk+1 = (1+θk)tk. Since∫ b

a

Φ(φ(t))

t2
dt =

∫ b

a

Φ(φ(t))d

(
−1

t

)
= Ψ(φ(b))−Ψ(φ(a)),

from (17) we can obtain that

G1(tk, tk+1,Φ) = T1(p1 − 1)

(
tk
T1p1

)p1/(p1−1) 1 + θk
θk

(
(1 + θk)

1/(p1−1) − 1
)
−

−
m∑
j=2

Tj

(
tk
T1p1

)pj/(p1−1) 1 + θk
θk

(
(1 + θk)

(pj−p1+1)/(p1−1) − 1
)
−

−τ(1 + o(1))

(
tk
T1p1

)p/(p1−1) 1 + θk
θk

(
(1 + θk)

(p−p1+1)/(p1−1) − 1
)
, k →∞. (17)
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Hence it follows that if there exists an increasing sequence (kj) of positive integers such
that θkj → +∞ as j →∞, then

G1(tkj , (1 + θkj)kj,Φ) = T1(p1 − 1)

(
tkj
T1p1

)p1/(p1−1)
θ
1/(p1−1)
kj

(1 + o(1)), j →∞. (18)

If there exists an increasing sequence (kj) of positive integers such that θkj → θ ∈ (0,+∞)
as j →∞, then

G1(tkj , (1 + θkj)kj,Φ) =

= T1(p1 − 1)

(
tkj
T1p1

)p1/(p1−1) 1 + θ

θ

(
(1 + θ)1/(p1−1) − 1

)
(1 + o(1)), j →∞. (19)

Finally, we get θk → 0 as k →∞. Then from (18) it follows that

G1(tk, (1 + θk)tk,Φ) =

= T1

(
tk
T1p1

)p1/(p1−1)
+

T1p1
2(p1 − 1)

θk

(
tk
T1p1

)p1/(p1−1)
+
T1(2− p1)p1
6(p1 − 1)2

θ2k

(
tk
T1p1

)p1/(p1−1)
−

−
m∑
j=2

Tj(pj − p1 + 1)

p1 − 1

(
tk
T1p1

)pj/(p1−1)
−

m∑
j=2

Tjpj(pj − p1 + 1)

2(p1 − 1)2
θk

(
tk
T1p1

)pj/(p1−1)
−

−τ(p− p1 + 1)(1 + o(1))

p1 − 1

(
tk
T1p1

)p/(p1−1)
+O(t

p1/(p1−1)
k θ3k) +O(t

p2/(p1−1)
k θ2k)

as k →∞.
Now we consider an asymptotic behaviour ofG2(tk, tk+1,Φ). At first we put κ(tk, tk+1,Φ) =
1

tk+1−tk

∫ tk+1

tk
ϕ(x)dx. Then in view of (16) (or (17))

κ(tk, (1 + θk)tk,Φ) =
1

θktk

{
T1(p1 − 1)

(
tk
T1p1

)p1/(p1−1) (
(1 + θk)

p1/(p1−1) − 1
)
−

−
m∑
j=2

Tj

(
tk
T1p1

)pj/(p1−1) (
(1 + θk)

pj/(p1−1) − 1
)
−

− τ(1 + o(1))

(
tk
T1p1

)p/(p1−1) (
(1 + θk)

p/(p1−1) − 1
)}

, k →∞. (20)

Hence it follows that if there exists an increasing sequence (kj) of positive integers such that
θkj → +∞ as j →∞, then

κ(tkj , (1 + θkj)tkj ,Φ) =
p1 − 1

p1

(
tkj
T1p1

)1/(p1−1)

θ
1/(p1−1)
kj

(1 + o(1)), j →∞,

and since G2(tk, tk+1,Φ) = Φ(κ(tk, tk+1,Φ) and Φ(σ) = (1+o(1))T1σ
p1 as σ → +∞, we have

G2(tkj , (1 + θkj)tkj ,Φ) = T1

(
p1 − 1

p1

)p1 ( tkj
T1p1

)p1/(p1−1)
θ
p1/(p1−1)
kj

(1 + o(1)), j →∞. (21)
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If there exists an increasing sequence (kj) of positive integers such that θkj → θ ∈ (0,+∞)
as j →∞, then

κ(tkj , (1 + θkj)tkj ,Φ) =
p1 − 1

p1

(
tkj
T1p1

)1/(p1−1) (1 + θ)p1/(p1−1) − 1

θ
(1 + o(1)), j →∞,

and, thus,

G2(tkj , (1 + θkj)tkj ,Φ) =

= T1

(
p1 − 1

p1

)p1 ( tkj
T1p1

)p1/(p1−1)((1 + θ)p1/(p1−1) − 1

θ

)p1
(1 + o(1)), j →∞.

Finally, if θk → 0 as k →∞ then from (22) we obtain

κ(tk, (1 + θk)tk,Φ) =

(
tk
T1p1

)1/(p1−1){
1 +

θk
2(p1 − 1)

+
(2− p1)θ2k
6(p1 − 1)2

+O(θ3k)

}
−

−
m∑
j=2

Tjpj
T1p1(p1 − 1)

(
tk
T1p1

)(pj−p1+1)/(p1−1){
1 +

(pj − p1 + 1)θk
2(p1 − 1)

+O(θ2k)

}
−

−τp(1 + o(1))

T1p1(p1 − 1)

(
tk
T1p1

)(p−p1+1)/(p1−1)

, k →∞. (22)

Hence for q > 0 we have

κ(tk, (1 + θk)tk,Φ)q =

(
tk
T1p1

)q/(p1−1){
1 +

qθk
2(p1 − 1)

+
q(2− p1)θ2k
6(p1 − 1)2

+O(θ3k)−

−
m∑
j=2

Tjpjq

T1p1(p1 − 1)

(
tk
T1p1

)(pj−p1)/(p1−1)

−
m∑
j=2

Tjpjq(pj − p1 + 1)θk
2T1p1(p1 − 1)2

(
tk
T1p1

)(pj−p1)/(p1−1)

+

+ O(θ2kt
(pj−p1)/(p1−1)
k )− τqp(1 + o(1))

T1p1(p1 − 1)

(
tk
T1p1

)(p−p1)/(p1−1)

+
q(q − 1)θ2k
8(p1 − 1)2

−

− q(q − 1)θk
2(p1 − 1)

m∑
j=2

Tjpjq

T1p1(p1 − 1)

(
tk
T1p1

)(pj−p1)/(p1−1)

+O(t
2(p2−p1)/(p1−1)
k ) +O(θ3k)

}
,

as k →∞
Therefore,

G2(tkj , (1 + θkj)tkj ,Φ) = T1

(
tk
T1p1

)p1/(p1−1)
+

T1p1θk
2(p1 − 1)

(
tk
T1p1

)p1/(p1−1)
+

+
T1p1(3p1 + 1)θ2k

24(p1 − 1)2

(
tk
T1p1

)p1/(p1−1)
−

m∑
j=2

Tj(pj − p1 + 1)

p1 − 1

(
tk
T1p1

)pj/(p1−1)
−

−
m∑
j=2

Tj(pj − p1 + 1)θk
2(p1 − 1)2

(
tk
T1p1

)pj/(p1−1)
− τ(p− p1 + 1)(1 + o(1))

p1 − 1

(
tk
T1p1

)(p−p1)/(p1−1)

+

+O(θ3kt
p1/(p1−1)
k ) +O(θ2kt

p2/(p1−1)
k ) +O(t

(2p2−p1)/(p1−1)
k ), k →∞. (23)

The following lemma is a consequence of (21) and (26).
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Lemma 7. Suppose that Φ ∈ Ω and Φ has a form (15) and 2p2 < p1 +p. If θk → 0 (k →∞)
then

G2(tk, tk(1 + θk),Φ)−G1(tk, tk(1 + θk),Φ) =
T1p1θ

2
k

8(p1 − 1)

(
tk
T1p1

)p1/(p1−1)
+

+O
(
θ3kt

p1/(p1−1)
k

)
+O

(
θ2kt

p1/(p1−1)
k

)
+ o

(
t
p/(p1−1)
k

)
, k →∞.

We will also need the following statement.

Lemma 8. Let Φ1 ∈ Ω and Φ2 ∈ Ω be such functions that

Φ1(σ) =
m∑
j=1

Tjσ
pj + (τ − δ)σp, Φ2(σ) =

m∑
j=1

Tjσ
pj + (τ + δ)σp

for σ ≥ σ0, where δ ∈ (0, |τ |). We suppose that p > 2p2 − p1, tk+1 = (1 + θk)tk and for all
k ≥ k0

G1(tk, tk+1,Φ2) ≥ Φ1(κ(tk, (1 + θk)tk,Φ2)). (24)

Then θk → 0 (k →∞) and

θ2k ≤
16(p1 − 1)

T1p1
(δ + o(1))

(
tk
T1p1

)(p−p1)/(p1−1)

+ o
(
t
(p−p1)/(p1−1)
k

)
, k →∞. (25)

Proof. Since Φ1(σ) = Φ2(σ) − 2δσp and Φ2(κ(tk, (1 + θk)tk,Φ2)) = G2(tk, tk(1 + θk),Φ2),
from (33) we have

G1(tk, tk+1,Φ2) ≥ G2(tk, tk(1 + θk),Φ2)− 2δκ(tk, (1 + θk)tk,Φ2)
p. (26)

Using (29) and (19), (23) and respectively (20), (24), as in [6], it is easy to show that
θk → 0 (k →∞). Therefore, from (25) we get the asymptotics

κ(tk, (1 + θk)tk,Φ2)
p = (1 + o(1))

(
tk
T1p1

)p/(p1−1)
, k →∞,

and in view of Lemma 7 from (29) we have

T1p1θ
2
k

8(p1 − 1)
≤ 2(1 + o(1))δ

(
tk
T1p1

)(p−p1)/(p1−1)

+

+O
(
θ3k
)

+O
(
θ2kt

(p2−p1)/(p1−1)
k

)
+ o

(
t
(p−p1)/(p1−1)
k

)
, k →∞,

whence we obtain (28).

4. Main results. At first we prove the following main theorem for Young conjugated fun-
ctions.

Theorem 1. Let p1 > 1, 0 < p < pm < · · · < p2 < p1 for m ≥ 2, T1 > 0, Tj ∈ R for
2 ≤ j ≤ m, τ ∈ R and p+ p1 > 2p2 for m ≥ 3. Then in order that

Q(σ) =
m∑
j=1

Tjσ
pj + (τ + o(1))σp, σ → +∞, (27)
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it is necessary and sufficient that for every ε > 0 the inequality

P (t) ≤ −T1(p1−1)

(
t

T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
t

T1p1

)pj/(p1−1)
+(τ +ε)

(
t

T1p1

)p/(p1−1)
, (28)

for t ≥ t0(ε) is valid and there exists an increasing to +∞ sequence (tk) of positive integers
such that

P (tk) ≥ −T1(p1 − 1)

(
tk
T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
tk
T1p1

)pj/p1−1)
+ (τ − ε)

(
tk
T1p1

)p/p1−1
, (29)

tk+1 − tk = o(t
(p1+p−2)/2(p1−1)
k ), k →∞. (30)

Proof. We begin with the necessity. Asymptotics (36) implies for every δ ∈ (0, |τ |) and all
σ ≥ σ0(δ) the condition of Lemma 5 is true with

Φ1(σ) =
m∑
j=1

Tjσ
pj + (τ − ε)σp, Φ2(σ) =

m∑
j=1

Tjσ
pj + (τ + ε)σp.

Therefore, according to this lemma the inequalities P (t) ≤ −tΨ(φ(t)) for all t ≥ t0 and
P (tk) ≤ −tkΨ(φ(tk)) for an increasing to +∞ sequence (tk) of positive integers such that
(14) and, thus, (33) holds. But by (17)

tΨ2(φ2(t)) = T1(p1 − 1)

(
t

T1p1

) p1
p1−1

−
m∑
j=2

Tj

(
t

T1p1

) pj
p1−1

− (τ + δ + o(1))

(
t

T1p1

) p
p1−1

as t→ +∞ and

tkΨ2(φ2(tk)) = T1(p1 − 1)

(
tk
T1p1

) p1
p1−1

−
m∑
j=2

Tj

(
tk
T1p1

) pj
p1−1

− (τ − δ + o(1))

(
tk
T1p1

) p
p1−1

as k →∞, and by Lemma 8 we have(
tk+1 − tk

tk

)2

= θ2k ≤
16(p1 − 1)

T1p1
(δ + o(1))

(
tk
T1p1

)(p−p1)/(p1−1)

, k →∞,

i.e.

tk+1 − tk ≤ 4
√
p1 − 1(

√
δ + o(1))(T1p1)

(p−p1)/2(p1−1)t
(p1+p−2)/2(p1−1)
k , k →∞.

Taking into account arbitrariness of δ these relation imply (31)–(33).
We will now prove the sufficiency of conditions (31)–(33). Using Lemma 4 and equa-

lity (17), it is easy to show that condition (31) implies the asymptotic inequality

Q(σ) ≤
m∑
j=1

Tjσ
pj + (τ + ).σ

p, σ ≥ σ(δ), (31)
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for an arbitrary positive δ. Further by Lemmas 4 and 7 for k ≥ k0 and σ ∈ [φ1(tk), φ1(tk+1)]
in view of condition (32) we obtain

Q(σ) ≥ Φ1(σ)− (G2(tk, tk+1,Φ1)−G1(tk, tk+1,Φ1) = Φ1(σ)− T1p1θ
2
k

8(p1 − 1)

(
tk
T1p1

)p1/(p1−1)
+

+O
(
θ3kt

p1/(p1−1)
k

)
+O

(
θ2kt

p1/(p1−1)
k

)
+ o

(
t
p/(p1−1)
k

)
= Φ1(σ) + o

(
t
p/(p1−1)
k

)
, k →∞, (32)

because in view of (33)

θk =
tk+1 − tk

tk
= o(t

(p−p1)/2(p1−1)
k ), k →∞.

Since φ1(tk) ≤ σ ≤ φ1(tk+1), we have tk ≤ Φ′(σ) ≤ tk+1 and from (40) we obtain

Q(σ) ≥ Φ1(σ) + o
(
Φ′(σ))p/(p1−1)

)
= Φ1(σ) + o

(
(σp1−1)p/(p1−1)

)
=

= Φ1(σ) + o (σp) =
m∑
j=1

Tjσ
pj + (τ − δ)σp, σ ≥ σ(δ1), (33)

for arbitrary positive δ1. According to arbitrariness of δ and δ1 (34) and (35) imply (30).

If we choose for an entire Dirichlet series (1)

P (t) =

{
ln |an|, t = λn (n ∈ Z+),

−∞, t =∈ (0 +∞) \ {λn}
,

then Q(σ) = lnµ(σ, F ), and from Theorem 1 we obtain the corresponding corollary. Uniting
it with Lemma 1 we get the following statement.

Theorem 2. Let p1 > 1, 0 < p < pm < · · · < p2 < p1 for m ≥ 2, T1 > 0, Tj ∈ R for
2 ≤ j ≤ m, τ ∈ R and p + p1 > 2p2 for m ≥ 3. Suppose that for entire Dirichlet series (1)
lnn = o(l

p/(p1−1)
n ) as n→∞. The asymptotic equality (3) hold if and only if for every ε > 0

the inequality

ln |an| ≤ −T1(p1 − 1)

(
λn
T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
λn
T1p1

)pj/(p1−1)
+ (τ + ε)

(
λn
T1p1

)p/(p1−1)
,

for n ≥ n0(ε), is valid and there exists a sequence (nk) of positive integers such that

ln |ank
| ≥ −T1(p1 − 1)

(
λnk

T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
λnk

T1p1

)pj/p1−1)
+ (τ − ε)

(
λnk

T1p1

)p/p1−1
,

λnk+1
− λnk

= o(λ(p1+p−2)/2(p1−1)nk
), k →∞.

Since lnµϕ(r) = sup{lnWF (t) + rt : x ≥ 0} for the entire characteristic function ϕ of
a probability law F , choosing P (t) = lnWF (t) we have Q(r) = lnµϕ(r), and thus, Lemma 2
and Theorem 1 imply the following statement.
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Theorem 3. Let %1 > 1, 0 < % < %m < · · · < %2 < %1 for m ≥ 2, T1 > 0, Tj ∈ R\{0} for
2 ≤ j ≤ m, τ ∈ R\{0} and ϕ be the entire characteristic function of a probability law F .
The asymptotical equality (6) hold if and only if for every ε > 0 the inequality

lnWF (t) ≤ −T1(p1 − 1)

(
t

T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
t

T1p1

)pj/(p1−1)
+ (τ + ε)

(
t

T1p1

)p/(p1−1)
,

for t ≥ t0(ε) is valid and there exists an increasing to +∞ sequence (tk) of positive integers
such that

lnWF (tk) ≥ −T1(p1 − 1)

(
tk
T1p1

)p1/(p1−1)
+

m∑
j=2

Tj

(
tk
T1p1

)pj/p1−1)
+ (τ − ε)

(
tk
T1p1

)p/p1−1
,

tk+1 − tk = o(t
(p1+p−2)/2(p1−1)
k ), k →∞.
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