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In this paper, with the aid of weighted sharing method we study the uniqueness problems
of entire functions that share a nonconstant polynomial with weight two. The results of the
paper improve and generalize some results due to [10] and [11].
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MeTo10M BECOBBIX pazle/sieMbIX 3HadeHuil m3ydaercs mpobjeMa eJUHCTBeHHOCTH IEJIbIX
dyHKIHUiT, KOTOPBIE pa3Ae/IsIoT HOJMHOM OTJAMIHUM OT KOHCTAHTBI ¢ KPATHOCTHIO 2. PesymbraTh
CTaThy yJIydlIaoT 1 00OBIAIOT HEKOTOpble pe3yabrarsl u3 [10] u [11].

1. Introduction, denitions and results. In this paper, a meromorphic function will
mean meromorphic in the whole complex plane. We assume that the reader is familiar
with standard notation and fundamental results of the Nevanlinna Theory as described in
[6, 13, 14]. For a nonconstant meromorphic function f, we denote by T'(r, f) the Nevanlinna
characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T(r, f)} as r — oo
outside of a possible exceptional set E of finite linear measure. We denote by T'(r) the
maximum of T'(r, f) and T'(r,g), by S(r) any quantity satisfying S(r) = o{T(r)} (r —
00,7 ¢ E). The meromorphic function a is called a small function of f if T'(r,a) = S(r, f).

Two nonconstant meromorphic functions f and g share a small function a CM (counting
multiplicities) provided that f —a and g — a have the same set of zeros with the same multi-
plicities; f and g share a IM (ignoring multiplicities) if we do not consider the multiplicities.
A finite value z is called a fized point of f(z) if f(z9) = 29. We define

E; ={z € C: f(z) = z, counting multiplicities}.

Regarding a familiar question raised to W. K. Hayman (|5]), the following result was proved
by M. L. Fang, X. H. Hua ([3]) in 1996.

Theorem A. Let f and g be two nonconstant entire functions, n > 6 be a positive integer.
If f"f" and g™g' share 1 CM, then either f(z) = c1e*, g(z) = coe” %, where ¢y, co and c are
three constants satisfying (cico)" ¢ = —1 or f = tg for a constant t such that t"** = 1.
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In 2002 M. L. Fang (|2]) proved the following results extending Theorem A in which k-th
derivative of f™ and ¢g" is taken into consideration.

Theorem B. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 4. If (f*)*®) and (¢g")*) share 1 CM, then either f(z) = cie%,
g(2) = coe™, where c1, ¢y and c are three constants satisfying (—1)*(cicz)"(ne)?* =1 or
f =tg for a constant t such that t" = 1.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 8. If [f*(f — 1)]® and [¢"(g — 1)]*® share 1 CM, then f = g.

Natural question arises: What can be said if the value sharing in the above theorems is
replaced by sharing a fixed point? Afterwards research works concerning the above question
have been done by many mathematicians such as M. L. Fang, H. L. Qiu ([4]), W. C. Lin,
H. X.Yi (]9]), X. G. Qi, L. Z. Yang ([10]), P. Sahoo ([11]), J. L. Zhang ([15]). In this direction,
we recall the following results due to J. L. Zhang ([15]) proved in 2008.

Theorem D. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n > 2k + 4. If Emyw) = Egnym, then either

(i) k=1, f(2) = e, g(z) = coe™" | where c1, ¢o and ¢ are three constants satisfying
4(crco)™(nc)* = —1 or

(ii) f =tg for a constant t such that t" = 1.

Theorem E. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n > 2k + 6. If Enir—1ym = Egnig—1)®; then f = g.

In 2010 X. G. Qi and L. Z. Yang ([10]) and in 2011 J. Dou, X. G. Qi and L. Z. Yang
([1]) studied the uniqueness problem of entire functions concerning some general differential
polynomials and proved the following results extending Theorems D and E, respectively.

Theorem F. Let f and g be two transcendental entire functions, n, m and k be three
positive integers with n > 2k +m* 4+ 4, X and p be constants that satisfy |A| + |u| # 0. If
[P Of™ + 1)]® and [g"(Ag™ + p)]*) share z CM, then the following conclusions hold:

(i) if \p # 0, then fi(z) = g%(2), where d = ged(n, m); especially when d =1, f = g;

(i) if A\u = 0, then either f = tg for a constant t that satisfies t"™™ =1 or k = 1 and
f(2) = cre”, g(z) = coe™% for three constants ¢y, cs and ¢ that satisfy

A+ p)*(cre2)™ ™ [(n+m")e]* = —1,

where

. m if X # 0;
m* —
0 ifA=0.
Theorem G. Let P(z) = ap2™ + ayp12™ '+ ... + a12 + ag or P(z) = C, where a,
ai,. .. ,am-1, am(# 0), C(5# 0) are complex constants. Suppose that f and g are two transcen-
dental entire functions, and let n, k and m be three positive integers with n > 2k +m** 4 4.
IF[f"P(f)]* and [g"P(g)]*®) share = CM, then the following conclusions hold:
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(i) if P(2) = amz™ + Qp12™ 1 + ...+ a1z + ag is not a monomial, then either f = tg for
a constant t that satisfies t¢ = 1, whered = (n+m,...,n+m—1i,...,n), @pn_; # 0 for
some i € {0,1,2,...,m}; or f and g satisfy the algebraic equation R(f,g) =0, where

R(wy,wy) = wi(amw® + ... + ajwy + ag) — wh (anwy’ + ... + agws + ap);
(ii)) when P(z) = C or P(z) = a,z™, then either f = tg for a constant t that satisfies

T =1 or f(z) = b1e?”, g(z) = bye " for three constants by, by and b that satisfies
4a2,(bybe)" ™ ((n + m)b)? = —1, or 4C?%(b1by)"(nb)* = —1, where m** is defined by

- {m if P(z) # C;
e —
0 ifP(z)=C.

Observing the above results the following questions are natural.

Question 1. What can be said if the fixed point sharing in Theorems F and G is replaced
with sharing a nonconstant polynomial?

Question 2. Is it possible to relax the nature of sharing in Theorems F and G keeping the
lower bound of n fixed?

In the paper we will concentrate our attention to the above questions and provide an affi-
rmative answer of Question 2. To state the main results we need the following definition
known as weighted sharing of values introduced by I. Lahiri (|7, 8]) which measures how
close a shared value is to being shared CM or to being shared IM.

Definition 1. Let k& be a nonnegative integer or infinity. For a« € C U {oo} we denote by
Ex(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times if
m < k and k + 1 times if m > k. If Ex(a; f) = Ex(a; g), we say that f, g share the value a
with weight k.

The definition implies that if f, g share a value a with weight k, then z; is an a-point
of f with multiplicity m(< k) if and only if it is an a-point of ¢ with multiplicity m(< k)
and 2o is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if
f, g share (a, k) then f, g share (a,p) for any integer p, 0 < p < k. Also we note that f, g
share a value a IM or CM if and only if f, g share (a,0) or (a,c0), respectively.

In the paper, we prove the following two theorems which improve and generalize Theo-
rems F and G, respectively, as well as deal with Question 1 and Question 2. We now state
the main results of the paper.

Theorem 1. Let f and g be two transcendental entire functions, Pi(z) be a nonconstant
polynomial of degree p, and let n, k and m be three positive integers with n > 2k+2p+m*+2.
Suppose further that k > p when p > 2. If [f*(Af™ + u)]*®) — P, and [¢"(A\g™ + p)]® — P,
share (0,2) where \, u are constants satisfying |A| + || # 0, then the following conclusions
hold:

(i) if \pw # 0, then fi(z) = g%(2), where d = ged(n, m); especially when d =1, f = g;
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(ii) if Ap = 0, then either f = tg for a constant t that satisfies t"*™ = 1 or f(z) =
b1"@G) | g(2) = bye ¥R where Q(z) is a polynomial without constant such that
Q'(z) = Pi(2), by, by and b are three constants satisfying u®(nb)?(bibs)® = —1 or
A ((n 4+ m)b)?(bybg)" ™ = —1.

Theorem 2. Let f and g be two transcendental entire functions, P;(z) be a nonconstant
polynomial of degree p, and let n, k and m be three positive integers withn > 2k+2p+m**+2.
Let P(z) be defined as in Theorem G. If [f"P(f)]®) — P, and [g"P(g)]*) — P, share (0,2)
then the following conclusions hold:
(i) if P(2) = amz™ + Qp12™ 1 + ...+ a1z + ag is not a monomial, then either f = tg for
a constant t that satisfies t¢ = 1, whered = (n+m,...,n+m—1i,...,n), @pn_; # 0 for
some i € {0,1,2,...,m}; or f and g satisfy the algebraic equation R(f,g) =0, where

R(wy, wy) = wi(anw® + ...+ aqwy + ag) — wi (a,wy' + ...+ ajws + ag);

(ii)) when P(z) = C or P(z) = a,z™, then either f = tg for a constant t that sati-
sfies 1"t = 1, or f(2) = b€’ g(z) = bye P where Q(z) is a polynomial
without constant such that Q)'(z) = Py(2), by, by and b are three constants satisfying
CQ(nb)z(b1b2>n =—1or afn((n + m)b)z(b1b2>n+m = —1.

We now explain the following definitions and notations which are used in the paper.

Definition 2 ([6]). Let a € CU {oco}. We denote by N(r,a; f |= 1) the counting function
of simple a points of f. For a positive integer p we denote by N(r,a; f |< p) the counting
function of those a-points of f (counted with proper multiplicities) whose multiplicities
are not greater than p. By N(r,a; f |< p) we denote the corresponding reduced counting
function.

Analogously we can define N(r,a; f |> p) and N(r,a; f |> p).

Definition 3. Let a be any value in the extended complex plane, and let k be an arbitrary
nonnegative integer. We denote by N(r, a; f) the counting function of a-points of f, where
an a-point of multiplicity m is counted m times if m < k and k times if m > k. Then

Ni(rya; f) = N(rya; f) + N(rya; f |>2) +...+ N(r,a; f |> k).
Clearly Ny(r,a; f) = N(r,a; f).
2. Lemmas.

Lemma 1 ([12]). Let f be a nonconstant meromorphic function and let a,(2)(# 0), an—1(z),
, ap(z) be small functions of f. Then

T, anf" + an 1 f" ... +arf +ag) =nT(r, f)+S(r, f).

Lemma 2 ([16]). Let f be a nonconstant meromorphic function, and p, k be positive integers.
Then

Np (7“, O; f(k)> <T (7’, f(k)) - T(T, f) + Nerk(,r? 0; f) + S<T7 f)? (1>
N, (r,0; f%) < kN (r, 005 f) + Npyr(r, 05 f) + S(r, f). (2)
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Lemma 3 ([8]). Let f and g be two nonconstant meromorphic functions sharing (1,2). Then
one of the following cases hold:

(1) T(T) < N2<T7 O; f) + NQ(Ta O; g) + NZ(rv 005 f) + N2(7n7 oo,g) + S<T)7

(i) f =g,

(iii) fg=1.
Lemma 4 (|6]). Let f be a transcendental meromorphic function, and let ay(z), asz(z) be
two distinct meromorphic functions such that T(r,a;(z)) = S(r, f), i € {1,2}. Then

T(r,f) < N(r,00; f) + N(r,as; f) + N(r,as; f) + S(r, f).

Lemma 5 ([6]). Suppose that f is a nonconstant meromorph1c function, k > 2 is an integer.
If N(r,00; f) + N(r,0; f) + N(r,0; f®)) = S(r, ) then f = e¥** where a(# 0), b are

constants.

Lemma 6 ([11]). Let f and g be two nonconstant entire functions and let n, k be two
positive integers. Suppose that Fy = (f"P(f))® and G; = (¢g"P(g9))*® where P(z) =
U 2™ + Q1 2™+ L+ a1z + ag, ag(# 0), a1, .., A1, am(# 0) are complex constants.
If there exist two nonzero constants c¢; and cy such that N(r,ci; Fy) = N(r,0;G;) and
N(r,co;Gy) = N(r,0; F}), then n < 2k +m + 2.

Lemma 7. Let f and g be two nonconstant entire functions, n, m and k be three positive
integers. Suppose that F1G, = P?, where Fy, G, are defined as in Lemma 6 and Py(z) is
defined as in Theorem 1. Then n < k + 2p.

Proof. If possible, we assume that n > k + 2p. From F,G; = P?, we have

(PP (g"P(g)™ = PL.

Let zy be a zero of f with multiplicity I. Then z; is a zero of (f"P(f))*) with multiplicity
nl — k. Since g is an entire function and n > k + 2p, 2z is a zero of P? with multiplicity at
least 2p+ 1, which is absurd. Thus f has no zeros. We put f = e®, where « is a nonconstant
entire function. Now

(am [T =t (a0, a)elrtme, (3)

(apf")® =to(o/, 0, ..., a®))en, (4)

where t;(a/, ..., a®) (i € {0,1,...,m}) are differential polynomials in o/, o, ..., a®.

Obviously t;(o/,a”,...,a®)) £ 0 for i € {0,1,2,...,m}, and (f"P(f))® 7£ 0. Therefore
from (3) and (4) we obtain

tm(a 0 a®)em™ 4t Q.. a®)) £0. (5)

Since « is an entire function, we have T'(r,a)) = S(r, f) for j € {1,2,...,k}, and hence

T(r,t;) = S(r, f) for i € {0,1,2,...,m}. Therefore using (5), Lemmas 1 and 4 we deduce
that

mT(r, f) =T (r,tme™ + ...+ t1*) + S(r, f) <
<N(r, 03 te™ + . 4 11e®) + N(r, 05 te™ + ... 411 +to) + S(r, f) <
< N(r,0;te™ Do 44 t) + S(r, f) < (m = D)T(r, f) + S(r, f),

a contradiction. Hence n < k + 2p and the lemma follows. O]
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Lemma 8 ([10]). Let f and g be two nonconstant entire functions, n, m and k be three
positive integers, and let Fy = [f*(Af™+u)]®) and Gy = [¢"(Ag™ + p)]® where |\|+ || # 0,
and A\p = 0. If there exist two nonzero constants c; and cy such that N(r, c;; Fy) = N(r,0; Ga)
and N(r,cy; Gy) = N(r,0; Fy), then n < 2k +m* + 2.

Lemma 9. Let f and g be two nonconstant entire functions, n, m and k be three positive
integers with n > 2k + 2p + m* + 2. Further assume that k > p when p > 2. Suppose that
F>,Gy = P2, where Fy, Gy are defined as in Lemma 8, |\| + |u| # 0 and Py(z) is defined as
in Theorem 1. Then f(z) = b1e"?®) | g(z) = bye ) where by, by, and b are three constants
satisfying A\2((n + m)b)?(bib2)" ™™ = —1 or p?(nb)*(bib2)™ = —1 and Q(z) is same as in
Theorem 1.

Proof. We discuss the following two cases separately.

Case I. Let A = 0. Since ||+ |u| # 0, we may take u = 0, A # 0 and therefore m* = m.
The case pu # 0, A = 0 can be proved similarly. First we assume that & = 1. Then F,Gy = P}
gives

(S (Ag™ ™) = P (6)

Since f and g are entire functions and n > 2k + 2p + m + 2, we deduce from (6) that f and
¢ have no zeros. We put

f = ea’ g= 667 (7>
where a and 3 are two nonconstant entire functions. Therefore
AN (n +m)2a/glemtmiets) — p2, (8)

From (8) it follows that «, § must be polynomials and a4+ = C, where C'is a constant. Thus
deg(a) = deg(B). Therefore o/ + 8" = 0 and \*(n + m)2a/f'e™+*™C = P2 Simplifying we
obtain o = bP;(z) and 8’ = —bP;(z), where b(# 0) is a constant. This gives a = bQ(z) + d;
and 8 = —bQ(z) + dy, where Q(z) is a polynomial without constant such that Q'(z) = Py(2)
and dy, dy are constants. Therefore f = b1e??%) g = bye *?%) where by, by and b are
three constants satisfying A?((n + m)b)?(b1by)"™™ = —1. Next we assume that k& > 2. Then
F>,Gy = P? gives

AT (gt ® = P, (9)

Since f and g are transcendental entire function, from (9) we obtain N(r,0; (Af"+m)k) =
O{logr}. From this and (7) we get

N (7, 00; A\f™T™) 4+ N (r, 0; Af"™) + N(r, 0; (A f*7™) ) = Oflog r}.

Suppose that « is a transcendental entire function. Then by Lemma 5 we deduce that « is
a polynomial, a contradiction. Next we assume that «, § are polynomials of degree p; and
py respectively. If p; = po = 1, then f = e**B g = e“**P where A(#£ 0), B, C(# 0) and
D are constants. So from (9) we obtain

)\Q(AC)k(n + m)le(n—i-m){(A—i-C)z—i-(B—l-D)} _ P12,
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which is not possible. Hence max{p;, p»} > 1. We assume that p; > 1. Then (Af"*™)*) =
Q1™ and (Ag"T™)*) = Q™8 where Q1, Q, are polynomials of degree k(p, — 1)
and k(ps — 1), respectively. So from (9) we obtain a + 3 = k;, a constant, and hence p; = py
and k(p; — 1) = p. This shows that p > k > 2, contradicting with the assumption that & > p
when p > 2.

Case II. Let Ap # 0. Since n > 2k + 2p 4+ m + 2 > k + 2p, using the argument similar
as in Lemma 7 we obtain a contradiction. O]

Lemma 10 ([10]). Suppose that Fy and Gy are given as in Lemma 8 where A\ # 0. If
n > 2k +m and Fy = Gs, then f%(z2) = g%(z) where d = ged(n, m).

Lemma 11 ([10]). Suppose that Fy and Gy are given as in Lemma 8 where \pp = 0. If
n > 2k +m* and Fy = G4, then f = tg for a constant t satisfying t"™™ = 1.

3. Proof of the Theorems 1 and 2.

Proof of Theorem 2. We discuss the following three cases separately.
Case (i) Let P(2) = n2™ + apm12™ 4. ..+ a92? + a12 + ag, where ag(#£ 0), ay, ... ,am_1,

an,(# 0) are complex constants. We consider F' = % nd G = %)))() Then F' and

G are transcendental meromorphic functions that share (1,2). Now from Lemma 1 and (1)
we obtain

No(r,0; F) < Ny (r,0; (f"P(f))®) + S(r, f) <

T (r, (f"P(f)W) = (n+m)T(r, f) + Niesa(r, 0 f"P(f) + S(r, f) <
< T(r, F) = (n+m)T(r, f) + Niga(r, 0 f*P(f)) + S(r. ). (10)

Similarly
Ny(r,0;G) < T(r,G) — (n+m)T(r,g) + Niy2(r, 0; 9" P(g)) + S(r, g)- (11)
Again by (2) we have

N2(r70;F) SNk+2(’l“,0;fnp(f))+5(’l“,f), (12)
NQ(Tvo; G) S Nk-‘rQ(TvO;gnP(g)) + S r, g) (13)

—~

From (10) and (11) we get

(n+m){T(r, f) +T(r,9)} <T(r,F) +T(r,G) + Niyo(r, 0; [ P(f))+
+Nk+2(r7 ngnP(g)) - NQ(Ta O; F) - NQ(’F: 0; G) + S(’I", f) + S(T‘, g) (14)

We assume that the conclusion (i) of Lemma 3 holds. Then using Lemma 1, (12) and (13)
we obtain from (14)

(n+m){T(r,f)+T(r,g)} < Na(r,0; F) + No(r,0; G) + 2N5(r, 00; F')+
+2N5(r,00; G) + Nigya(r, 05 f* P(f)) + Nigta(r, 05 9" P(g)) + S(r, f) + S(r, g) <
< 2Ngio (1, 0; " P(f)) + 2Ng12(r,0; 9" P(g)) + S(r, f) + S(r, g) <
<2(k+m+2){T(r, f)+T(r,9)} + S(r, )+ S(r,g).
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From this we get (n —m — 2k — H){TL(r, f) + T(r,9)} < S(r,f)+ S(r,g), which leads to
a contradiction as n > 2k +2p+m+2. Hence by Lemma 3 we have either FG =1 or F' = G.
If FG = 1, then (f"P(f))*®(g"P(g))® = P2, a contradiction by Lemma 7. Hence F = G.
That is [f"P(f)]*®) = [¢"P(g)]"). Integrating we get [f"P(f)]*"D = [g"P(g)]* ™V + ¢z,
where c;_1 is a constant. If ¢;_; # 0, from Lemma 6 we obtain n < 2k 4+ m, a contradiction.
Hence ¢x_; = 0. Repeating k-times, we obtain f"P(f) = ¢"P(g). Then

F (W f™ 4 a1 f™ o arf +ag) = ¢ (amg™ + am_1g™ . Faig +ag).  (15)
Let h = 5 If h is a constant, by putting f = gh in (15) we get
g™ (R — 1) + A1 g™ TR = 1) L 4 agg" (B — 1) = 0,
which implies h¢ = 1, where d = (n+m,...,n+m —i,...,n+ 1,n), apn_; # 0 for some
i €{0,1,...,m}. Thus f = tg for a constant ¢ such that t =1, d = (n+m,...,n+m —

iy...,n+1,n), an_; #0 for some i € {0,1,...,m}.
If his not a constant, then from (15) we can say that f and g satisfy the algebraic equation

R(f,g) =0, where R(wl,wg) = wi(anpw + ...+ ajwy + ag) — wH(a, Wy + ...+ ajws + ao).
Case (ii) Now we assume that P(z) = a,,2™, where a,, (# 0) is a complex constant.
Let F = M nd ¢ = 8™ Thon Foand G are transcendental meromorphic

Pi(z
functions that sfﬁare the value 1 with weight two. Proceeding in the similar manner as in

Case (i) above we obtain either FG =1 or F = G.

If FG = 1, then (a,, f"™)® (a,,g"*™)*) = PZ. So by Lemma 9 we obtain f(z) = b;e"?(),
g(2) = bye Q) where by, by and b are three constants satisfying a2, ((n +m)b)?(byby)" ™ =
—1 and Q(z) is same as in Theorem 1. If F' = G, then using Lemmas 8 and 11 we obtain
f = tg for a constant ¢t such that " = 1.

Case (iii) Let P(z) = C. Taking F = (Cg@é“j G = (6;312(;) and arguing similarly as in Case

(ii) we obtain either f(z) = b1e*?3), g(2) = bye @), where by, b, and b are three constants
satisfying C?%(nb)%(b1bs)" = —1, Q(z) is same as in Theorem 1 or f = tg for a constant ¢

satisfying t" = 1. n
Proof of Theorem 1. Let F = w nd G = % Then F' and G are
transcendental meromorphic functions that share the value 1 with weight two. Proceeding
similarly as in Theorem 2 we obtain either F'G = 1 or F' = (. First we assume that

A # 0. Then F'G # 1, by Lemma 7. Hence F = G and so by Lemmas 6 and 10 we obtain
f4(2) = g%(z) where d = gcd(n, m). Next we assume that Ay = 0. Let A # 0 and p = 0. Then
if FG = 1, by Lemma 9 we have f(z) = ,e’?%), g(2) = bye ) where by, by and b are
three constants satisfying A\*((n+m)b)?(b1b)"™™ = —1 and Q(z) is defined as in Theorem 1.
Similar result holds when p # 0 and A = 0. If F' = G, by Lemmas 8 and 11 we conclude
that f = tg for a constant ¢ that satisfies t"*™" = 1. O]
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