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In this paper, with the aid of weighted sharing method we study the uniqueness problems
of entire functions that share a nonconstant polynomial with weight two. The results of the
paper improve and generalize some results due to [10] and [11].
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Методом весовых разделяемых значений изучается проблема единственности целых
функций, которые разделяют полином отличний от константы с кратностью 2. Результаты
статьи улучшают и обобщают некоторые результаты из [10] и [11].

1. Introduction, denitions and results. In this paper, a meromorphic function will
mean meromorphic in the whole complex plane. We assume that the reader is familiar
with standard notation and fundamental results of the Nevanlinna Theory as described in
[6, 13, 14]. For a nonconstant meromorphic function f , we denote by T (r, f) the Nevanlinna
characteristic of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞
outside of a possible exceptional set E of finite linear measure. We denote by T (r) the
maximum of T (r, f) and T (r, g), by S(r) any quantity satisfying S(r) = o{T (r)} (r →
∞, r ̸∈ E). The meromorphic function a is called a small function of f if T (r, a) = S(r, f).

Two nonconstant meromorphic functions f and g share a small function a CM (counting
multiplicities) provided that f −a and g−a have the same set of zeros with the same multi-
plicities; f and g share a IM (ignoring multiplicities) if we do not consider the multiplicities.
A finite value z0 is called a fixed point of f(z) if f(z0) = z0. We define

Ef = {z ∈ C : f(z) = z, counting multiplicities}.

Regarding a familiar question raised to W. K. Hayman ([5]), the following result was proved
by M. L. Fang, X. H. Hua ([3]) in 1996.

Theorem A. Let f and g be two nonconstant entire functions, n ≥ 6 be a positive integer.
If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are

three constants satisfying (c1c2)
n+1c2 = −1 or f = tg for a constant t such that tn+1 = 1.
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In 2002 M. L. Fang ([2]) proved the following results extending Theorem A in which k-th
derivative of fn and gn is taken into consideration.

Theorem B. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = 1 or

f = tg for a constant t such that tn = 1.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two positive
integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM, then f = g.

Natural question arises: What can be said if the value sharing in the above theorems is
replaced by sharing a fixed point? Afterwards research works concerning the above question
have been done by many mathematicians such as M. L. Fang, H. L. Qiu ([4]), W. C. Lin,
H. X. Yi ([9]), X. G. Qi, L. Z. Yang ([10]), P. Sahoo ([11]), J. L. Zhang ([15]). In this direction,
we recall the following results due to J. L. Zhang ([15]) proved in 2008.

Theorem D. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n > 2k + 4. If E(fn)(k) = E(gn)(k) , then either

(i) k = 1, f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants satisfying
4(c1c2)

n(nc)2 = −1 or

(ii) f = tg for a constant t such that tn = 1.

Theorem E. Let f and g be two nonconstant entire functions, and n, k be two positive
integers with n ≥ 2k + 6. If E(fn(f−1))(k) = E(gn(g−1))(k) , then f = g.

In 2010 X. G. Qi and L. Z. Yang ([10]) and in 2011 J. Dou, X. G. Qi and L. Z. Yang
([1]) studied the uniqueness problem of entire functions concerning some general differential
polynomials and proved the following results extending Theorems D and E, respectively.

Theorem F. Let f and g be two transcendental entire functions, n, m and k be three
positive integers with n > 2k +m∗ + 4, λ and µ be constants that satisfy |λ| + |µ| ≠ 0. If
[fn(λfm + µ)](k) and [gn(λgm + µ)](k) share z CM, then the following conclusions hold:

(i) if λµ ̸= 0, then fd(z) = gd(z), where d = gcd(n,m); especially when d = 1, f = g;

(ii) if λµ = 0, then either f = tg for a constant t that satisfies tn+m∗
= 1 or k = 1 and

f(z) = c1e
cz2 , g(z) = c2e

−cz2 for three constants c1, c2 and c that satisfy

4(λ+ µ)2(c1c2)
n+m∗

[(n+m∗)c]2 = −1,

where

m∗ =

{
m if λ ̸= 0;

0 if λ = 0.

Theorem G. Let P (z) = amz
m + am−1z

m−1 + . . . + a1z + a0 or P (z) = C, where a0,
a1,. . . ,am−1, am(̸= 0), C (̸= 0) are complex constants. Suppose that f and g are two transcen-
dental entire functions, and let n, k and m be three positive integers with n > 2k+m∗∗ +4.
If [fnP (f)](k) and [gnP (g)](k) share z CM, then the following conclusions hold:
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(i) if P (z) = amz
m + am−1z

m−1 + . . .+ a1z + a0 is not a monomial, then either f = tg for
a constant t that satisfies td = 1, where d = (n+m, . . . , n+m− i, . . . , n), am−i ̸= 0 for
some i ∈ {0, 1, 2, . . . ,m}; or f and g satisfy the algebraic equation R(f, g) = 0, where

R(w1, w2) = wn
1 (amw

m
1 + . . .+ a1w1 + a0)− wn

2 (amw
m
2 + . . .+ a1w2 + a0);

(ii) when P (z) = C or P (z) = amz
m, then either f = tg for a constant t that satisfies

tn+m∗∗
= 1, or f(z) = b1e

bz2 , g(z) = b2e
−bz2 for three constants b1, b2 and b that satisfies

4a2m(b1b2)
n+m((n+m)b)2 = −1, or 4C2(b1b2)

n(nb)2 = −1, where m∗∗ is defined by

m∗∗ =

{
m if P (z) ̸= C;

0 if P (z) = C.

Observing the above results the following questions are natural.

Question 1. What can be said if the fixed point sharing in Theorems F and G is replaced
with sharing a nonconstant polynomial?

Question 2. Is it possible to relax the nature of sharing in Theorems F and G keeping the
lower bound of n fixed?

In the paper we will concentrate our attention to the above questions and provide an affi-
rmative answer of Question 2. To state the main results we need the following definition
known as weighted sharing of values introduced by I. Lahiri ([7, 8]) which measures how
close a shared value is to being shared CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a
with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point
of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k)
and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if
f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g
share a value a IM or CM if and only if f , g share (a, 0) or (a,∞), respectively.

In the paper, we prove the following two theorems which improve and generalize Theo-
rems F and G, respectively, as well as deal with Question 1 and Question 2. We now state
the main results of the paper.

Theorem 1. Let f and g be two transcendental entire functions, P1(z) be a nonconstant
polynomial of degree p, and let n, k and m be three positive integers with n > 2k+2p+m∗+2.
Suppose further that k > p when p ≥ 2. If [fn(λfm + µ)](k) − P1 and [gn(λgm + µ)](k) − P1

share (0, 2) where λ, µ are constants satisfying |λ|+ |µ| ̸= 0, then the following conclusions
hold:

(i) if λµ ̸= 0, then fd(z) = gd(z), where d = gcd(n,m); especially when d = 1, f = g;
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(ii) if λµ = 0, then either f = tg for a constant t that satisfies tn+m∗
= 1 or f(z) =

b1e
bQ(z), g(z) = b2e

−bQ(z), where Q(z) is a polynomial without constant such that
Q′(z) = P1(z), b1, b2 and b are three constants satisfying µ2(nb)2(b1b2)

n = −1 or
λ2((n+m)b)2(b1b2)

n+m = −1.

Theorem 2. Let f and g be two transcendental entire functions, P1(z) be a nonconstant
polynomial of degree p, and let n, k and m be three positive integers with n > 2k+2p+m∗∗+2.
Let P (z) be defined as in Theorem G. If [fnP (f)](k) − P1 and [gnP (g)](k) − P1 share (0, 2)
then the following conclusions hold:

(i) if P (z) = amz
m + am−1z

m−1 + . . .+ a1z + a0 is not a monomial, then either f = tg for
a constant t that satisfies td = 1, where d = (n+m, . . . , n+m− i, . . . , n), am−i ̸= 0 for
some i ∈ {0, 1, 2, . . . ,m}; or f and g satisfy the algebraic equation R(f, g) = 0, where

R(w1, w2) = wn
1 (amw

m
1 + . . .+ a1w1 + a0)− wn

2 (amw
m
2 + . . .+ a1w2 + a0);

(ii) when P (z) = C or P (z) = amz
m, then either f = tg for a constant t that sati-

sfies tn+m∗∗
= 1, or f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where Q(z) is a polynomial

without constant such that Q′(z) = P1(z), b1, b2 and b are three constants satisfying
C2(nb)2(b1b2)

n = −1 or a2m((n+m)b)2(b1b2)
n+m = −1.

We now explain the following definitions and notations which are used in the paper.

Definition 2 ([6]). Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting function
of simple a points of f . For a positive integer p we denote by N(r, a; f |≤ p) the counting
function of those a-points of f (counted with proper multiplicities) whose multiplicities
are not greater than p. By N(r, a; f |≤ p) we denote the corresponding reduced counting
function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 3. Let a be any value in the extended complex plane, and let k be an arbitrary
nonnegative integer. We denote by Nk(r, a; f) the counting function of a-points of f , where
an a-point of multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + . . .+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

2. Lemmas.

Lemma 1 ([12]). Let f be a nonconstant meromorphic function and let an(z)(̸≡ 0), an−1(z),
. . . , a0(z) be small functions of f . Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2 ([16]). Let f be a nonconstant meromorphic function, and p, k be positive integers.
Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2)
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Lemma 3 ([8]). Let f and g be two nonconstant meromorphic functions sharing (1, 2). Then
one of the following cases hold:
(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),

(ii) f = g,

(iii) fg = 1.

Lemma 4 ([6]). Let f be a transcendental meromorphic function, and let a1(z), a2(z) be
two distinct meromorphic functions such that T (r, ai(z)) = S(r, f), i ∈ {1, 2}. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 5 ([6]). Suppose that f is a nonconstant meromorphic function, k ≥ 2 is an integer.
If N(r,∞; f) + N(r, 0; f) + N(r, 0; f (k)) = S(r, f

′

f
), then f = eaz+b, where a(̸= 0), b are

constants.

Lemma 6 ([11]). Let f and g be two nonconstant entire functions and let n, k be two
positive integers. Suppose that F1 = (fnP (f))(k) and G1 = (gnP (g))(k) where P (z) =
amz

m + am−1z
m−1 + . . . + a1z + a0, a0(̸= 0), a1, . . . , am−1, am(̸= 0) are complex constants.

If there exist two nonzero constants c1 and c2 such that N(r, c1;F1) = N(r, 0;G1) and
N(r, c2;G1) = N(r, 0;F1), then n ≤ 2k +m+ 2.

Lemma 7. Let f and g be two nonconstant entire functions, n, m and k be three positive
integers. Suppose that F1G1 = P 2

1 , where F1, G1 are defined as in Lemma 6 and P1(z) is
defined as in Theorem 1. Then n ≤ k + 2p.

Proof. If possible, we assume that n > k + 2p. From F1G1 = P 2
1 , we have

(fnP (f))(k)(gnP (g))(k) = P 2
1 .

Let z0 be a zero of f with multiplicity l. Then z0 is a zero of (fnP (f))(k) with multiplicity
nl − k. Since g is an entire function and n > k + 2p, z0 is a zero of P 2

1 with multiplicity at
least 2p+1, which is absurd. Thus f has no zeros. We put f = eα, where α is a nonconstant
entire function. Now

(amf
n+m)(k) = tm(α

′, α′′, . . . , α(k))e(n+m)α, (3)
. . .

(a0f
n)(k) = t0(α

′, α′′, . . . , α(k))enα, (4)

where ti(α
′, α′′, . . . , α(k)) (i ∈ {0, 1, . . . ,m}) are differential polynomials in α′, α′′, . . . , α(k).

Obviously ti(α
′, α′′, . . . , α(k)) ̸= 0 for i ∈ {0, 1, 2, . . . ,m}, and (fnP (f))(k) ̸= 0. Therefore

from (3) and (4) we obtain

tm(α
′, α′′, . . . , α(k))emα + . . .+ t0(α

′, α′′, . . . , α(k)) ̸= 0. (5)

Since α is an entire function, we have T (r, α(j)) = S(r, f) for j ∈ {1, 2, . . . , k}, and hence
T (r, ti) = S(r, f) for i ∈ {0, 1, 2, . . . ,m}. Therefore using (5), Lemmas 1 and 4 we deduce
that

mT (r, f) = T (r, tme
mα + . . .+ t1e

α) + S(r, f) ≤
≤ N(r, 0; tme

mα + . . .+ t1e
α) +N(r, 0; tme

mα + . . .+ t1e
α + t0) + S(r, f) ≤

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + S(r, f) ≤ (m− 1)T (r, f) + S(r, f),

a contradiction. Hence n ≤ k + 2p and the lemma follows.
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Lemma 8 ([10]). Let f and g be two nonconstant entire functions, n, m and k be three
positive integers, and let F2 = [fn(λfm+µ)](k) and G2 = [gn(λgm+µ)](k) where |λ|+ |µ| ̸= 0,
and λµ = 0. If there exist two nonzero constants c1 and c2 such that N(r, c1;F2) = N(r, 0;G2)
and N(r, c2;G2) = N(r, 0;F2), then n ≤ 2k +m∗ + 2.

Lemma 9. Let f and g be two nonconstant entire functions, n, m and k be three positive
integers with n > 2k + 2p +m∗ + 2. Further assume that k > p when p ≥ 2. Suppose that
F2G2 = P 2

1 , where F2, G2 are defined as in Lemma 8, |λ| + |µ| ≠ 0 and P1(z) is defined as
in Theorem 1. Then f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where b1, b2 and b are three constants

satisfying λ2((n + m)b)2(b1b2)
n+m = −1 or µ2(nb)2(b1b2)

n = −1 and Q(z) is same as in
Theorem 1.

Proof. We discuss the following two cases separately.
Case I. Let λµ = 0. Since |λ|+ |µ| ̸= 0, we may take µ = 0, λ ̸= 0 and therefore m∗ = m.

The case µ ̸= 0, λ = 0 can be proved similarly. First we assume that k = 1. Then F2G2 = P 2
1

gives

(λfn+m)′(λgn+m)′ = P 2
1 . (6)

Since f and g are entire functions and n > 2k + 2p+m+ 2, we deduce from (6) that f and
g have no zeros. We put

f = eα, g = eβ, (7)

where α and β are two nonconstant entire functions. Therefore

λ2(n+m)2α′β′e(n+m)(α+β) = P 2
1 . (8)

From (8) it follows that α, β must be polynomials and α+β ≡ C, where C is a constant. Thus
deg(α) = deg(β). Therefore α′ + β′ ≡ 0 and λ2(n + m)2α′β′e(n+m)C = P 2

1 . Simplifying we
obtain α′ = bP1(z) and β′ = −bP1(z), where b(̸= 0) is a constant. This gives α = bQ(z) + d1
and β = −bQ(z)+ d2, where Q(z) is a polynomial without constant such that Q′(z) = P1(z)
and d1, d2 are constants. Therefore f = b1e

bQ(z), g = b2e
−bQ(z), where b1, b2 and b are

three constants satisfying λ2((n +m)b)2(b1b2)
n+m = −1. Next we assume that k ≥ 2. Then

F2G2 = P 2
1 gives

(λfn+m)(k)(λgn+m)(k) = P 2
1 . (9)

Since f and g are transcendental entire function, from (9) we obtain N(r, 0; (λfn+m)(k)) =
O{log r}. From this and (7) we get

N(r,∞;λfn+m) +N(r, 0;λfn+m) +N(r, 0; (λfn+m)(k)) = O{log r}.

Suppose that α is a transcendental entire function. Then by Lemma 5 we deduce that α is
a polynomial, a contradiction. Next we assume that α, β are polynomials of degree p1 and
p2 respectively. If p1 = p2 = 1, then f = eAz+B, g = eCz+D, where A(̸= 0), B, C (̸= 0) and
D are constants. So from (9) we obtain

λ2(AC)k(n+m)2ke(n+m){(A+C)z+(B+D)} = P 2
1 ,
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which is not possible. Hence max{p1, p2} > 1. We assume that p1 > 1. Then (λfn+m)(k) =
Q1e

(n+m)α and (λgn+m)(k) = Q2e
(n+m)β, where Q1, Q2 are polynomials of degree k(p1 − 1)

and k(p2 − 1), respectively. So from (9) we obtain α+ β ≡ k1, a constant, and hence p1 = p2
and k(p1−1) = p. This shows that p ≥ k ≥ 2, contradicting with the assumption that k > p
when p ≥ 2.

Case II. Let λµ ̸= 0. Since n > 2k + 2p +m + 2 > k + 2p, using the argument similar
as in Lemma 7 we obtain a contradiction.

Lemma 10 ([10]). Suppose that F2 and G2 are given as in Lemma 8 where λµ ̸= 0. If
n > 2k +m and F2 = G2, then fd(z) = gd(z) where d = gcd(n,m).

Lemma 11 ([10]). Suppose that F2 and G2 are given as in Lemma 8 where λµ = 0. If
n > 2k +m∗ and F2 = G2, then f = tg for a constant t satisfying tn+m∗

= 1.

3. Proof of the Theorems 1 and 2.

Proof of Theorem 2. We discuss the following three cases separately.
Case (i) Let P (z) = amz

m + am−1z
m−1 + . . .+ a2z

2 + a1z+ a0, where a0( ̸= 0), a1, . . . ,am−1,

am( ̸= 0) are complex constants. We consider F = (fnP (f))(k)

P1(z)
and G = (gnP (g))(k)

P1(z)
. Then F and

G are transcendental meromorphic functions that share (1, 2). Now from Lemma 1 and (1)
we obtain

N2(r, 0;F ) ≤ N2

(
r, 0; (fnP (f))(k)

)
+ S(r, f) ≤

≤ T
(
r, (fnP (f))(k)

)
− (n+m)T (r, f) +Nk+2(r, 0; f

nP (f)) + S(r, f) ≤
≤ T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; f

nP (f)) + S(r, f). (10)

Similarly

N2(r, 0;G) ≤ T (r,G)− (n+m)T (r, g) +Nk+2(r, 0; g
nP (g)) + S(r, g). (11)

Again by (2) we have

N2(r, 0;F ) ≤ Nk+2(r, 0; f
nP (f)) + S(r, f), (12)

N2(r, 0;G) ≤ Nk+2(r, 0; g
nP (g)) + S(r, g). (13)

From (10) and (11) we get

(n+m){T (r, f) + T (r, g)} ≤ T (r, F ) + T (r,G) +Nk+2(r, 0; f
nP (f))+

+Nk+2(r, 0; g
nP (g))−N2(r, 0;F )−N2(r, 0;G) + S(r, f) + S(r, g). (14)

We assume that the conclusion (i) of Lemma 3 holds. Then using Lemma 1, (12) and (13)
we obtain from (14)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N2(r,∞;F )+

+2N2(r,∞;G) +Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g)) + S(r, f) + S(r, g) ≤
≤ 2Nk+2(r, 0; f

nP (f)) + 2Nk+2(r, 0; g
nP (g)) + S(r, f) + S(r, g) ≤

≤ 2(k +m+ 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).
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From this we get (n − m − 2k − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g), which leads to
a contradiction as n > 2k+2p+m+2. Hence by Lemma 3 we have either FG = 1 or F = G.
If FG = 1, then (fnP (f))(k)(gnP (g))(k) = P 2

1 , a contradiction by Lemma 7. Hence F = G.
That is [fnP (f)](k) = [gnP (g)](k). Integrating we get [fnP (f)](k−1) = [gnP (g)](k−1) + ck−1,
where ck−1 is a constant. If ck−1 ̸= 0, from Lemma 6 we obtain n ≤ 2k+m, a contradiction.
Hence ck−1 = 0. Repeating k-times, we obtain fnP (f) = gnP (g). Then

fn(amf
m + am−1f

m−1 + . . .+ a1f + a0) = gn(amg
m + am−1g

m−1 + . . .+ a1g + a0). (15)

Let h = f
g
. If h is a constant, by putting f = gh in (15) we get

amg
n+m(hn+m − 1) + am−1g

n+m−1(hn+m−1 − 1) + . . .+ a0g
n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, . . . , n + m − i, . . . , n + 1, n), am−i ̸= 0 for some
i ∈ {0, 1, . . . ,m}. Thus f = tg for a constant t such that td = 1, d = (n +m, . . . , n +m −
i, . . . , n+ 1, n), am−i ̸= 0 for some i ∈ {0, 1, . . . ,m}.

If h is not a constant, then from (15) we can say that f and g satisfy the algebraic equation
R(f, g) = 0, where R(w1, w2) = wn

1 (amw
m
1 + . . .+ a1w1 + a0)−wn

2 (amw
m
2 + . . .+ a1w2 + a0).

Case (ii) Now we assume that P (z) = amz
m, where am (̸= 0) is a complex constant.

Let F = (amfn+m)(k)

P1(z)
and G = (amgn+m)(k)

P1(z)
. Then F and G are transcendental meromorphic

functions that share the value 1 with weight two. Proceeding in the similar manner as in
Case (i) above we obtain either FG = 1 or F = G.

If FG = 1, then (amf
n+m)(k)(amg

n+m)(k) = P 2
1 . So by Lemma 9 we obtain f(z) = b1e

bQ(z),
g(z) = b2e

−bQ(z), where b1, b2 and b are three constants satisfying a2m((n+m)b)2(b1b2)
n+m =

−1 and Q(z) is same as in Theorem 1. If F = G, then using Lemmas 8 and 11 we obtain
f = tg for a constant t such that tn+m = 1.
Case (iii) Let P (z) = C. Taking F = (Cfn)(k)

P1(z)
, G = (Cgn)(k)

P1(z)
and arguing similarly as in Case

(ii) we obtain either f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1, b2 and b are three constants
satisfying C2(nb)2(b1b2)

n = −1, Q(z) is same as in Theorem 1 or f = tg for a constant t
satisfying tn = 1.

Proof of Theorem 1. Let F = [fn(λfm+µ)](k)

P1(z)
and G = [gn(λgm+µ)](k)

P1(z)
. Then F and G are

transcendental meromorphic functions that share the value 1 with weight two. Proceeding
similarly as in Theorem 2 we obtain either FG = 1 or F = G. First we assume that
λµ ̸= 0. Then FG ̸≡ 1, by Lemma 7. Hence F = G and so by Lemmas 6 and 10 we obtain
fd(z) = gd(z) where d = gcd(n,m). Next we assume that λµ = 0. Let λ ̸= 0 and µ = 0. Then
if FG = 1, by Lemma 9 we have f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where b1, b2 and b are

three constants satisfying λ2((n+m)b)2(b1b2)
n+m = −1 and Q(z) is defined as in Theorem 1.

Similar result holds when µ ̸= 0 and λ = 0. If F = G, by Lemmas 8 and 11 we conclude
that f = tg for a constant t that satisfies tn+m∗

= 1.
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