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The theory of 2-monads is used as a ground to study non-symmetric cooperads. We give
a new definition of homotopy cooperads. Ordinary and homotopy cooperads are placed in lax
Cat-operads which are lax algebras over the free-operad strict 2-monad. We give an example
of a homotopy cooperad cofree with respect to ordinary cooperads.

В. В. Любашенко. Гомотопические кооперады // Мат. Студiї. – 2015. – Т.44, №2. – C.119–
160.

Теория 2-монад используется как основа для изучения несимметрических кооперад.
Дано новое определение гомотопических кооперад. Обычные и гомотопические коопера-
ды помещены в расслабленые Cat-операды, которые являются расслаблеными алгебрами
над строгой 2-монадой свободной операды. Приведен пример гомотопической кооперады
косвободной по отношению к обычным кооперадам.

1. Introduction. We use the theory of 2-monads as a ground to (non-symmetric) cooper-
ads. The main tool is an explicit construction of colax morphism classifier for the free-operad
strict 2-monad ⊤⊤ : CatN → CatN, where Cat denotes the 2-category of categories and the set
of natural numbers is N = {0, 1, 2, . . . }.

The choice between ‘lax’ and ‘colax’ for monoidal categories made in [2] was dictated by
the relationship: a lax monoidal category gives rise to a multicategory. We shall switch the
usage to the opposite. The reason is that lax (in the sense opposite to [2]) monoidal categories
are lax algebras over the free-monoid 2-monad ⊤. Similarly colax monoidal categories are
colax algebras over the same 2-monad. This way the present article becomes closer to many
other works (in which often ‘oplax’ is used instead of ‘colax’).

Strict/strong=pseudo/lax/colax ⊤⊤-algebras and ⊤⊤-morphisms are renamed to corre-
sponding Cat-operads and Cat-multifunctors. In sequel article a (co)operad will mean
a non-symmetric (co)operad. (Co)operads in a lax Cat-operad C are defined as (co)lax
Cat-multifunctors 1 → C, where 1 is the terminal Cat-operad. Applying to the latter the
colax morphism classifier Qc we get Qc1 = TRop, where the Cat-operad of trees TR is intro-
duced by T. Leinster ([12]). This motivates the definition of homotopy cooperads in a strong
Cat-operad C as lax Cat-multifunctors TRop → C. We discuss in detail an example of a ho-
motopy cooperad, so called “cofree cooperad”, which is different from the familiar notion of
cofree conilpotent cooperad. This is the reason for introducing the notion of a homotopy
cooperad.

Let ⊥ : C→ C be a comonad. The category of ⊥-coalgebras is denoted C⊥. The following
lemma is well known.
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Lemma 1 (Kleisli). The forgetful functor C⊥ → C has the right adjoint ⊥ : C → C⊥: for
any V ∈ ObC and any ⊥-coalgebra (X, δ) there are mutually inverse bijections

C(X,V ) ←→ C⊥(X,⊥V ),

f → f̂ = δ · (⊥f),
ǧ = g · ε ← g.

This is generalized to multicategories in [2, Lemma 5.3]. The composition of h : U → V
and k : V → W is denoted h · k = kh = k ◦ h : U → W . Osk denotes the category of finite
totally ordered sets n = {1, 2, . . . , n}, n > 0, and their non-decreasing maps (denoting this
category by ∆ would introduce the risk of confusing it with its full subcategory that does
not contain the empty set as an object).

In Section 2 we recall definitions of algebras of various kind over a strict 2-monad.

In Section 3 we concentrate on the free-monoid strict 2-monad ⊤ : Cat → Cat and
strict/strong=pseudo/lax/colax algebras over it, which are corresponding monoidal cate-
gories. We recall the related notion of homotopy comonoid due to T. Leinster. An example
of homotopy comonad is given. Coalgebras over it are ordinary coalgebras in a strong
monoidal category. We discuss also m-cluster trees. A 2-cluster tree is a family of trees
which can be substituted into internal vertices of a given tree. 2-cluster trees are morphisms
of the category TR. m-cluster trees are composable sequences of m− 1 morphisms of TR.

The fourth section is devoted to the free-operad strict 2-monad ⊤⊤ : CatN → CatN. ⊤⊤-al-
gebras, ⊤⊤-morphisms and ⊤⊤-transformations are called Cat-operads, Cat-multifunctors and
Cat-transformations. There is a colax morphism classifier 2-functorQc : p⊤⊤-Algc → p⊤⊤-Algp,
left biadjoint to the inclusion p⊤⊤-Algp ↪→ p⊤⊤-Algc (pseudoalgebras with pseudomorphisms
are included into pseudoalgebras with colax morphisms). The new possibility exploited in
this article is to define (co)operads inside a strong Cat-operad C as (co)lax Cat-multifunctors
1→ C. We identify augmented cooperads with non-counital cooperads. There is a comonad
⊥⊥, whose coalgebras constitute part of non-counital cooperads. Under certain condition on
categories C(n) we show that the category of conilpotent non-counital cooperads is isomor-
phic to the category of ⊥⊥-coalgebras. Summing up, there is a way to obtain augmented
cooperads in the form ⊥⊥◦X = 1⊕⊥⊥X.

Homotopy cooperads are introduced in the fifth section as lax Cat-multifunctors Qc1 =
TRop → C. There is an example of a homotopy cooperad, “completion” ⊥̃⊥◦X of ⊥⊥◦X. In
a sense ⊥̃⊥◦X is cofree with respect to the ordinary cooperads in C. We describe a wide class
of morphisms ⊥̃⊥◦X → ⊥̃⊥◦Y of homotopy cooperads.

2. 2-monads. For the sake of simplicity we use the notation as if (Set,×,1) were a sym-
metric strict monoidal category (instead of weak=strong one). A 2-category K is viewed as
a Cat-category. A strict 2-monad (T,m, i) : K→ K is a monad enriched over Cat.

Recall [19, 1], [7, Definition 4.1] that a lax T -algebra for a strict 2-monad (T,m, i) in
a 2-category K is the quadruple (A, µ : TA→ A,α, ι), where 2-morphisms

T 2A
Tµ → TA

TA

m
↓

µ →

α

⇐=========A

µ
↓

,

A============⇀⇁A

TA

ι�
wwww
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→
i

→



HOMOTOPY COOPERADS 121

( ===⇀⇁ means identity 1-morphism) satisfy the equations

TA
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id
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id
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m
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Colax T -algebras are the same notion with the direction of 2-morphisms α, ι reversed.
Pseudo (=weak =strong) T -algebras are lax ones with invertible α, ι. Strict T -algebras are
those with α = id, ι = id.

Let A, B be lax T -algebras for a 2-monad (T,m, i) in a 2-category K.

Definition 1 (e. g. [9, Section 4.1]). A lax T -morphism (f, ϕ) : (A, µA, α, ιA)→(B, µB, β, ιB)
is a 1-morphism f : A→ B ∈ K and a 2-morphism

TA
Tf → TB
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Definition 2. A colax T -morphism (f, ψ) : (A, µA, α, ιA) → (B, µB, β, ιB) is a 1-morphism
f : A→ B ∈ K and a 2-morphism

TA
Tf → TB
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Definition 3 (e.g. [9, Section 4.1]). A T -transformation between lax T -morphisms ρ :
(f, ϕ)→ (g, ψ) : (A, µA, α, ιA)→ (B, µB, β, ιB) is a 2-morphism ρ : f → g : A→ B in K such
that

TA

Tf →
⇓Tρ
Tg
→
TB

A

µA↓
g
→

ψ

⇐==========B
µB↓

=

TA
Tf → TB

ϕ

⇐=========

A
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↓ f →
⇓ρ
g
→
B
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↓
.

A T -transformation between colax T -morphisms ρ : (f, ϕ) → (g, ψ) : (A, µA, α, ιA) →
(B, µB, β, ιB) is a 2-morphism ρ : f → g : A→ B in K such that

TA

Tg →
⇑Tρ
Tf
→
TB

A

µA↓
f
→

ϕ

==========⇒B
µB↓

=

TA
Tg → TB

ψ

=========⇒

A
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⇑ρ
f
→
B
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↓
.

Let s, p, l, c stand for strict, pseudo, lax and colax. Denote by lT -Algl (resp. pT -Algp,

pT -Algc) the 2-category of lax T -algebras (resp. pseudo (=weak =strong) T -algebras), lax
T -morphisms (resp. pseudo (=weak =strong) T -morphisms, colax T -morphisms), and their
T -transformations, see e.g. [9, Section 4.1]. Similarly for the other reasonable combinations

xT -Algy with x, y ∈ {s, p, l, c}.
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Exercise 1. Let K be a 2-category with a 2-monad (T,m, i) : K → K. For any B ∈ ObK
and any lax T -algebra (C, µC , γ, ιC) there is a functor

E : K(B,C) −→ lT -Algl(TB,C), (P : B → C) 7−→
(
TB

TP→ TC
µC→ C, ϕ

)
, (4)

ϕ =

T 2B
T 2P→ T 2C

TµC→ TC

=

TB

m↓
TP→ TC

m↓
µC →

γ

⇐=======C

µC↓

with the obvious value on 2-morphisms. (Hint: use associativity (2) for γ and unitality (1)
for γ and ι.)

The following statement is already known.

Lemma 2 (Kleisli lemma for 2-categories). Let K be a 2-category with a 2-monad (T,m, i) :
K → K. For any B ∈ ObK and any strong T -algebra (C, µC , γ, ιC) the functor E :
K(B,C) → pT -Algp(TB,C) given by (4) is an equivalence.

Proof. Introduce the functor

G : pT -Algp(TB,C) −→ K(B,C),
(
(g, ψ) : TB → C

)
7−→

(
B

i→ TB
g→ C

)
. (5)

Then invertibility of ι implies that E · G ∼= IdK(B,C). Due to (3) there is a natural trans-
formation G · E → IdpT -Algp(TB,C) involving ψ from (g, ψ) ∈ pT -Algp(TB,C). This natural
transformation is invertible thanks to the invertibility of ψ.

Recall that a 2-monad T is said to have a rank if it preserves α-filtered colimits for some
regular cardinal α ([1]). Assume that K is complete and cocomplete and T has a rank. It
is shown in [1] that the inclusion 2-functor sT -Algs ↪→ sT -Algp (resp. sT -Algs ↪→ sT -Algl)
admits a left adjoint, which could be called a pseudo/strict (resp. lax/strict) morphism clas-
sifier. Furthermore, C. Hermida ([7, Theorem 6.1]) proved that under certain assumptions
the inclusion 2-functor pT -Algp ↪→ pT -Algc admits a left biadjoint Qc : pT -Algc → pT -Algp,
which could be called a colax/pseudo morphism classifier. We shall encounter examples of
such Qc below.

3. Coalgebras as colax morphisms. As an example of a 2-monad consider the free-
monoid strict 2-monad ⊤ : Cat→ Cat,

⊤C =
⨿
k∈N

Ck.

A lax ⊤-algebra (C, µ, α, ι) is the same as a lax monoidal category [12, Section 3.1] or
a lax monoidal category (C,⊗I , λf , ρ) (Definition 2.5 [2] applied to Cop): ⊗I = µ

∣∣
CI , λ

f =

α
∣∣∏

j∈J Cf−1j for any f : I → J ∈ Osk, ι = ρ : X → ⊗1X. A strong ⊤-algebra is the same as

a strong monoidal category [ibid.] or an unbiased monoidal category [12, Definition 3.1.1].
A (co)lax ⊤-morphism (F, ϕ) : (C,⊗, λ, ρ)→ (D,⊗, λ, ρ) between lax ⊤-algebras is the same
as a (co)lax monoidal functor between lax monoidal categories ([12, Definition 3.1.3] or
Definition 2.6 ([2]) with appropriate arrows reversed). A ⊤-transformation is the same as
a monoidal transformation ([12, Definition 3.1.4] or [2, Definition 2.7] mutatis mutandis).
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The free-monoid monad ⊤ : Set → Set preserves small filtered colimits, thus is finitary.
This follows from the property of Set that filtered colimits commute with finite limits, see
Example 9. This is extended further to a monad⊤ : Cat→ Cat being finitary and to 2-monad
⊤ : Cat→ Cat being finitary. The monad ⊤ : Set→ Set as well as ⊤ : Cat→ Cat is cartesian
[12, Example 4.1.4].

Remark 1. As noticed in [7, Section 11] the 2-category Cat admits a calculus of bimodules.
The 2-functor ⊤ : Cat → Cat preserves pullbacks and comma-categories. It preserves also
coidentifiers f ∗ ◦ g♯ � f∗ • g♯, the notation and definitions are in [7, Section 2]. In fact, for
Cat we have f ∗ • g♯ =

∫
dom g

f∗× g♯, the above projections are induction maps for the coend.
The rest is the direct inspection.

A coalgebra (=comonoid) in a lax monoidal category (M,⊗, λ, ρ) is defined as an algebra
in the colax monoidal category (Mop,⊗, λop), or as a colax monoidal functor C : 1 → M,
cf. [2, Definition 2.25] where 1 is the terminal (one-morphism) category. Equivalently, it is
an object C of M equipped with a morphism ∆I : C → C⊗I for each I ∈ ObOsk such that
∆1 = id and for every map f : I → J ∈ Osk the following equation holds

∆I =
(
C

∆J→ C⊗J ⊗j∈J∆f−1j→ ⊗j∈J C⊗f−1j λf→ C⊗I).
The following result of [2] treats algebras in colax monoidal categories, however, we cite

it in dual form.

Proposition 1 (Proposition 2.27 of [2]). A coalgebra C in a lax monoidal categoryM defines
a lax monoidal functor

(F, ϕI) : (Oop
sk ,⊔I , id)→ (M,⊗I , λf ), F (J) = C⊗J ,

(f op : I → J) ∈ O
op
sk ↔ (f : J → I) ∈ Osk 7→ ∆f

C =
(
C⊗I ⊗i∈I∆f−1i→ ⊗i∈I C⊗f−1i λf−→ C⊗J).

Let ni ∈ N = ObOop
sk for i ∈ I ∈ ObOsk. The natural transformation ϕI : ⊗i∈I C⊗ni →

C⊗
∑

i∈I ni is defined as λg : ⊗i∈I C⊗g−1i → C⊗N for N = ⊔i∈Ini, g : N → I ∈ Osk such that
|g−1i| = ni. If M is strong monoidal (λ is invertible), then (F, ϕ) is strong monoidal.

If M is a strict monoidal category then a coalgebra C in M gives rise to a strict monoidal
functor, as proven by S. Mac Lane ([16, Proposition VII.5.1]).

The previous statement of the proposition admits a stronger version: the described func-
tor

Monc(1 ,M) ≡ p⊤-Algc(1 ,M)→ p⊤-Algp(O
op
sk ,M) ≡Mon(Oop

sk ,M)

is an equivalence ([14, Propositions 1.11, 1.12]). Further strengthening is given by Proposi-
tion 4.

Proposition 2. There are a 2-functor Qc : s⊤-Algc → s⊤-Algs and a 2-natural isomor-

phism s⊤-Algs(QcB,C)
∼=−→ s⊤-Algc(B,C), which turn Qc into a left adjoint to the inclusion

s⊤-Algs ↪→ s⊤-Algc.

Since 2-monad ⊤ is finitary, this statement follows from [1, Theorem 3.13]. Also it follows
from [7, Theorem 6.1.1] whose hypothesis is satisfied due to Remark 1. We leave the other
proofs in this section to the reader since the results follow from analogous statements of
Section 4.

For the moment we recall that every unbiased monoidal category is equivalent to a strict
monoidal category ([12, Theorem 3.1.6]). We reformulate this as follows.



HOMOTOPY COOPERADS 125

Proposition 3. The embedding 2-functor s⊤-Algs ↪→ p⊤-Algp admits a left adjoint L :

p⊤-Algp → s⊤-Algs such that the unit of the adjunction B→ LB is an equivalence.

A more general result is given by C. Hermida ([7, Corollary 7.5]).

Corollary 1. The embedding 2-functor s⊤-Algs ↪→ p⊤-Algp is a biequivalence with a quasi-
inverse L.

Proposition 4. There are a 2-functor Qc : Monc →Mon and a 2-natural equivalence

Mon(QcB,C)
≃−→Monc(B,C),

which turn Qc into left biadjoint to the inclusion Mon ↪→Monc.

This follows from Hermida’s Theorem 6.1 ([7]) applicable due to Remark 1.

Remark 2. The 2-functor Qc from Proposition 2 is the restriction of the 2-functor Qc from
Proposition 4(

s⊤-Algc
Qc−→ s⊤-Algs ↪→ p⊤-Algp

)
=
(
s⊤-Algc ↪→ p⊤-Algc

Qc−→ p⊤-Algp
)
. (6)

Corollary 2 (to Propositions 2, 4). There are a 2-functor Ql : s⊤-Algl → s⊤-Algs (resp.
Ql : p⊤-Algl → p⊤-Algp) and a 2-natural isomorphism (resp. equivalence)

s⊤-Algs(QlB,C)
∼=−→ s⊤-Algl(B,C), resp. p⊤-Algp(QlB,C)

≃−→ p⊤-Algl(B,C),

which turn Ql into a left adjoint (resp. biadjoint) to the inclusion s⊤-Algs ↪→ s⊤-Algl (resp.
p⊤-Algp ↪→ p⊤-Algl). 2-functors Ql agree similarly to (6).

The proof and the construction of Ql is made by dualising the results for Qc using
opposite monoidal categories. Thus, QlB is the universal strict monoidal category generated
over ⊤B by the morphisms ξI : (Xi)i∈I → ⊗i∈IB Xi subject to naturality, normalisation and
multiplicativity.

In particular, if B = 1 then the category Qc1 is O
op
sk . This is the monoid classifier

for monoidal categories ([7, Corollary 9.1, Theorem 9.2]). The classical description of the
monoid classifier for monoidal categories is usually credited to Lawvere.

3.1. Trees. We use conventions, terminology and notation for trees from [15, § 2.1]. A rooted
tree t can be defined as a parent map Pt : V (t)→ V (t), where V (t) is a finite set (of vertices),
such that | Im(P k

t )| = 1 for some k ∈ N. The only element r ∈ Im(P k
t ) is called the root. An

oriented graph without loops G is constructed out of P , whose set of vertices is V (t) and
arrows are v → Pt(v) if vertex v is not the root. Since G is a connected graph, whose number
of edges is one less than the number of vertices, it is a tree. Thus the rooted tree is oriented
towards the root. The only oriented path connecting a vertex v with the root consists of
v, P (v), P 2(v), . . . , the root. This gives a partial ordering on the set of all vertices V (t),
namely, u 4 v if and only if v lies on the oriented path connecting u with the root. For each
vertex p ∈ V (t) the non-negative number |p| = |P−1

t (p) \ {root}| of its children is called its
arity.

A planar rooted tree is a rooted tree with a chosen total ordering 6 of the set of incoming
edges for each vertex. A rooted tree with inputs is a rooted tree t with a chosen subset Inp(t)
of the set L(t) of leaves, vertices without incoming edges. For instance, a 1-vertex tree has
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one leaf — the root. It gives rise to two rooted trees with inputs: τ [0] = • = (1; Inp • = ∅)
and θ0 = ◦ = (1; Inp ◦ = 1). The set of internal vertices is defined by v(t) = V (t)− Inp(t).

The total ordering P of the set V (t) of vertices of a planar rooted tree t is defined as
follows. For any two vertices u, v ∈ V (t) either they are comparable with respect to 4 and
we set u P v iff u 4 v, or they are not 4-comparable. Then there are unique n,m ∈ N>0

such that P n(u) = Pm(v) and both P n−1(u) ̸= Pm−1(v) are distinct from the root. We set
u ▹ v iff P n−1(u) < Pm−1(v) in the set of descendants (incoming edges) of P n(u).

Let tr be the set of isomorphism classes of planar rooted trees with inputs. It splits up,
tr =

⊔
n>0 tr(n), in components tr(n) = {t ∈ tr | | Inp t| = n}. We view tr = (tr(n))n>0

as a collection of sets. Thus, for any finite set S the notation tr(S) means tr(|S|). Also for
any internal vertex p the notation tr |p| means tr(|p|).

For each tree t ∈ tr there is an operation of substituting trees into internal vertices

It :
∏
p∈v(t)

tr |p| → tr(Inp t) (7)

which takes a family (tp)p∈v(t) with | Inp tp| = |p| to the tree It(tp | p ∈ v(t)) obtained from t
by replacing each internal vertex p ∈ v(t) with the tree tp. If t = ◦, then I◦() = ◦. If t ̸= ◦,
then τ = It(tp | p ∈ v(t)) has

V (τ) =
⊔
p∈v(t)

V (tp)/ ∼ . (8)

Notice that the projection map

π :
⊔

p∈(v(t),P)

(V (tp),P) ◃ (V (τ),P) (9)

is not necessarily non-decreasing, where the first set is lexicographically totally ordered (p▹q
for p, q ∈ v(t) implies (p, x) ▹ (q, y) for all x ∈ v(tp), y ∈ v(tq).

The set Inp τ of input vertices of τ by definition consists of single elements (u, x), u ∈ v(t),
x ∈ Inp tu \ ϕu

(
v(t) ∩ (P−1

t u \ root(t))
)
. Clearly, Inp τ ⊂ L(τ) and Inp τ = V (τ) − v(τ),

where

v(τ) = v
(
It(tp | p ∈ v(t))

)
≃
⊔
p∈v(t)

v(tp). (10)

The set of staged trees str(m) consists of sequences in Osk

t =
(
t(0)

t1→ t(1)
t2→ t(2)

t3→ . . . t(m− 1)
tm→ t(m) = 1

)
,

str(m) = {t ∈ Cat([m],Osk) | t(m) = 1}.

It is partitioned into subsets str(n,m) of staged trees t of height m with t(0) = n. The set
str(n,m) is naturally embedded into tr(n) so that Inp t = t(0), respectively, v(t) =

∪m
j=1 t(j).

3.2. Homotopy comonoids.

Definition 4. A homotopy comonoid in a lax monoidal category (M,⊗, λ) is a lax monoidal
functor (F, ϕI) : (Oop

sk ,⊔I , id)→ (M,⊗I , λf ).
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If (M,⊗, λ) is a strong monoidal category then the notion of homotopy (co)monoid is
due to T. Leinster ([10, Definition 2.2]) with detailed exposition in [11]. Based on this, Le-
inster defined homotopy monoidal categories ([12, Definition 3.3.7]). Examples of homotopy
comonoids are given in [14].

Definition 5. A homotopy comonad is a homotopy comonoid in the strict monoidal category
of endofunctors M = EndC for some category C.

The necessity to consider such structures is motivated by the following example.

Example 1. We take a strong monoidal category V for C and consider the functor F : Oop
sk →

M = EndV, F (m)(X) =
∏

t∈str(m)X
⊗t(0). A morphism fop : J → I ∈ O

op
sk which corresponds

to the map f : I → J ∈ Osk is taken by F to the morphism

F (f op) :
∏

r∈str(J)

X⊗r(0) →
∏

t∈str(I)

X⊗t(0),

F (f op) · prt = pr
[J ]

[f ]−→[I]
t−→Osk

:
∏

r∈str(J)

X⊗r(0) → X⊗t(0).

Recall that t ∈ str(I) is a functor t : [I]→ Osk such that t(|I|) = 1. The functor [f ] : [J ]→ [I]
is described in [2, Section 2.1]. Notice that [f ](0) = 0 and [f ](|J |) = |I|.

If (F, ζ) : Oop
sk → EndC is a homotopy comonad then it makes sense to define F -coalgebras

as follows.

Definition 6. An F -coalgebra is an object C of C together with a coaction morphism

δ : C → F (1)(C) such that
[
C

δ−→ F (1)(C)
F (1)(!op)→ F (0)(C)

]
= ζ0, with !op : 1 → 0 ∈ O

op
sk

corresponding to the only map ! : ∅→ 1 ∈ Osk and

C
δ→ F (1)(C)

F (1)(δ)→ F (1)F (1)(C)

=

F (1)(C)

δ↓
F (Vop) → F (2)(C)

ζ21,1↓

with Vop : 1→ 2 ∈ O
op
sk corresponding to the only map V : 2→ 1 ∈ Osk.

In Example 1 an F -coalgebra is a map δ = (∆n)n>0 : C →
∏

n∈NC
⊗n such that ∆1 =

id: C → C⊗1 and

C
δ→
∏
k∈N

C⊗k
∏

k δ
⊗k

→
∏
k∈N

⊗
i∈k

∏
ni∈N

C⊗ni

=∏
n∈N

C⊗n

δ

↓
F (Vop) →

∏
k∈N

∏
(ni)∈Nk

C⊗(n1+···+nk).

∏
ζ = ζ21,1↓

The comultiplication F (Vop) in the homotopy comonad F is determined by F (Vop)·prk;n1,...,nk

= prn1+···+nk
. The above commutative diagram is equivalent to the following equation[

C
∆k→ C⊗k ∆n1⊗···⊗∆nk→ C⊗n1 ⊗ · · · ⊗ C⊗nk

∼=−→ C⊗(n1+···+nk)
]
= ∆n1+···+nk

. (11)

This amounts to ordinary coalgebra C in V with the associative comultiplication ∆2 and the
counit ∆0, use equation (2.25.1) and Proposition 2.28 of [2].
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Definition 7. A morphism of F -coalgebras is a morphism f : C → D ∈ C such that

C
δ→ F (1)(C)

=

D

f
↓

δ→ F (1)(D)

F (1)(f)↓

In Example 1 a morphism of F -coalgebras is the same as a morphism of ordinary coal-
gebras in V. Thus, in this case the category of F -coalgebras is isomorphic to the category
of coalgebras in V.

Example 2. In a non-counital version of Example 1 we consider the functor F ′ : ∆op
sur →

EndV, F ′(m)(X) =
∏

t∈sstr(m)X
⊗t(0), where ∆sur ⊂ Osk is the subcategory consisting of non-

empty totally ordered sets n, n > 0, and surjective non-decreasing maps, and sstr(m) ⊂
str(m) consists of sequences of surjective maps (thus sstr ⊂ N(∆sur)). The remaining
structure is that of F . An F ′-coalgebra is a map δ = (∆n)n>0 : C →

∏
n>0C

⊗n such that
∆1 = id and (11) holds for k, n1, . . . , nk > 0. Thus the category of F ′-coalgebras is the
category of non-counital coassociative coalgebras in V.

3.3. Cluster trees.

Definition 8. An m-cluster tree (n; t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1)), m > 0, is a collection
consisting of an integer n ∈ N, a tree t (a planar rooted tree with n inputs), a tree tp1 ∈ tr |p1|
for each internal vertex p1 ∈ v(t), a tree tp1,p2 ∈ tr |p2| for each internal vertex p2 ∈ v(tp1),
etc., a tree tp1,p2,...,pm−1 ∈ tr |pm−1| for each internal vertex pm−1 ∈ v(tp1,p2,...,pm−2).

By definition, a 0-cluster tree (n) has a single parameter, the number of inputs n ∈ N.
A 1-cluster tree is just a tree. For a 2-cluster tree (t; (tp)p∈v(t)) one can substitute trees tp

into vertices p ∈ v(t) and get the resulting tree I(t; (tp)p∈v(t))
def
= It(tp | p ∈ v(t)). Thus

I(t; (tp)) ∈ tr is obtained from a 2-cluster tree via multiplication in the operad tr. Similarly,
I(t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1)) ∈ tr is obtained from an m-cluster tree by applying
multiplication in trm−1 times. Anm-cluster tree is precisely a datum needed for performing
multiplication in tr m − 1 times. In the particular case of m = 1 the tree I(t) is t, and if
m = 0, then I(n) is the corolla τ [n] = {n→ 1 | Inp = n}.

One can imagine a 2-cluster tree as a circled planar tree of [13, Appendix C.2.3]. More
generally, an m-cluster tree (t; (tp1); . . . ; (tp1,...,pm−1)) as an ordinary tree I(t; (tp1);
. . . ; (tp1,...,pm−1)), whose internal vertices are partitioned into clusters is subtrees I(tp1 ;
(tp1,p2)p2 ; . . . ), p1 ∈ v(t), which are in turn partitioned into clusters of the second level
etc. Presence of ◦ spoils this picture, however, there is another presentation of cluster trees,
more important for applications.

With a rooted tree t we associate the partially ordered set (V (t),4). Recall that x 4 y
means that y lies on the oriented path connecting x with the root. The poset (V (t),4)
admits suprema of arbitrary non-empty families. It suffices to notice that it admits joins
x ∨ y = sup4{x, y}, the least upper bound of x and y.

If t is a planar rooted tree then the set V (t) is equipped also with a total ordering P
such that x 4 y implies x P y, see Section 3.1.

Definition 9. The set tr of planar rooted trees with inputs is the set of objects of a category
Tr whose morphisms r → t are mappings f : V (r)→ V (t) such that
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(i) the map f : (V (r),4)→ (V (t),4) is non-decreasing;

(ii) the map f respects the partition into inputs and internal vertices, f(Inp(r)) ⊂ Inp(t),
f(v(r)) ⊂ v(t);

(iii) the restriction f | : Inp(r)→ Inp(t) is bijective;

(iv) f(L(r)) ⊃ L(t);

(v) f preserves joins ∨, f(x ∨ y) = f(x) ∨ f(y).

Proposition 5. Morphisms f : r → t are in bijection with 2-cluster trees (t; (tp)p∈v(t)).
The bijection is established by assigning tp = ◦ if p /∈ Im f and tp is a subtree of r with
v(tp) = f−1(p) if p ∈ Im f , all vertices of tp given by V (tp) = P−1

r (v(tp))∪ v(tp). The inverse
bijection is given by r = I(t; (tp)p∈v(t)).

The category Tr of trees whose morphisms are 2-cluster trees was first described by
T. Leinster ([12, Section 7.3]). He calls ordinary trees by the name of 2-pasting diagrams (in
other terms, 3-opetopes), while 2-cluster trees are maps of 2-pasting diagrams. Subcategories
of Tr with only surjective maps were used by many authors, see e.g. V. L. Ginzburg and
M. M. Kapranov ([6]), M. Kontsevich and Yu. I. Manin ([8]), R. E. Borcherds ([5]) and
Ya. S. Soibelman ([18]).

Proof. Given a tree t ̸= ◦ and a tree tp ∈ tr |p| for each p ∈ v(t), let us construct a map

g :
⊔
p∈v(t)

V (tp) → V (t).

For any v ∈ v(tp) impose g(v) = p.
Let q ∈ v(t), q ̸= root(t), p = Ptq. There is the order preserving bijection

ϕp : (P
−1
t (p) \ {root(t)},6)→ (Inp tp,P).

In τ = I(t; (tp)p∈v(t)) vertices root(tq) and ϕp(q) are glued by equivalence relation (8). We
impose

g(ϕp(q)) = g(root(tq)). (12)

If root(tq) ∈ v(tq), then we already know g(root(tq)). Otherwise, tq = ◦ and |q| = 1.
Proceeding we include q in a maximal string of consecutive vertices Pv ̸= P 2v ̸= · · · ≠ Pmv
such that tPv = tP 2v = · · · = tPmv = ◦, m > 1, either v /∈ v(t) or tv ̸= ◦, and either
Pm+1v = Pmv is the root of t or tPm+1v ̸= ◦. Iterating equation (12) we conclude that
g(ϕp(q)) = g(root(tv)) which is already known if tv ̸= ◦. It remains to define g on elements
(u, x), u ∈ v(t), x ∈ Inp tu \ ϕu

(
v(t) ∩ (P−1

t u \ root(t))
)
. The set of such elements is in

bijection with Inp t. We choose g on the set of (u, x) to be the only P-order preserving
bijection with Inp t. This determines g completely.

By construction, g factors through canonical projection (9) and determines a unique
map f as in

g =
[ ⊔
p∈v(t)

V (tp)
π
◃ V (I(t; (tp)))

f→ V (t)
]
. (13)

Equip now v(t), V (tp), V (I(t; (tp))) and V (t) with the partial order 4. Equip the source
of (13) with the lexicographic order. Any pair of elements y ≺ z ∈ V (I(t; (tp))) lifts to
a pair w ≺ x ∈

⊔
p∈(v(t),4)(V (tp),4) such that π(w) = y, π(x) = z. Since by construction g
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preserves the order 4, so is f . Thus f satisfies condition (i) of Definition 9. Clearly,
conditions (ii)–(iv) are also satisfied. By induction on the size of V (r) we prove also (v).

Let f : V (r) → V (t) satisfy all the conditions of Definition 9. For p ∈ v(t) let us

construct a tree tp. The set v(tp)
def
= f−1(p) is closed with respect to joins ∨. For all vertices

u,w ∈ f−1(p) and any vertex v ∈ V (r) inequalities u 4 v 4 w imply that v ∈ f−1(p).
Therefore, f−1(p) is a subtree of r, possibly empty. If f−1(p) = ∅, then |p| = 1 by (iv)
and (v). In this case set tp = ◦, otherwise set V (tp) = P−1

r (f−1(p)) ∪ f−1(p), this gives all
vertices of subtree tp of r. Let v ∈ V (tp) − v(tp) = Inp(tp). There is k = k(v) ∈ N such

that P k
t f(v) ̸= p and P k+1

t f(v) = p. The map Inp tp → P−1
t p \ {root(t)}, v 7→ P

k(v)
t f(v), is

injective by (v) and surjective by (iv). Therefore, | Inp tp| = |p|.
Let f : r → t satisfy conditions of Definition 9. If t = ◦ then the only possible f is id◦

and I◦() = ◦ = r. If t ̸= ◦, then ∼-equivalent points of
⊔
p∈v(t) V (tp) represent the same

vertex of r. Hence, I(t; (tp)p∈v(t)) = r. By construction, the map I(t; (tp)p∈v(t))→ t coincides
with f .

Starting with a 2-cluster tree (t; (tp)p∈v(t)) construct f . By construction the subsets
f−1(p) and P−1

r (f−1(p)) ∪ f−1(p) determine the tree tp we have started with. Thus, the
described maps are inverse to each other.

It follows that recursive definition of a morphism of trees [12, Section 7.3] is equivalent
to Definition 9.

Remark 3. The category Tr is a disjoint union of its subcategories Tr(n), each of which
has the terminal object τ [n]. Hence, we obtain the following corollary.

Hence, we obtain the following corollary.

Corollary 3. m-cluster trees are in bijection with sequences r(0)→ r(1)→ · · · → r(m− 1)
→ r(m) of m composable morphisms in Tr such that r(m) is a corolla, namely, r(m) =
τ [Inp r(0)].

Denote the set of such sequences by

Ctr(n,m) =
{
t =

(
t(0)

f1−→ t(1)
f2−→ · · · → t(m− 1)

fm−→ t(m)
)
| t(m) = τ [n], ∀i fi ∈ Tr(n)

}
,

Ctr(n,m) = {t ∈ Cat([m],Tr(n)) | t(m) = τ [n]}.

It is shown above that Ctr(n,m) is in bijection with ctr(n,m). Namely, an m-cluster tree
(n; t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1)) is taken to the sequence

I(t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1))→ . . .→I(t; (tp1); (tp1,p2))→I(t; (tp1))→ t→τ [n]. (14)

Define the linear tree of height m as θm =
(
θm(0) = 1 → 1 → 1 → . . . → 1 → 1 =

θm(m)
)
with Inp θm = θm(0) = 1. In particular, θ0 = ◦ = (1; Inp ◦ = 1). The full and

faithful functor θ : Osk → Tr(1), n 7→ θn, induces the injection

str(m) ⊂ → Ctr(1,m)

Cat([m],Osk)

↓

∩

⊂ Cat([m],θ) → Cat([m],Tr(1))

↓

∩

(
p(0)→ p(1)→ · · · → p(m)

)
→
(
θp(0) → θp(1) → · · · → θp(m)

)
.
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Each cluster tree t ∈ Ctr(n,m) has another form

(n; t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1)) ∈ ctr(n,m).

The internal vertices of t(m− k), 0 6 k 6 m, are found from the latter presentation as

v(t(m− k)) =
⊔

p1∈v(t)

⊔
p2∈v(tp1)

· · ·
⊔

pk−1∈v(tp1,...,pk−2
)

v(tp1,p2,...,pk−1
). (15)

In particular, v(t(m)) = 1, v(t(m− 1)) = v(t).
Let s = m− k, 0 6 s 6 m, and j ∈ v(t(s)). The same point j is identified with

(p1, p2, . . . , pk) = (fm−1 · · · fs+2fs+1(pk), . . . , fs+2fs+1(pk), fs+1(pk), pk).

Define t
|j
[q,s] as the (s− q)-cluster subtree of t formed by(

|pk|; tp1,p2,...,pk ; (tp1,...,pk,pk+1
)pk+1

; . . . ; (tp1,...,pk,pk+1,...,pm−q−1)pk+1,...,pm−q−1

)
∈ ctr(|pk|, s− q).

As explained by T. Leinster [12, Section 7.3] Proposition 5 implies the following enforce-
ment of Example 3, see also Description 1 of Cat-operads.

Corollary 4. The collection TR of categories Tr(n), n ∈ N, equipped with functors It
from (7) and identity transformations α, ι is a strict Cat-operad — (strict algebra over the
strict 2-monad ⊤⊤ : CatN → CatN).

4. Cat-operads. Consider the free-operad monad

⊤⊤ : SetN → SetN, X = (X(n))n>0 7→ ⊤⊤X, (⊤⊤X)(n) =
⨿

t∈tr(n)

∏
p∈v(t)

X|p|,

on the category of collections of sets. For any p ∈ v(t) the notation X|p| means X(|p|).
The multiplication m : ⊤⊤2X → ⊤⊤X is taking identically a summand

∏
p∈v(t)

∏
q∈v(tp)X|q|

indexed by a 2-cluster tree (t; (tp)p∈v(t)) to the summand
∏

v∈v(I(t;(tp)))X|v| indexed by the

tree I(t; (tp)p∈v(t)) = It(tp | p ∈ v(t)) from (7). The identity mapping here is due to (10):

v
(
I(t; (tp)p∈v(t))

)
=
⊔
p∈v(t)

v(tp).

This monad is described by T. Leinster [12, Example 4.1.11] as the monad substituting
trees into vertices, see also [13, Section 5.9.5] and (7). Algebras over this monad are (non-
symmetric) operads in Set. Equivalence of this definition of an operad and the conventional
ones is shown in [13, Section 5.9]. Similar monad using abstract (non-planar) labeled trees
is described in [17, Section 1.12], a reduced monad is in [13, Section 5.6.1]. This is the free-
symmetric-operad monad. Equivalence of algebras over it and usual definitions of symmetric
operads is proven in [17, Theorem 1.105], see also [13, Chapter 5]. The version for graphs
instead of trees is in [3, Proposition 1.7.1].

The free-operad monad ⊤⊤ : SetN → SetN preserves small filtered colimits, thus is finitary.
This follows from the property of Set that filtered colimits commute with finite limits, see
Example 9. This extends further to monad ⊤⊤ : CatN → CatN being finitary. The monad
⊤⊤ : SetN → SetN as well as ⊤⊤ : CatN → CatN is cartesian ([12, Example 6.5.5]).
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This monad lifts to a free-operad strict 2-monad

⊤⊤ : CatN → CatN, P = (P (n))n>0 7→ ⊤⊤P, (⊤⊤P )(n) =
⨿

t∈tr(n)

∏
v∈v(t)

P |v|.

Due to the above remarks the 2-monad ⊤⊤ is finitary.

Remark 4. As noticed in [7, Section 11], the 2-category CatN admits a calculus of bimodules.
The 2-functor ⊤⊤ : CatN → CatN preserves pullbacks, comma-categories and coidentifiers
f ∗ ◦ g♯ � f ∗ • g♯ similarly to Remark 1.

Strict ⊤⊤-algebras are operads in Cat (see also [3, Definition 4.5.1]). We describe lax
algebras over the 2-monad ⊤⊤ : CatN → CatN named lax Cat-operads. These are collections
of categories C = (C(n))n>0 equipped with a family of functors

µt :
∏
p∈v(t)

C|p| → C(Inp t), t ∈ tr .

Equations for µ are replaced with natural transformations indexed by a 2-cluster tree∏
p∈v(t)

∏
q∈v(tp)

C|q|
∏

p∈v(t) µtp→
∏
p∈v(t)

C|p|

∏
x∈v(It(tp|p∈v(t)))

C|x|

∼=
↓

µIt(tp|p∈v(t))→

αt;(tp)p

⇐=============C(Inp t)

µt

↓
(16)

We are interested in pseudo (=weak=strong) ⊤⊤-algebras for which αt;(tp)p are invertible.
Let us introduce some technical notation. For an arbitrary t ∈ tr we denote by >t

the | Inp t|-corolla, >t = (Inp t → 1; Inp t) if Inp t is not empty and >t = τ [0] = (1;∅) if
Inp t = ∅. For any p ∈ v(t) denote by t>p the |p|-corolla, t>p = (P−1

t p→ 1;P−1
t p) if p is not

a leaf and t>p = τ [0] if p is a leaf. In particular, for t = ◦ = (1;1) we have >t = τ [1] and
there are no t>p for v(t) = ∅. For t = τ [0] = • we have >t = τ [0] = t = t>1 .

The notion of a lax T -algebra for T = ⊤⊤ is realized as follows.

Description 1. A lax Cat-operad (=lax ⊤⊤-algebra) consists of

— a collection of categories C = (C(n))n>0,
— functors µt :

∏
p∈v(t) C|p| → C(Inp t) for t ∈ tr,

— natural transformations (16) for t ∈ tr and for family tp ∈ tr |p|, p ∈ v(t),
— and natural transformations for n > 0,

C(n) =================
Id

⇀⇁ C(n)

C(n)1

ιτ [n]�wwww
µτ [n]

→

∼=
i′

→

such that
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(i) for every t ∈ tr unitality-1 holds

∏
p∈v(t)

C|p|

∏
p∈v(t)

∏
q∈v(t>p )

C|q|

∼=
↓ ∏

p∈v(t) µt>p→

∏
p∈v(t) ιt>p

⇐================
∏
p∈v(t)

C|p|

id

↓
id

→
∏
p∈v(t)

C|p|

∼=
↓

µt →

α
t;(t>p )p

⇐============C(Inp t)

µt

↓

= idµt ; (17)

(ii) for every t ∈ tr unitality-2 holds

∏
p∈v(t)

C|p| µt → C(Inp t)

=∏
q∈v(>t)

∏
p∈v(t)

C|p|

∼=
↓ ∏

q∈v(>t) µt→
∏

q∈v(>t)

C(Inp t)

i
↓

⇐===
ι

id

→
∏
p∈v(t)

C|p|

∼=
↓

µt →

α>t;t

⇐=========== C(Inp t)

µ>t

↓
←

id = idµt ; (18)

(iii) for every t ∈ tr, every family tp ∈ tr |p|, p ∈ v(t), and all families tqp ∈ tr |q|,
q ∈ v(tp), p ∈ v(t), that is, for any 3-cluster tree (t; (tp)p∈v(t); ((t

q
p)q∈v(tp))p∈v(t)), associativity

equation (2) holds, which is equality of two natural transformations

∏
p∈v(t)

∏
q∈v(tp)

∏
r∈v(tqp)

C|r|
∏

p∈v(t)

∏
q∈v(tp)

µ
t
q
p→
∏
p∈v(t)

∏
q∈v(tp)

C|q|

=

∏
(p,q)∈v(t(1))

∏
r∈v(tqp)

C|r|
∏

z∈v(t(1)) µtqp →

∼=

←
∏

z∈v(t(1))

C|z| ⇐=========
αt;(tp)p

∼=

←
∏
p∈v(t)

C|p|

∏
p∈v(t) µtp

→

∏
y∈v(t(0))

C|y|
µt(0)

→

α
t(1);(t

q
p)

q
p

⇐=========

∼=

→

C(Inp t)

µt

←

µt(1)

→ =
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∏
p∈v(t)

∏
q∈v(tp)

∏
r∈v(tqp)

C|r|
∏

p∈v(t)

∏
q∈v(tp)

µ
t
q
p →

∏
p∈v(t)

∏
q∈v(tp)

C|q|

∏
(p,q)∈v(t(1))

∏
r∈v(tqp)

C|r|

∼=

← =
∏
p∈v(t)

∏
x∈v(I(tp;(tqp)q))

C|x|
∏

p∈v(t) µI(tp;(t
q
p)q)→

∏
p∈v(t) αtp;(t

q
p)q

⇐=========

∼=

→

∏
p∈v(t)

C|p|

∏
p∈v(t) µtp

→

∏
y∈v(t(0))

C|y|
µt(0)

→

α
t;(I(tp;(t

q
p)q))p

⇐===================================

∼=

←

∼=

→

C(Inp t)

µt

←

(19)

A strong (=weak =pseudo) Cat-operad C is a lax Cat-operad (C, µt, α, ι) such that α, ι are
invertible. A strict Cat-operad C is an operad enriched over Cat (of the form (C, µt, id, id)).

Associate with an m-cluster tree, (n; t; (tp1); (tp1,p2); . . . ; (tp1,p2,...,pm−1)) or equivalently
with t(0)→ t(1)→ · · · → t(m− 1)→ τ [n] from (14) the product

P (t(0)→ · · · → τ [n]) =
∏

p1∈v(t)

∏
p2∈v(tp1 )

· · ·
∏

pk−1∈v(tp1,...,pk−2
)

C|pm|.

For m = 3 the cluster tree is

(t(0)→ t(1)→ t(2)→ t(3)) = (I(t; (tp); (t
q
p))→ I(t; (tp))→ t→ τ [n]).

Then equation (19) can be schematically written as

P (t(0)→ t(1)→ t→ τ [n]) → P (t(1)→ t→ τ [n])

=

P (t(0)→ t(1)→ τ [n]) →

∼=

← P (t(1)→ τ [n])⇐======

∼=

← P (t→ τ [n])

→

P (t(0)→ τ [n]) →⇐=========
∼=

→

P (τ [n])←

→

=

P (t(0)→ t(1)→ t→ τ [n]) → P (t(1)→ t→ τ [n])

P (t(0)→ t(1)→ τ [n])

∼=

← = P (t(0)→ t→ τ [n]) →⇐======
∼=

→

P (t→ τ [n])

→

P (t(0)→ τ [n]) →⇐========================

∼=

←
∼=

→

P (τ [n])←
in order to stress cubical origin of this equation.

We have not expanded the definition of a colax Cat-operad. Nevertheless, given a lax
Cat-operad C = (C(n), µt, α, ι), one can produce the opposite colax Cat-operad Cop =
(C(n)op, µop

t , α
op, ιop). If α and ι are invertible then one has also the opposite strong Cat-

operad (C(n)op, µop
t , α

op−1, ιop−1). If C is strict then so is Cop.
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Example 3. The discrete category tr equipped with functors It from (7) and identity
transformations α, ι is a strict Cat-operad — strict algebra over the 2-monad ⊤⊤ : CatN →
CatN.

Example 4. Let (V,⊗I , λf , ρ) be a lax symmetric monoidal category, which is the opposite
to a colax symmetric monoidal category ([2, Definition 2.5]). Note that a weak(=strong)
monoidal category is the same as an unbiased monoidal category ([12, Definition 3.1.1]). It
gives rise to a lax Cat-operad C with C(n) = V, µt = ⊗v(t) : Vv(t) → V being the tensor
product, αt;(tp)p = λf : ⊗p∈v(t) ◦⊗v(tp) → ⊗v(It(tp|p∈v(t))) : Vv(It(tp|p∈v(t))) → V, where

f =
(
v(It(tp | p ∈ v(t)))

∼=−→
⊔
p∈v(t)

v(tp)→ v(t)
)

is the natural “projection on the index” map, ιτ [n] = i′ · ρ : Id = i′i′−1 → i′ · ⊗1 : V → V

for each n ∈ N. The total ordering of v(t) is the canonical one. The first factor of f is
not necessarily order-preserving, see (9), while the second is. Equality (i), (ii) follow from
properties (2.5.1), (2.5.2) of [2]. Equality (iii) follows from equality (2.5.4) [ibid.], written
for the pair of “projection on the index” maps⊔

(p,q)∈⊔r∈v(t) v(tr)

v(tqp)
f→

⊔
p∈v(t)

v(tp)
g→ v(t).

For T = ⊤⊤ : CatN → CatN (co)lax ⊤⊤-morphisms are also called (co)lax Cat-multifunctors.
(An operad is a particular case of a multicategory; a morphism of operads is a particular case
of a multifunctor.) The notion of lax ⊤⊤-morphisms is equivalent to coherent lax morphisms
of strict operads in categories ([3, Definition 4.5.2]). Let us describe it in detail.

Description 2. A lax Cat-multifunctor (=lax ⊤⊤-morphism) f : (B, µt, β, ι) → (C, µt, α, ι)
consists of a morphism of collections f : B→ C ∈ CatN and a natural transformation∏

p∈v(t)

B|p|
∏

p∈v(t) f→
∏
p∈v(t)

C|p|

B(Inp t)

µt

↓
f →

ϕt

⇐=========C(Inp t)

µt

↓

for each tree t ∈ tr such that 2-cluster tree (t; (tp))∏
p∈v(t)

∏
q∈v(tp)

B|q|
∏∏

f→
∏
p∈v(t)

∏
q∈v(tp)

C|q|

∏
z∈v(I(t;(tp)))

B|z| ⇐==========
βt;(tp)

∼=

←
∏
p∈v(t)

B|p|
∏
f →

∏
ϕtp

⇐===

∏
µtp

→

∏
p∈v(t)

C|p|

∏
µtp

→

B(Inp t)
f

→

ϕt

⇐=======================

µt

←
µI(t;(tp))

→

C(Inp t)

µt

←
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=

∏
p∈v(t)

∏
q∈v(tp)

B|q|
∏∏

f →
∏
p∈v(t)

∏
q∈v(tp)

C|q|

=∏
z∈v(I(t;(tp)))

B|z|
∏
f →

∼=

←
∏

z∈v(I(t;(tp)))

C|z| ⇐==========
αt;(tp)

∼=

←
∏
p∈v(t)

C|p|

∏
µtp

→

B(Inp t)
f

→
ϕI(t;(tp))

⇐======
µI(t;(tp))

→

C(Inp t)

µt

←
µI(t;(tp))

→ ,

B(n)
f → C(n)

B(n)

µτ [n]↓

f
→

ϕτ [n]

⇐=========C(n)

µτ [n]↓
ι⇐��

www
=

B(n)
f → C(n)

=

B(n)

µτ [n]↓
ι⇐��

www
f
→ C(n)

��

www
,

where we identify
∏

p∈v(τ [n])X with X.

Description 3. A colax Cat-multifunctor (=colax ⊤⊤-morphism) f : (B, µt, β, ι) →
(C, µt, α, ι) consists of a morphism of collections f : B → C ∈ CatN and a natural trans-
formation ∏

p∈v(t)

B|p|
∏

p∈v(t) f→
∏
p∈v(t)

C|p|

B(Inp t)

µt

↓
f →

ψt

=========⇒C(Inp t)

µt

↓

for each tree t ∈ tr such that for each 2-cluster tree (t; (tp))∏
p∈v(t)

∏
q∈v(tp)

B|q|
∏∏

f→
∏
p∈v(t)

∏
q∈v(tp)

C|q|

∏
p∈v(t)

B|p| ∏
f
→

∏
ψtp

====================⇒

∏
µtp

←
∏
p∈v(t)

C|p|==========
αt;(tp)

⇒

∏
µtp

←
∏

z∈v(I(t;(tp)))

C|z|

∼=

→

B(Inp t)
f

→

ψt

=====⇒

µt

→

C(Inp t)

µI(t;(tp))

←

µt

→

=

∏
p∈v(t)

∏
q∈v(tp)

B|q|
∏∏

f →
∏
p∈v(t)

∏
q∈v(tp)

C|q|

=∏
p∈v(t)

B|p|==========
βt;(tp) ⇒

∏
µtp

←
∏

z∈v(I(t;(tp)))

B|z|
∏
f →

∼=

→

∏
z∈v(I(t;(tp)))

C|z|

∼=

→

B(Inp t)
f

→

ψI(t;(tp))

==============================⇒

µI(t;(tp))

←

µt

→

C(Inp t)

µI(t;(tp))

←

, (20)
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B(n)
f → C(n)

B(n)

��

www ι⇒ µτ [n]↓

f
→

ψτ [n]

==============⇒C(n)

µτ [n]↓ =

B(n)
f → C(n)

=

B(n)

��

www
f
→ C(n)

��

www ι⇒ µτ [n]↓ . (21)

Strong (=weak =pseudo) Cat-multifunctors are colax Cat-multifunctors (f, ψ) with inver-
tible ψ. Strict Cat-multifunctors are those enriched over Cat (of the form (f, id)).

Example 5. For any lax Cat-operad C the category C(1) has a canonical lax monoidal struc-
ture. It is due to the linear trees θn, v(θn) ∼= n. Namely, the tensor product functors are⊗n =
µθn : C(1)

n → C(1) and the natural transformations are λf = αθJ ;(θf−1j)j∈J
: ⊗j∈J⊗i∈f−1jXi →

⊗i∈IXi for each f : I → J ∈ Osk, and ρ = ιτ [1] : Id → ⊗1 : C(1) → C(1). The functor
lax-Cat- Opx → lax-mono -Catx, C 7→ C(1), has a left adjoint C 7→ C = (∅,C,∅,∅, . . . ),
where C(1) = C, C(n) = ∅ for n ̸= 1, whichever version of morphisms x ∈ {lax, colax, weak,
strict} we choose.

Furthermore, for any lax Cat-operad C the category C(0) is a module over the lax
monoidal category C(1) in the obvious sense. This is due to linear trees without inputs
θ̄m = (1 → 1 → · · · → 1 | Inp θ̄m = ∅) (1 +m singletons), m > 0. Namely, the action is
⊗1+m = µθ̄m : C(0)× C(1)m → C(0), the natural transformations are

αθ̄J ;(θ̄f−10,(θf−1j)j∈J ) : ⊗
j∈[J ] ⊗i∈f−1jXi → ⊗i∈[I]Xi, X0 ∈ C(0), Xi ∈ C(1) for i ∈ I,

for each f : [I] = 0
⊔
< I → 0

⊔
< J = [J ] ∈ O such that f(0) = 0, and ιτ [0] : Id → µθ̄0 : C(0) →

C(0). Axioms for module categories and their morphisms can be read from Descriptions 1,
2, 3. Given a module category, one can construct a lax Cat-operad. In fact, the functor
lax-Cat- Opx → lax-mono -Cat -Modx, C 7→ (C(0),C(1)), has a left adjoint (M,C) 7→ C =
(M,C,∅,∅, . . . ), where C(n) = ∅ for n > 1.

Example 6. The terminal collection 1 = (1 )n>0 consisting of terminal (1-morphism) cate-
gories 1 is a strict Cat-operad.

Definition 10. A (co)operad in a lax Cat-operad C is a (co)lax Cat-multifunctor (=(co)lax
⊤⊤-morphism) 1→ C.

In detail, a cooperad (C,∆t) in a lax Cat-operad (C, µt, α, ι) is the following data:

— a collection of objects C(n) ∈ C(n), n > 0,
— morphisms ∆t : C(Inp t)→ µt(C|p| | p ∈ v(t)) ∈ C(Inp t) for t ∈ tr,

such that

(i) for any family t ∈ tr, tp ∈ tr |p|, p ∈ v(t), and the tree τ = It(tp | p ∈ v(t))⟨
C(n)

∆t−→ µt(C|p| | p ∈ v(t))
µt(∆tp |p∈v(t))→ µt(µtp(C|q| | q ∈ v(tp)) | p ∈ v(t))

α−→ µτ (C|r| | r ∈ v(τ))
⟩
= ∆τ ; (22)

(ii) for all n ∈ N ∆τ [n] = ιCτ [n] : C(n)→ µτ [n](C(n)).

In the main for us Example 4 a cooperad in a lax symmetric monoidal category V is the
following data:
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— a collection of objects C(n) ∈ V, n > 0,
— morphisms ∆t : C(Inp t)→ ⊗p∈v(t)C|p| ∈ V for t ∈ tr, v(t) = (v(t),P),

such that

(i) for any family t ∈ tr, tp ∈ tr |p|, p ∈ v(t), and the tree τ = It(tp | p ∈ v(t))

⟨
C(n)

∆t−→ ⊗p∈v(t)C|p|
⊗p∈v(t)∆tp→ ⊗p∈v(t) ⊗q∈v(tp)C|q| λ−→ ⊗r∈v(τ)C|r|

⟩
= ∆τ ;

(ii) for all n ∈ N ∆τ [n] = ρ : C(n)→ ⊗1C(n).

Conditions (i), (ii) are precisely equations (2.2.2), (2.2.3) of [15], at least in the case of
strongly symmetric monoidal V. Therefore, in this case the same notion can be presented
as a collection equipped with coassociative counital comultiplication ∆t for staged trees t
of height 2 [ibid., Corollary 2.2.2]. Other ways to put this definition are equations (2.4.1)–
(2.4.3) [ibid.], Proposition 2.4.4 [ibid.] (a cooperad is a coalgebra in a lax monoidal category
(VN, ⊙̄I), or most traditional definition via binary comultiplication(1)–(4) [ibid.].

Equivalence of Definition 10 for operads and more traditional definitions is similar.

Description 4. A Cat-transformation between lax Cat-multifunctors ν : (f, ϕ) → (g, ψ) :
(B, µt, β, ι)→ (C, µt, α, ι) is a collection of natural transformations ν : f → g : B(n)→ C(n),
n ∈ N, such that for any tree t ∈ tr

∏
p∈v(t)

B|p|

∏
f→

⇓∏ ν∏
g
→

∏
p∈v(t)

C|p|

B(Inp t)

µt↓

g
→

ψt

⇐=========C(Inp t)

µt↓
=

∏
p∈v(t)

B|p|
∏
f→
∏
p∈v(t)

C|p|

ϕt

⇐======

B(Inp t)

µt↓ f→
⇓ν
g
→

C(Inp t)

µt↓
.

A Cat-transformation between colax Cat-multifunctors ν : (f, ϕ)→ (g, ψ) : (B, µt, β, ι)→
(C, µt, α, ι) is a collection of natural transformations ν : f → g : B(n) → C(n), n ∈ N, such
that for any tree t ∈ tr

∏
p∈v(t)

B|p|

∏
g→

⇑∏ ν∏
f
→

∏
p∈v(t)

C|p|

B(Inp t)

µt↓

f
→

ϕt

=========⇒C(Inp t)

µt↓
=

∏
p∈v(t)

B|p|
∏
g→
∏
p∈v(t)

C|p|

ψt

======⇒

B(Inp t)

µt↓ g→
⇑ν
f
→

C(Inp t)

µt↓
. (23)

Morphisms of (co)operads in a lax Cat-operad are Cat-transformations. For instance,
morphisms of cooperads are those collections of morphisms that agree with comultiplica-
tions ∆t.

Example 7. Given a category C we describe its endomorphism strict Cat-operad E = End C.
This Cat-operad is introduced by Borisov and Manin [3, Example 4.2.2]. By definition,
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categories E(n) = Cat(Cn,C) consist of functors Cn → C and natural transformations between
them. Multiplication functors

µt :
∏
p∈v(t)

Cat(C|p|,C)→ Cat(CInp t,C)

are compositions of functors with several arguments. In particular, µ◦ : 1 → Cat(C,C),
∗ 7→ IdC. Since compositions are strict, we choose α = id and ι = id.

Example 8. Category of (co)operads in the strict Cat-operad End C is isomorphic to the
category of (co)lax monoidal structures of the category C and their (co)lax monoidal functors
of the form (IdC, ϕ). In fact, a colax Cat-multifunctor 1 → End C consists of a functor
⊗n : Cn → C (the image of ∗ ∈ Ob 1(n)) for each n ∈ N and a natural transformation

ψt : ⊗Inp t → •
p∈v(t)

⊗|p|

for each tree t. Condition (21) says that ψτ [n] = id for all n ∈ N. Denote ρ = ψ◦ : ⊗1 → IdC

and λf = ψ(I
f−→J

◃−→1) : ⊗I → ⊗j∈J(⊗i∈f−1j−) for every map f : I → J ∈ Osk. Then (20)

for the 2-cluster staged tree t = (I
id−→ I

◃−→ 1), ti = ◦ for i ∈ t(1) = I, t∗ = τ [I] for
∗ ∈ t(2) = 1, implies λidI · ⊗I(ρ) = id, see [2, (2.5.1)]. Relation (20) for the 2-cluster

staged tree t = (I
◃−→ 1

id−→ 1), t∗ = τ [I] for ∗ ∈ t(1) = 1, t⋆ = ◦ for ⋆ ∈ t(2) = 1,
implies equation λ◃ : I→1 · ρ = id, see [2, (2.5.2)]. Equation (20) for the 2-cluster staged trees

t = (I
f−→ J

◃−→ 1), tj = τ [f−1j] for j ∈ t(1) = J , t∗ = (J
g−→ K

◃−→ 1) for ∗ ∈ t(2) = 1,

and t = (I
fg−→ K

◃−→ 1), tk = (f−1g−1k
f |−→ g−1k

◃−→ 1) for k ∈ t(1) = K, t∗ = τ [K]
for ∗ ∈ t(2) = 1 implies the qualities λf · λg = ψθ = λfg · ⊗k∈K(λf | : f−1g−1k→g−1k), where

θ = I(t; (tp)) = (I
f−→ J

g−→ K
◃−→ 1), see [2, (2.5.4)]. Thus a cooperad in End C defines

a colax monoidal structure on C. Vice versa, equation (20) allows to express an arbitrary ψt

via ρ = ψ◦ and λf = ψ(I
f−→J

◃−→1).

4.1. Morphism classifiers.

Proposition 6. There are a 2-functor Qc : s⊤⊤-Algc → s⊤⊤-Algs and a Cat-natural isomor-
phism

s⊤⊤-Algs(QcB,C)
∼=−→ s⊤⊤-Algc(B,C),

which turn Qc into a left adjoint to the inclusion s⊤⊤-Algs ↪→ s⊤⊤-Algc.

Since 2-monad ⊤⊤ is finitary, this statement follows from [1, Theorem 3.13]. Also it
follows from [7, Theorem 6.1.1] whose hypothesis is satisfied due to Remark 4. We give
a proof mostly in order to describe colax/strict morphism classifier Qc explicitly.

Proof. Let (B, µ, id, id) be a strict Cat-operad. Define QcB as the universal strict Cat-operad
generated over ⊤⊤B by the morphisms

ξt = ξt(Xp) :
(
τ [n];µt(Xp | p ∈ v(t))

)
→
(
t; (Xp)p∈v(t)

)
, (24)

t ∈ tr(n), n ∈ N, Xp ∈ ObB|p|, subject to
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— naturality: for all families fp : Xp → Yp ∈ B|p|, p ∈ v(t), t ∈ tr(n), n ∈ N,

(
τ [n];µt(Xp | p ∈ v(t))

) ξt
(Xp)→

(
t; (Xp)p∈v(t)

)
=(

τ [n];µt(Yp | p ∈ v(t))
)(τ [n];µt(fp|p∈v(t)))↓

ξt
(Yp)→

(
t; (Yp)p∈v(t)

)(t;(fp)p∈v(t))↓ (25)

— normalisation: for t = τ [n], X ∈ ObB(n), we have ξ
τ [n]
X = id:

(
τ [n];µτ [n](X)

)
→

(τ [n];X);
— multiplicativity: for a 2-cluster tree (n; t; (tp)), t ∈ tr(n), tp ∈ tr |p|, p ∈ v(t), and objects
Xq
p ∈ B|q|, q ∈ v(tp), we have

(
τ [n];µt(µtp(X

q
p | q ∈ v(tp)) | p ∈ v(t))

) ξt →
(
t; (µtp(X

q
p | q ∈ v(tp))p∈v(t)

)
=(

τ [n];µI(t;(tp))(X
q
p | q ∈ v(tp), p ∈ v(t))

)(τ [n];βt;(tp))↓
ξI(t;(tp))→

(
I(t; (tp)); ((X

q
p)q∈v(tp))p∈v(t)

)(ξtp )p∈v(t)↓ (26)

(where β = id for strict B).

There is a canonical colax Cat-multifunctor (e, ξ) : B → QcB, e =
(
B ⊂

inτ [−]→⊤⊤B →
QcB

)
. Naturality (25) implies that ξ is a 2-morphism; normalisation for ξ is the same as

relation (21); multiplicativity (26) implies equality (20).
Precomposition with e = (e, ξ) gives a functor

s⊤⊤-Algc(e,C) : s⊤⊤-Algs(QcB,C)→ s⊤⊤-Algc(B,C), (F, id) 7→ (F
∣∣
B
, F ξt). (27)

Let us prove that this is an isomorphism of categories. First of all, s⊤⊤-Algs(⊤⊤B,C) ∼=
CatN(B,C) by enriched in Cat version of Kleisli Lemma 1. Therefore, F

∣∣
⊤⊤B

is determined by

G = F
∣∣
B
. The remaining datum

ψt(Xp) = Fξt(Xp) : Fµt(Xp | p ∈ v(t))→ µt(FXp | p ∈ v(t))

is precisely the one that makes (G,ψ) into a colax Cat-multifunctor. In fact, F applied to
naturality (25) is naturality of ψ; F applied to normalisation condition ξτ [n] = ide gives
ψτ [n] = Fξτ [n] = idF ; F applied to multiplicativity (26) is the equation

⟨
Fµt(µtp(X

q
p | q ∈ v(tp)) | p ∈ v(t))

Fξt→ µt(Fµtp(X
q
p | q ∈ v(tp)) | p ∈ v(t))

µt(Fξ
tp |p∈v(t))→ µt(µtp(FX

q
p | q ∈ v(tp)) | p ∈ v(t))

⟩
=
⟨
FµI(t;(tp))(X

q
p | q ∈ v(tp), p ∈ v(t))

FξI(t;(tp))→ µI(t;(tp))(FX
q
p | q ∈ v(tp), p ∈ v(t))

⟩
,

which is (20) for ψt = Fξt. Thus s⊤⊤-Algc(e,C) is bijective on objects.
A 2-morphism χ : (F, id) → (G, id) : (QcB, µt, id, id) → (C, µt, id, id) is taken by

s⊤⊤-Algc(e,C) to ν = e · χ : (F
∣∣, ϕ) → (G

∣∣, ψ) : (B, µt, id, id) → (C, µt, id, id), ϕ = Fξ,
ψ = Gξ. In particular, χ(τ [n];X) = νX for X ∈ ObB(n). To restore χ from ν we have
to write χ(t;(Xp)p∈v(t)) = µt(νXp | p ∈ v(t)) : µt(FXp | p ∈ v(t)) → µt(GXp | p ∈ v(t)).
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For an arbitrary collection of natural transformations νX(n) this gives a transformation χ
natural with respect to ⊤⊤B. Naturality of χ with respect to ξt(Xp)

is the equation

Fµt(Xp | p ∈ v(t))
ν → Gµt(Xp | p ∈ v(t))

=

µt(FXp | p ∈ v(t))

ϕt↓
µt(νXp |p∈v(t))→ µt(GXp | p ∈ v(t))

ψt

↓

which is (23). Naturality of χ with respect to (ξtp)p∈v(t) does not impose extra conditions

since µQcB
I(t;(tp))

= µQcB
t (µQcB

tp | p ∈ v(t)). Thus, (27) is bijective on morphisms as well.

Proposition 7. The embedding 2-functor s⊤⊤-Algs ↪→ p⊤⊤-Algp admits a left biadjoint
L : p⊤⊤-Algp → s⊤⊤-Algs such that the unit of the adjunction B→ LB is an equivalence.

Proof. Any strong Cat-operad C is strongly isomorphic to a strong Cat-operad B=(B, µt, β, id)
which coincides with C as a collection of categories, has the same multiplications µt for
t ̸= τ [n] and such that µτ [n] = Id and ιτ [n] = id: Id→ µτ [n] for n ∈ N. It suffices to describe
L on the full 2-subcategory of p⊤⊤-Algp formed by B’s with the above property. We define
LB as the universal strict Cat-operad generated over ⊤⊤B by the morphisms ξt from (24)
and their inverse morphisms ηt = (ξt)−1. The morphisms ξt are subject to naturality (25),
multiplicativity (26) and normalisation as in the proof of Proposition 6.

There is a canonical strong Cat-multifunctor (e, ξt) : B → LB, e =
(
B ↪→ ⊤⊤B →

⊤⊤B⟨ξ, η⟩ → LB
)
. The functor e is essentially surjective on objects. Let us construct a one-

sided inverse to it. First of all there is the action 1-morphism µ : ⊤⊤B→ B,
(
t; (Xp)p∈v(t)

)
7→

µt(Xp | p ∈ v(t)).

Of course,
(
B ↪→ ⊤⊤B µ−→ B

)
= Id. Further we extend µ to a 1-morphism⊤⊤B⟨ξt⟩t̸=τ [n] → B

from the strict Cat-operad generated over ⊤⊤B by ξt(Xp)
, t ̸= τ [n]. Namely, for any 2-cluster

tree (t; (tp))

(ξtp)p∈v(t) :
(
t; (µtp(X

q
p | q ∈ v(tp)))p∈v(t)

)
→ µ⊤⊤B

t

(
(tp; (X

q
p)q∈v(tp)) | p ∈ v(t)

)
=

=
(
I(t; (tp)); ((X

q
p)q∈v(tp))p∈v(t)

)
, (28)

(where ξτ [n] denotes id) is taken to

βt;(tp) : µt(µtp(X
q
p | q ∈ v(tp)) | p ∈ v(t))→ µI(t;(tp))(X

q
p | q ∈ v(tp), p ∈ v(t)).

Note that this recipe includes particular cases in which all but one tp are corollas and ξtp

are identity morphisms. In order to verify that this assignment is correct we check that
defining identities satisfied by (28) are taken to valid equations. (The identities follow
from commutation relations between morphisms (28) in which all but one tp are corollas.)
Namely, for each 2-cluster tree (t; (tp)p∈v(t)) and each decomposition v(t) = I ⊔ J we get
(ξtp)p∈v(t) = (ξτp)p∈v(t) · (ξτ

′
y)y∈v(I(t;(τp))), where τp = tp for p ∈ I, τp = τ [|p|] for p ∈ J , τ ′y = ty

for y ∈ J ⊂ v(I(t; (τp))) and τ
′
y = τ [|y|] for y ∈ v(I(t; (τp)))− J . In detail

(ξtp)p∈v(t) =
⟨(
t; (µtp(X

q
p | q ∈ v(tp)))p∈v(t)

) (ξτp )p∈v(t)→
µ⊤⊤B
t

[
(tp; (X

q
p)q∈v(tp))p∈I ,

(
τ [|p|]; (µtp(Xq

p | q ∈ v(tp)))p∈J
)]

=
(
I(t; (τp)); (µτ ′y(X

r
pr1 y
| r ∈ v(τ ′y)))y∈v(I(t;(τp)))

) (ξ
τ ′y )y∈v(I(t;(τp)))→

µ⊤⊤B
I(t;(τp))

(
(τ ′y; (X

r
pr1 y

)r∈v(τ ′y)) | y ∈ v(I(t; (τp)))
)
=
(
I(t; (tp)); ((X

q
p)q∈v(tp))p∈v(t)

)⟩
. (29)
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Here pr1 y = p for y = (p, q). Respectively, identity βt;(tp)p∈v(t)
= βt;(τp)p∈v(t)

·βI(t;(τp));(τ ′y)y∈v(I(t;(τp)))

holds in B(Inp t) due to (19) written for the 3-cluster tree

(t; (τp)p∈v(t); (τ
′
y)y∈v(I(t;(τp)))) = (t; (τp)p∈v(t); ((t

q
p)q∈v(τp))p∈v(t)),

where tqp = tp = τ ′(p,q) for p ∈ J , q ∈ v(τp) ∼= 1 and tqp = τ [|q|] = τ ′(p,q) for p ∈ I, q ∈ v(tp). In

fact, βτp;(tqp)q = id and I(τp; (t
q
p)q) = tp for all p ∈ I ⊔ J = v(t).

Since β are invertible, the 1-morphism is extended to ⊤⊤B⟨ξt, (ξt)−1⟩t̸=τ [n] → B. It remains
to check that defining relations for LB are taken to identities valid in B.

Naturality. The defining relation of LB

(ξtp)p∈v(t) ·
(
I(t; (tp)); ((f

q
p )q∈v(tp))p∈v(t)

)
=
(
t; (µtp(f

q
p | q ∈ v(tp)))p∈v(t)

)
· (ξtp)p∈v(t)

is taken to the valid identity

βt;(tp) · µI(t;(tp))(f qp | q ∈ v(tp), p ∈ v(t)) = µt(µtp(f
q
p | q ∈ v(tp)) | p ∈ v(t)) · βt;(tp),

which is nothing else but naturality of β.

Normalisation. We have to check that in the case of all tp = τ [|p|] the identity morphism
(ξtp)p∈v(t) is taken to the identity morphism. Indeed, βt;(τ [|p|])p = id by (17).

Multiplicativity. The defining relation (26) of LB is taken to the identity id ·βt;(tp) =
βt;(tp) · id. Thus LB→ B is constructed.

Clearly (B
e−→ LB→ B) = Id. On the other hand, ξ : (LB→ B

e−→ LB)→ IdLB is a natural
transformation, as seen from naturality relation (25) and from multiplicativity (26). Since
ξ is invertible, the functor LB→ B is quasi-inverse to e : B→ LB.

Precomposition with the functor (e, ξt) : B→ LB gives a functor

R = p⊤⊤-Algp(e,D) : s⊤⊤-Algs(LB,D)→ p⊤⊤-Algp(B,D), (G, id) 7→ (F, ϕ), F = G
∣∣
B
,

ϕt =
(
Fµt(Xp | p ∈ v(t)) = Gµt(Xp | p ∈ v(t))

Gξt→ G(Xp)p∈v(t) = µt(FXp | p ∈ v(t))
)
.

Let us prove that it is an equivalence. A quasi-inverse functor

S : p⊤⊤-Algp(B,D)→ s⊤⊤-Algs(LB,D), (F, ϕ) 7→ (G, id), (30)

is constructed as follows: GX = FX, Gf = Ff ,

G(ξt) = ϕt : Fµt(Xp | p ∈ v(t))→ µt(FXp | p ∈ v(t)). (31)

Since we plan G to be a strict Cat-multifunctor, we conclude that

G((Xp)p∈v(t)) = µt(FXp | p ∈ v(t)), G((fp)p∈v(t)) = µt(Ffp | p ∈ v(t)),

G((ξtp)p∈v(t)) = µt(ϕ
tp | p ∈ v(t)) : µt(Fµtp(X

q
p | q ∈ v(tp)) | p ∈ v(t))

→ µt(µtp(FX
q
p | q ∈ v(tp)) | p ∈ v(t)) = µI(t;(tp))(FX

q
p | q ∈ v(tp), p ∈ v(t)).

Applying G to relations (naturality, normalisation, multiplicativity) imposed on ξ gives
valid identities in D. For instance, applying G to multiplicativity (26) gives (20). The
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transformation part of the Cat-multifunctor (G, -) under construction may be chosen equal
to identity morphism since for any 2-cluster tree (t; (tp))

G(((Xq
p)q∈v(tp))p∈v(t)) = µI(t;(tp))(FX

q
p | q ∈ v(tp), p ∈ v(t)) =

= µt(µtp(FX
q
p | q ∈ v(tp)) | p ∈ v(t)) = µt

(
G((Xq

p)q∈v(tp)) | p ∈ v(t)
)
.

Obviously, this identity transformation is natural and satisfies necessary conditions, making
(G, id) into a Cat-multifunctor.

Clearly R and S are mutually inverse functors, thereby, isomorphisms of categories.

Corollary 5. The embedding 2-functor s⊤⊤-Algs ↪→ p⊤⊤-Algp is a biequivalence with a quasi-
inverse L.

Proof. Assume that B is a strict Cat-operad. Applying (30) to IdB gets a strict Cat-multifun-
ctor Γ = S(IdB) : LB→ B. Explicit description (31) of Γ shows that(

B
(e,ξ)→ LB

(Γ,id)→ B
)
= (IdB, id).

Therefore, Γ is an equivalence, quasi-inverse to e. The composition of two equivalences

s⊤⊤-Algs(B,D)
≃
Γ·−
→ s⊤⊤-Algs(LB,D)

∼=
e·−
→ s⊤⊤-Algp(B,D), F 7→ F, ν 7→ ν,

is the inclusion (and an equivalence).

Proposition 8. There are a 2-functor Qc : p⊤⊤-Algc → p⊤⊤-Algp and a 2-natural equiva-

lence p⊤⊤-Algp(QcB,C)
≃−→ p⊤⊤-Algc(B,C), which turn Qc into left biadjoint to the inclusion

p⊤⊤-Algp ↪→ p⊤⊤-Algc.

This follows from Hermida’s Theorem 6.1 [7], applicable due to Remark 4. We give
a proof mostly in order to describe colax/pseudo morphism classifier Qc and related functors
explicitly.

Proof. Let B, C be strong Cat-operads. We replace them with isomorphic strong Cat-operads
B = (B, µt, β, id), C = (C, µt, α, id) as in the proof of Proposition 7. Define QcB to be the
universal strict Cat-operad generated over ⊤⊤B by the morphisms ξt from (24) subject to
naturality (25), normalisation and multiplicativity (26) as in the proof of Proposition 6.

There is a canonical colax Cat-multifunctor (e, ξ) : B→ QcB, e =
(
B ⊂

inτ [−]→⊤⊤B→ QcB
)
.

Precomposition with e = (e, ξ) gives a functor

R = p⊤⊤-Algc(e,C) : p⊤⊤-Algp(QcB,C)→ p⊤⊤-Algc(B,C), (G,ψ) 7→ (F, ϕ), F = G
∣∣
B
,

ϕt =
(
Fµt(Xp | p ∈ v(t)) = Gµt(Xp | p ∈ v(t))

Gξt→ G((Xp)p∈v(t))
ψt

−→ µt(FXp | p ∈ v(t))
)
.

Let us prove that R is an equivalence. We construct a quasi-inverse functor

S : p⊤⊤-Algc(B,C)→ p⊤⊤-Algp(QcB,C), (F, ϕ) 7→ (G,ψ), (32)

by (31) extended by assignment

G((Xp)p∈v(t)) = µt(FXp | p ∈ v(t)), G((fp)p∈v(t)) = µt(Ffp | p ∈ v(t)),

G((ξtp)p∈v(t)) =
⟨
µt(Fµtp(X

q
p | q ∈ v(tp)) | p ∈ v(t))

µt(ϕ
tp |p∈v(t))→

µt(µtp(FX
q
p | q ∈ v(tp)) | p ∈ v(t))

αt;(tp)→ µI(t;(tp))(FX
q
p | q ∈ v(tp), p ∈ v(t))

⟩
. (33)
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In order to prove that G is a well-defined functor we follow the reasoning from the proof of
Proposition 7 extending G from ⊤⊤B to ⊤⊤B⟨ξ⟩ and further to QcB. It suffices to show that
relations (26) and (29) are taken by G to valid identities. We combine these relations into
a single one: for any 3-cluster tree (t; (tp); (t

q
p))

(
t; (µtp(µtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp)))p∈v(t)

) (ξtp )p∈v(t)→
(
I(t; (tp)); (µtqp(X

q
pr | r ∈ v(tqp)))

q∈v(tp)
p∈v(t)

)
=(

t; (µI(tp;(tqp)q)(X
q
pr | r ∈ v(tqp), q ∈ v(tp)))p∈v(t)

)(t;(β
tp;(t

q
p)
)p∈v(t))↓

(ξI(tp;(t
q
p)q))p∈v(t)→

(
I(t; (tp); (t

q
p)); (X

q
pr)

q∈v(tp)
p∈v(t),r∈v(tqp)

)(ξt
q
p )

q∈v(tp)

p∈v(t)↓

Applying G to this equation we get the diagram

µt
(
Fµtp(µtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

)

µt
(
µtp(Fµtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

)
µt(ϕ

tp |p∈v(t)) →

µt
(
FµI(tp;(tqp)q)(X

q
pr | r ∈ v(tqp), q ∈ v(tp)) | p ∈ v(t)

)
µt(Fβtp;(t

q
p)q

|p∈v(t))

↓

µI(t;(tp))
(
Fµtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)αt;(tp)↓

µt
(
µI(tp;(tqp)q)(FX

q
pr | r ∈ v(tqp), q ∈ v(tp)) | p ∈ v(t)

)µt(ϕ
I(tp;(t

q
p)q |p∈v(t))↓

µI(t;(tp))
(
µtqp(FX

q
pr | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)µI(t;(tp))(ϕ
t
q
p |q∈v(tp),p∈v(t))↓

µI(t;(tp);(tqp))
(
FXq

pr | r ∈ v(tqp), q ∈ v(tp), p ∈ v(t)
)

α
t;(I(tp;(t

q
p)q))p

↓
←

α
I(t;(tp));(t

q
p)

q
p

Due to naturality of αt;(tp) the two maps in the second column can be replaced with

µt(µtp (ϕ
t
q
p |q∈v(tp))|p∈v(t))→ µt

(
µtp(µtqp(FX

q
pr | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

) αt;(tp)→ .

The above middle term can be related by the map µt(αtp;(tqp)q | p ∈ v(t)) with

µt
(
µI(tp;(tqp)q)(FX

q
pr | r ∈ v(tqp), q ∈ v(tp)) | p ∈ v(t)

)
in the first column. This decomposes the diagram into a commutative pentagon due to (20)
and a commutative square (19).

The transformation part ψ of the Cat-multifunctor (G,ψ) under construction is chosen
as follows for any 2-cluster tree (t; (tp))

ψt =
⟨
G(t; ((Xq

p)q∈v(tp))p∈v(t)) = µI(t;(tp))(FX
q
p | q ∈ v(tp), p ∈ v(t))

α−1
t;(tp)→

µt(µtp(FX
q
p | q ∈ v(tp)) | p ∈ v(t)) = µt

(
G(tp; (X

q
p)q∈v(tp)) | p ∈ v(t)

)⟩
. (34)
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The necessary property: for any 3-cluster tree (t; (tp); (t
q
p))

Gµ⊤⊤B
t

(
tp; (µtqp(X

q
pr | r ∈ v(tqp)))q∈v(tp) | p ∈ v(t)

)

µt
(
G(tp; (µtqp(X

q
pr | r ∈ v(tqp)))q∈v(tp)) | p ∈ v(t)

)ψt

→

Gµ⊤⊤B
t

(
I(tp; (t

q
p)q); (X

q
pr)

q∈v(tp)
r∈v(tqp)

| p ∈ v(t)
)

Gµ⊤⊤B
t ((ξt

q
p )q∈v(tp)|p∈v(t))

↓

µt
(
G(I(tp; (t

q
p)q); (X

q
pr)

q∈v(tp)
r∈v(tqp)

) | p ∈ v(t)
)

µt(G((ξt
q
p )q∈v(tp))|p∈v(t))

↓ψt

→

is verified below

µI(t;(tp))
(
Fµtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)

µt
(
µtp(Fµtqp(X

q
pr | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

)
αt;(tp)

←

µI(t;(tp))
(
µtqp(FX

q
pr | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)
µI(t;(tp))(ϕ

t
q
p |q∈v(tp),p∈v(t))

↓

µt
(
µtp(µtqp(FX

q
pr | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

)
µt(µtp (ϕ

t
q
p |q∈v(tp))|p∈v(t))

↓
αt;(tp)

←

µI(t;(tp)p;(tqp)qp)
(
FXq

pr | r ∈ v(tqp), q ∈ v(tp), p ∈ v(t)
)

α
I(t;(tp));(t

q
p)

q
p

↓

µt
(
µI(tp;(tqp)q)(FX

q
pr | r ∈ v(tqp), q ∈ v(tp)) | p ∈ v(t)

)
µt(αtp;(t

q
p)q

|p∈v(t))

↓

←
α
t;(I(tp;(t

q
p)q))p

The top parallelogram commutes due to naturality of αt;(tp) and the bottom is equation (19).
The functor S is constructed on objects with obvious extension to morphisms.

Clearly R◦S = Id. Let us construct an isomorphism of Cat-multifunctors Ψ: Id→ S◦R.
Start with (G,ψ) ∈ Ob p⊤⊤-Algp(QcB,D), and denote (H,χ) = SR(G,ψ) : QcB → D. Then
H(Xp)p∈v(t) = µt(GXp | p ∈ v(t)) and the Cat-transformation Ψ: (G,ψ) → (H,χ) is taken
in the form ψt : G((Xp)p∈v(t)) → µt(GXp | p ∈ v(t)) = H(Xp)p∈v(t). Naturality of Ψ with
respect to the morphism (ξtp)p∈v(t) from (28) is the exterior of

G((µtp(X
q
p | q ∈ v(tp)))p∈v(t))

ψt

→ µt(Gµtp(X
q
p | q ∈ v(tp)) | p ∈ v(t))

=

G(((Xq
p)q∈v(tp))p∈v(t))

G(ξtp )p∈v(t)↓
ψt

→ µt
(
G((Xq

p)q∈v(tp)) | p ∈ v(t)
)µt(Gξ

tp |p∈v(t))↓

(20)

µI(t;(tp))(GX
q
p | q ∈ v(tp), p ∈ v(t))

ψI(t;(tp))

↓
←
αt;(tp)

µt(µtp(GX
q
p | q ∈ v(tp)) | p ∈ v(t)).

µt(ψ
tp |p∈v(t))↓

Commutativity is proven via naturality of ψt and property (20). The family Ψ: (G,ψ) →
(H,χ) is a Cat-transformation again due to (20). Clearly the Cat-transformation Ψ is natural
with respect to change of (G,ψ).
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Remark 5. 2-functor Qc constructed in Proposition 6 is the restriction of 2-functor Qc from
Proposition 8(

s⊤⊤-Algc
Qc−→ s⊤⊤-Algs ↪→ p⊤⊤-Algp

)
=
(
s⊤⊤-Algc ↪→ p⊤⊤-Algc

Qc−→ p⊤⊤-Algp
)
. (35)

Corollary 6 (to Propositions 6, 8). There are a 2-functor Ql : s⊤⊤-Algl → s⊤⊤-Algs (resp.
Ql : p⊤⊤-Algl → p⊤⊤-Algp) and a 2-natural isomorphism (resp. equivalence)

s⊤⊤-Algs(QlB,C)
∼=−→ s⊤⊤-Algl(B,C), resp. p⊤⊤-Algp(QlB,C)

≃−→ p⊤⊤-Algl(B,C),

which turn Ql into a left adjoint (resp. biadjoint) to the inclusion s⊤⊤-Algs ↪→ s⊤⊤-Algl (resp.
p⊤⊤-Algp ↪→ p⊤⊤-Algl). 2-functors Ql agree similarly to (35).

The proof and the construction of Ql is by dualising the results for Qc using opposite
Cat-operads. Thus, QlB is the universal strict Cat-operad generated over ⊤⊤B by the mor-
phisms ξt : (t; (Xp)p∈v(t))→ (τ [n];µt(Xp | p ∈ v(t))) subject to naturality, normalisation and
multiplicativity.

Remark 6. It follows from the proof of Proposition 8 that there is a functor

S : l⊤⊤-Algc(B,C)→ l⊤⊤-Algl(QcB,C), (F, ϕ) 7→ (G,ψ),

where B, C are lax ⊤⊤-algebras, G is given by (33) and ψt = αt;(tp) is the inverse to (34).

A non-counital cooperad (C,∆t) in a lax Cat-operad (C, µt, α, ι) consists of

— a collection of objects C(n) ∈ C(n), n > 0,
— morphisms ∆t : C(Inp t)→ µt(C|p| | p ∈ v(t)) ∈ C(Inp t) for t ∈ trr◦,

such that

(i) for any family t ∈ trr◦, tp ∈ tr |p| r ◦, p ∈ v(t), and the tree τ = It(tp | p ∈ v(t))
equation (22) holds;

(ii) for all n ∈ N ∆τ [n] = ιCτ [n] : C(n)→ µτ [n](C(n)).

Morphisms of non-counital cooperads are those agreeing with comultiplications ∆t.

Example 9. Let a strong Cat-operad C consist of additive categories C(n) with countable
colimits, countable products and finite limits and additive functors µt, which preserve count-
able colimits. We assume that C(n) is idempotent-split (Karoubian). For some results we
assume that

(FF) for any functor F : C ×D → C(n) with filtered countable category C and finite cate-
gory D the canonical morphism colimC limD F → limD colimC F is invertible.

This axiom is satisfied for Set, Ab and similar categories but not for the category of topo-
logical spaces ([4, Section 2.13]). For any collection X(n) ∈ C(n), n > 0, define a collection

(⊥⊥X)(n) =
⨿

t∈tr(n)r◦

µt(X|p| | p ∈ v(t)) ∈ C(n)
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which defines a functor ⊥⊥ :
∏

n∈N C(n) →
∏

n∈N C(n). It admits a comonad structure,
namely, ∆: (⊥⊥X)(n) =

⨿
τ∈tr(n)r◦ µτ (X|v| | v ∈ v(τ))→ (⊥⊥⊥⊥X)(n) is a family indexed by

τ ∈ tr(n)r ◦ of morphisms

µτ (X|v| | v ∈ v(τ))
(id)

diag
→

∏
f : τ�t∈Tr(n)

µτ (X|v| | v ∈ v(τ))
∼=−→

⨿
f : τ�t∈Tr(n)

µτ (X|v| | v ∈ v(τ))

⊂ →
⨿

t∈tr(n)r◦

⨿
(tp)∈

∏
p∈v(t) tr |p|r◦

µI(t;(tp))(X|q| | q ∈ v(tp), p ∈ v(t))

⨿⨿
α−1

→
⨿

t∈tr(n)r◦

⨿
(tp)∈

∏
p∈v(t) tr |p|r◦

µt
(
µtp(X|q| | q ∈ v(tp)) | p ∈ v(t)

)
∼=−→

⨿
t∈tr(n)r◦

µt
( ⨿
tp∈tr |p|r◦

µtp(X|q| | q ∈ v(tp)) | p ∈ v(t)
)
= (⊥⊥⊥⊥X)(n).

Notice that for a fixed τ the number of surjective morphisms f : τ � t ∈ Tr(n) is finite (the
map f | : v(τ)→ v(t) is surjective), which explains the second arrow. The third arrow is the
canonical split embedding, coming from the inclusion of indexing sets

τ\ surTr(n) ↪→
⊔

t∈tr(n)r◦

l
p∈v(t)

tr |p|r ◦, (f : τ � t) 7→ (t; (tp)),

described in Proposition 5. The corresponding subtrees tp ⊂ τ are determined by v(tp) =
f−1(p), p ∈ v(t), and τ = I(t; (tp)p∈v(t)). Associativity of the comultiplication ∆ is the

observation that t-partitioning of τ followed by tp-partitioning of the obtained pieces f−1(p)
amounts to I(t; (tp))-partitioning of τ . The counit of the comonad is given by

(⊥⊥X)(n)
prτ [n]→ µτ [n](X(n))

ι−1

→ X(n).

An example of ⊥⊥-coalgebra is the cofree ⊥⊥-coalgebra ⊥⊥X. Its coaction δ = (∆t ·
int)t∈trr◦ : ⊥⊥X → ⊥⊥⊥⊥X is specified by comultiplications for Inp t ∼= Inp τ

∆t

∣∣
µτ (X|v||v∈v(τ)) =

∑
f : τ�t∈surTr

⟨
µτ (X|v| | v ∈ v(τ)) = µI(t;(tp))(X|v| | v ∈ v(I(t; (tp))))

α−1
I(t;(tp))→ µt

(
µtp(X|q| | q ∈ v(tp)) | p ∈ v(t)

)
⊂
µt(intp )→ µt((⊥⊥X)|p| | p ∈ v(t))

⟩
, (36)

where tp = f−1(p).
⊥⊥-coalgebras are non-counital cooperads. In fact, a ⊥⊥-coalgebra δ : C → ⊥⊥C determines

morphisms t ∈ tr(n)r ◦

∆t =
⟨
C(n)

δ−→
⨿

τ∈tr(n)r◦

µτ (C|p| | p ∈ v(τ))
prt→ µt(C|p| | p ∈ v(t))

⟩
.

Postcomposing the equation δ ·∆ = δ ·⊥⊥δ with prt ·µt(prtp | p ∈ v(t)) for an arbitrary family

t ∈ trr◦, tp ∈ tr |p|r ◦, p ∈ v(t), we get (22). Equality δ · ε⊥⊥ = 1 implies that ∆τ [n] = ιCτ [n]
for all n ∈ N.

Definition 11. A non-counital cooperad (C,∆t) is conilpotent if it has a filtration C1 ⊂
· · · ⊂ Ck ⊂ Ck+1 ⊂ · · · ⊂ C by subobjects in

∏
n∈N C(n) such that colimk>0Ck = C and for

any t ∈ tr with | v(t)| > k we have ∆t

∣∣
Ck

= 0.
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Proposition 9. Assume that all C(n) satisfy axiom (FF). The full subcategory of nuCoop
consisting of conilpotent non-counital cooperads is isomorphic to the category of ⊥⊥-coalge-
bras.

Proof. Let (C, δ) be a ⊥⊥-coalgebra. Then pull-backs Ck from

Ck →
⊕

t∈tr, 0<| v(t)|6k
µt(C|p| | p ∈ v(t))

C
↓

δ →⊥⊥C
↓
∩

define the required filtration due to axiom (FF).
If C is a conilpotent non-counital cooperad with the filtration (Ck), then the morphisms

(∆t|Ck
)t̸=◦ : Ck →

∏
t̸=◦ µt(C|p| | p ∈ v(t)) are decomposed as

Ck
dk→

⊕
t∈tr, 0<| v(t)|6k

µt(C|p| | p ∈ v(t)) ⊂ →
∏
t̸=◦

µt(C|p| | p ∈ v(t))

Ck+1

↓

∩

dk+1→
⊕

t∈tr, 0<| v(t)|6k+1

µt(C|p| | p ∈ v(t))

↓
∩

⊂→
∏
t̸=◦

µt(C|p| | p ∈ v(t)).

w

Passing to the colimit we decompose (∆t)t̸=◦ into

C
δ−→ ⊥⊥C ⊂ →

∏
t̸=◦

µt(C|p| | p ∈ v(t)).

The second arrow is a monomorphism due to axiom (FF). As noticed above, ⊥⊥-coalgebra
property of (C, δ : C → ⊥⊥C) is equivalent to equation (22) and normalization condition (ii).

For any strong Cat-operad C there is a functor µ◦ : 1 → C(1), whose image is an ob-
ject 1. This is the unit object of the strong monoidal category C(1). We shall use the same
symbol for the cooperad 1(1) = 1, 1(n) = 0 for n ̸= 1, whose structure maps are canonical
isomorphisms.

Proposition 10 (Proposition 3.2.4 of [15]). The category augCoop of augmented cooperads
η : (1,∆)→ (C,∆) ∈ Coop is equivalent to the category nuCoop.

Example 10. Using (36) and the above proposition we get an augmented cooperad ⊥⊥◦X =
1⊕⊥⊥X,

(⊥⊥◦X)(n) =
⨿

t∈tr(n)

µt(X|p| | p ∈ v(t)) ∈ C(n),

with the comultiplications for Inp t ∼= Inp τ

∆t

∣∣
µτ (X|v||v∈v(τ)) =

∑
f : τ→t∈Tr

⟨
µτ (X|v| | v ∈ v(τ)) = µI(t;(tp))(X|v| | v ∈ v(I(t; (tp))))

α−1
t;(tp)→ µt

(
µtp(X|q| | q ∈ v(tp)) | p ∈ v(t)

)
⊂
µt(intp )→ µt((⊥⊥◦X)|p| | p ∈ v(t))

⟩
,

where tp = f−1(p) if p ∈ Im(f : v(τ)→ v(t)) and tp = ◦ otherwise. In fact, N ≡ v(t)−Im f ⊂
u(t).
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4.2. Monoidal category of collections. Let a strong Cat-operad (C, µt, α, ι) consist
of categories C(n) with countable coproducts and functors µt, which preserve countable

coproducts. Denote Ĉ =
∏

n∈N C(n). The category Ĉ admits a strong monoidal structure

⊙m : Ĉm → Ĉ(⊙
j∈m

Xj

)
(n) =

⨿
t∈str(n,m)

µt
(
Xj|(j, k)| | j ∈m, k ∈ t(j)

)
, |(j, k)| = |t−1

j (k)|,

where p = (p1, p2) = (j, k) ∈ v(t) is an internal vertex of t. The structure isomorphisms λĈ
for f : I → J ∈ Osk are the compositions(⊙

j∈J

⊙
i∈f−1j

Xi

)
(n) =

⨿
t∈str(n,J)

µ
p∈v(t)
t

( ⨿
tp∈str(|p|,f−1p1)

µ
q∈v(tp)
tp (Xq1 |q|)

)
∼=

⨿
t∈str(n,J)

⨿
tp∈str(|p|,f−1p1)

µ
p∈v(t)
t µ

q∈v(tp)
tp (Xq1 |q|)

⨿
αt;(tp)

∼=
→

⨿
τ∈str(n,I)

µr∈v(τ)τ (Xr1 |r|) =

(⊙
i∈I

Xi

)
(n).

In fact, τ = I(t; (tp)p∈v(t)) runs over all staged trees from str(n, I). At last,

ρ =
⟨
X(n)

ιτ [n]

∼=
→ µτ [n](X(n)) =

⨿
t=τ [n]

µτ [n](X(n)) =
(⊙

1

X
)
(n)
⟩
.

Operads in C are the same as algebras in (Ĉ,⊙) similarly to [13, Section 5.9.2]. Also the

category of coalgebras in (Ĉ,⊙) is contained in the category of cooperads in C.

4.3. Conilpotent augmented cooperads. Let a strong Cat-operad (C, µt, α, ι) consist
of the abelian categories C(n) with countable limits and colimits and additive functors µt,
which preserve countable colimits. Denote by t(n1, . . . , nk) the two-level tree

(n1 + · · ·+ nk
g−→ k

◃−→ 1) = n1 s s snks k

,

where g−1(j) ∼= nj for all j ∈ k. Let us consider an augmented cooperad (C,∆t, η) in the
Cat-operad C such that for all n > 0 the morphism

(∆t(n1,...,nk)) : C(n)→
∏

n1+···+nk=n

µt(n1,...,nk)(C(n1), . . . , C(nk), C(k))

factors through the coproduct

∆: C(n)→
⨿

n1+···+nk=n

µt(n1,...,nk)(C(n1), . . . , C(nk), C(k)) = (C ⊙ C)(n)

followed by the extension-by-0 embedding. The augmentation η : 1→ C ∈ CoopC is reduces
to the coalgebra morphism η(1) : 1 → C(1) ∈ C(1), since η(m) necessarily vanishes for
m ̸= 1. Similarly to [13, Section 5.8.6] we define another morphism

∆̂1 : C(n)→
⨿

n1+···+nk=n

µt(n1,...,nk)(C(n1), . . . , C(nk), C(k)),

∆̂1
∣∣
C̄(n)

= ∆
∣∣
C̄(n)
−
⟨
C̄(n)

∼=−→ µt(n)(C̄(n),1)
µt(n)(in,η(1))→ µt(n)(C(n), C(1))

⟩
· inn

−
⟨
C̄(n)

∼=−→ µt(n1)(
n1, C̄(n))

µt(n1)(
nη(1),in)
→ µt(n1)(

nC(1), C(n))
⟩
· inn1 .
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The trees occurring here are

t(n) = sns , t(n1) = s s ssn .

The restriction of ∆̂1 to 1 ⊂η(1)→ C(1) vanishes by definition. Define also ∆̂0 = Id−ε · η :
C → C and inductively for m > 1

∆̂m =
⟨
C

∆̂m−1

→ C⊙m ∆̂1⊙1
C⊙(m−1)→ C⊙(m+1)

⟩
.

Following [13, Section 5.8.6] we define the coradical filtration

1 = F0C ⊂ F1C ⊂ · · · ⊂ FmC ⊂ · · · ⊂ C (37)

by subobjects FmC = Ker(∆̂m : C → C⊙(m+1)). In the case where C(0) = 0 and the canon-
ical morphism colimm FmC → C is invertible, Loday and Vallette call such an augmented
cooperad conilpotent.

Proposition 11. If a non-counital cooperad C̄ in C with C̄(0) = 0 is conilpotent in the
sense of Definition 11 then the augmented cooperad C = 1 ⊕ C̄ is conilpotent in the sense
of Loday and Vallette.

Proof. Assume that C̄ is conilpotent in the sense of Definition 11 and C̄(0) = 0. Having
coradical filtration (37) define

FmC = Ker(FmC ⊂ → C
ε→ 1).

Then FmC = 1⊕ FmC and we have to show that

F1C ⊂ F2C ⊂ · · · ⊂ FmC ⊂ · · · ⊂ C̄

is an exhaustive filtration. Let us compare it with the exhaustive filtration C̄1 ⊂ C̄2 ⊂ · · · ⊂
C̄m ⊂ · · · ⊂ C̄ given by

C̄m =
t∈tr∩

| v(t)|>m

Ker ∆̄t.

We have

∆
∣∣
C̄(n)

=

ni>0∑
n1+···+nk=n

∆t(n1,...,nk) : C̄(n)→ (C ⊙ C)(n),

∆̂1
∣∣
C̄(n)

=

ni>0
n1+···+nk=n∑
N⊂{i∈k|ni=1}

N ̸=k

∆̄t(n1,...,nk)N · µt(n1,...,nk)((ζ(i))
k
i=1, id) : C̄(n)→ (C ⊙ C̄)(n),

where

ζ(i) =

{
η(1), for i ∈ N,
id, for i /∈ N.

(38)
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The formula for ∆̂1 allows to compute

∆̂m
∣∣
C̄
=
⟨
C̄

∆̂1

→ C ⊙ C̄ ∆̂1⊙1→ C ⊙ C̄ ⊙ C̄ ∆̂1⊙1⊙1→ . . .
∆̂1⊙1⊙···⊙1→ ⊙1+m (C,mC̄)

⟩
,

∆̂m
∣∣
C̄(n)

=

t∈sstr(n,m+1)∑
N⊂{i∈t(1)||t−1

1 i|=1}
∀p∈t(2) N ̸⊃t−1

2 p

∆̄tN · µt((ζ(i))i∈t(1), (id)v(t)\t(1)),

where ζ(i) is given by (38). Clearly

FmC(n) = Ker ∆̂m
∣∣
C̄(n)

=

t∈sstr(n,m+1)∩
N⊂{i∈t(1)||t−1

1 i|=1}
∀p∈t(2) N ̸⊃t−1

2 p

Ker ∆̄tN

∣∣
C̄(n)

.

This is bigger than C̄m =
∩τ∈tr

| v(τ)|>m+1 Ker ∆̄τ since | v(tN)| > m+ 1.

Remark 7. For the cooperad C = ⊥⊥X the subcollection F2C is strictly bigger than C̄2. I
guess the two conilpotency conditions are not equivalent.

5. Homotopy cooperads.

Remark 8. If B = 1 is the terminal Cat-operad (1(n) = 1 is the one-morphism category)
then the strict Cat-operad Qc1 is TRop, where the strict Cat-operad TR is introduced by
T. Leinster in [12, Section 7.3]. The bijection on morphisms assigns to (ξtp)p∈v(t) ∈ Qc1 the
morphism [t; (tp)] ≡ (t; (tp))

op : t → I(t; (tp)) ∈ TRop. As noticed in Corollary 3 a pair of
composable morphisms f , g of Tr identifies with a 3-cluster tree

(t; (tp); (t
q
p)) =

[
I(t; (tp); (t

q
p))

(I(t;(tp));(t
q
p)

q∈v(tp)

p∈v(t)
)

f
→ I(t; (tp))

(t;(tp))

g
→ t

]
,

whose composition is (t; (I(tp; (t
q
p)q∈v(tp)))p∈v(t)) ∈ Tr. On the other hand,

(ξtp)p∈v(t) · (ξt
q
p)(p,q)∈v(I(t;(tp))) = (ξI(tp;(t

q
p)q∈v(tp)))p∈v(t)

since for all p ∈ v(t) we have ξtp · (ξt
q
p)q∈v(tp) = ξI(tp;(t

q
p)q∈v(tp)) due to (26). Thus the compo-

sitions in Qc1 and TRop agree. Obviously the operadic multiplications µt agree as well.

Let C be a strong Cat-operad. According to Proposition 8, a cooperad C : 1→ C is iso-

morphic as a colax Cat-multifunctor to 1
e−→ TRop D−→ C for some strong Cat-multifunctor D.

Moreover, the category of cooperads in C is equivalent to the category of strong Cat-
multifunctors TRop → C.

Definition 12. A homotopy cooperad in C is a lax Cat-multifunctor TRop → C. The
category of homotopy cooperads in C is the category p⊤⊤-Algl(TRop,C).

D. Borisov and Yu. I. Manin ([3, Section 4.6]) studied generalized operads, i.e. lax Cat-
multifunctors C→ E, concentrating on the case in which C is a collection of groupoids and
E is the endomorphism Cat-operad of a category C, see Example 7.

As noticed above, the category of ordinary cooperads in C admits a full and faithful
functor to the category of homotopy cooperads in C.
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Description 5. A homotopy cooperad (C, χ) in C consists of

— an object C(t) ∈ C(n) for each t ∈ tr(n);
— morphism C[t; (tp)] : C(t)→ C(I(t; (tp))) for each 2-cluster tree (t; (tp));
— morphism χ(t; (tp)) : µt(C(tp) | p ∈ v(t))→ C(I(t; (tp))) for each 2-cluster tree (t; (tp));

such that

• C is a functor Trop → C;
• naturality of χ holds: for each 3-cluster tree (t; (tp); (t

q
p))

µt(C(tp) | p ∈ v(t))
χ(t;(tp)) → C(I(t; (tp)))

=

µt(C(I(tp; (t
q
p)q)) | p ∈ v(t))

µt(C[tp;(t
q
p)q ]|p∈v(t))↓

χ(t;(I(tp;(t
q
p)q))p)→ C(I(t; (I(tp; (t

q
p)q))p))

C(I(t;[tp;(t
q
p)]))↓

• normalization: for each t ∈ tr(n)⟨
C(t)

ι

∼=
→ µτ [n]C(t)

χ(τ [n];t)→ C(t)
⟩
= id;

• multiplicativity holds: for each 3-cluster tree (t; (tp); (t
q
p))

µt(µtp(C(t
q
p) | q ∈ v(tp)) | p ∈ v(t))

µt(χ(tp;(t
q
p)q)|p∈v(t))→ µt(C(I(tp; (t

q
p)q)) | p ∈ v(t))

=

µI(t;(tp))(C(t
q
p) | q ∈ v(tp), p ∈ v(t))

αt;(tp)↓
χ(I(t;(tp));(t

q
p)

q
p) → C(I(t; (tp); (t

q
p)))

χ(t;(I(tp;(t
q
p)q))p)↓

(39)

Description 6. A morphism of homotopy cooperads

f : (C, χ)→ (G, γ)

in C consists of a family of maps f(t) : C(t)→ G(t) ∈ C(n) for t ∈ tr(n), n ∈ N, such that

• naturality holds: for each 2-cluster tree (t; (tp))

C(t)
f(t) → G(t)

=

C(I(t; (tp)))

C[t;(tp)]↓
f(I(t;(tp)))→ G(I(t; (tp)))

G[t;(tp)]↓

• multiplicativity holds: for each 2-cluster tree (t; (tp))

µt(C(tp) | p ∈ v(t))
µt(f(tp)|p∈v(t))→ µt(G(tp) | p ∈ v(t))

=

C(I(t; (tp)))

χ(t;(tp))↓
f(I(t;(tp))) → G(I(t; (tp)))

γ(t;(tp))↓

As was shown in the proof of Proposition 8, the functor S from (32) in

Coop ≡ p⊤⊤-Algc(1,C)
S−→ p⊤⊤-Algp(Qc1,C) ↪→ p⊤⊤-Algl(Qc1,C) ≡ hCoop
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is a split embedding and an equivalence. The second functor is a full embedding. The
functor S takes a cooperad (C,∆t) to the following homotopy cooperad (SC, χ):

SC(t) = µt(C|p| | p ∈ v(t)),

SC[t; (tp)] =
⟨
µt(C|p| | p ∈ v(t))

µt(∆tp |p∈v(t))→

µt(µtp(C|q| | q ∈ v(tp)) | p ∈ v(t))
αt;(tp)→ µI(t;(tp))(C|q| | q ∈ v(tp), p ∈ v(t))

⟩
,

χ(t; (tp)) = αt;(tp) : µt(µtp(C|q| | q ∈ v(tp)) | p ∈ v(t))→ µI(t;(tp))(C|q| | q ∈ v(tp), p ∈ v(t)).

Remark 9. Let C be a strong Cat-operad. A homotopy cooperad (G, γ) is isomorphic to
a one of the form (SC, χ) for some cooperad C in C if and only if all γ are invertible.
In fact, S is an equivalence of the category of cooperads in C and the category of strong
Cat-multifunctors TRop → C.

Example 11. Let C be a strong Cat-operad. Let C = ⊥⊥◦X be the cooperad of Example 10.
Then G = (SC, χ) is specified by

G(t) = µt

( ⨿
τp∈tr |p|

µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
∼=

⨿
(τp)∈

∏
p∈v(t) tr |p|

µt
(
µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
,

G[t; (tp)] =
⟨
G(t) = µt

( ⨿
τp∈tr |p|

µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
µt(A

−1
p |p∈v(t))→

µt

( ⨿
(tqp)∈

∏
q∈v(tp)

tr |q|

µtp
(
µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp)

)
| p ∈ v(t)

)
∼=

µt
(
µtp((⊥⊥◦X)|q| | q ∈ v(tp)) | p ∈ v(t)

) αt;(tp)→
µI(t;(tp))

(
(⊥⊥◦X)|v| | v ∈ v(I(t; (tp)))

)
= G(I(t; (tp)))

⟩
,

where Āp is a matrix, whose entry is α−1
tp;(t

q
p)q

if τp = I(tp; (t
q
p)q) and vanishes otherwise.

Furthermore,

χ(t; (tp)) = αt;(tp) : µt(µtp((⊥⊥◦X)|q| | q ∈ v(tp)) | p ∈ v(t))

→ µI(t;(tp))((⊥⊥◦X)|q| | q ∈ v(tp), p ∈ v(t)).

Example 12. Let C be a strong Cat-operad. We shall provide with a non-trivial example
of a homotopy cooperad. For a collection X(n) ∈ C(n) define

(⊥̃⊥◦X)(t) =
∏

(τp)∈
∏

p∈v(t) tr |p|

µt
(
µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
∏
αt;(τp)

∼=
→

∏
f : τ→t∈Tr

µτ (X|v| | v ∈ v(τ)),
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(⊥̃⊥◦X)[t; (tp)] =
⟨
(⊥̃⊥◦X)(t) =

∏
(τp)∈

∏
p∈v(t) tr |p|

µt
(
µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
∏
µt(Āp|p∈v(t))→

∏
(tqp)∈

∏
p∈v(t)

∏
q∈v(tp)

tr |q|

µt
(
µtp(µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

) ∏
αt;(tp)→

∏
(tqp)∈

∏
p∈v(t)

∏
q∈v(tp)

tr |q|

µI(t;(tp))
(
µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)
= (⊥̃⊥◦X)(I(t; (tp)))

⟩
.

Here the first map postcomposed with pr(tqp)qp equals pr(I(tp;(tqp)q))p ·µt(α
−1
tp;(t

q
p)q
| p ∈ v(t))

(⊥̃⊥◦X)[t; (tp)] · pr(tqp)qp =
⟨ ∏
(τp)∈

∏
p∈v(t) tr |p|

µt
(
µτp(X|r| | r ∈ v(τp)) | p ∈ v(t)

)
pr

(I(tp;(t
q
p)q))p→ µt

(
µI(tp;(tqp)q)(X|r| | r ∈ v(I(tp; (t

q
p)q))) | p ∈ v(t)

)
µt(α

−1

tp;(t
q
p)q

|p∈v(t))
→ µt

(
µtp(µtqp(X|v| | v ∈ v(tqp)) | q ∈ v(tp)) | p ∈ v(t)

)
αt;(tp)→ µI(t;(tp))

(
µtqp(X|v| | v ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)⟩
.

Furthermore, for any 2-cluster tree (t; (tp)) the morphism

χ(t; (tp)) : µt((⊥̃⊥◦X)(tp) | p ∈ v(t))→ (⊥̃⊥◦X)(I(t; (tp)))

is determined by its composition with the following projection

χ(t; (tp)) · pr(tqp)qp =
⟨
µt

( ∏
(tqp)∈

∏
q∈v(tp)

tr |q|

µtp
(
µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp)

)
| p ∈ v(t)

)
µt(pr(tqp)q

|p∈v(t))
→ µt

(
µtp
(
µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp)

)
| p ∈ v(t)

)
αt;(tp)→ µI(t;(tp))

(
µtqp(X|r| | r ∈ v(tqp)) | q ∈ v(tp), p ∈ v(t)

)⟩
.

Let us introduce the endofunctor ⊥̂⊥◦ :
∏

n>0 C(n)→
∏

n>0 C(n):

(⊥̂⊥◦X)(n) = (⊥̃⊥◦X)(τ [n]) =
∏

t∈tr(n)

µt
(
X|p| | p ∈ v(t)

)
.

Let us verify the conditions of Description 5. In order to be a functor ⊥̃⊥◦X : Trop → C
has to satisfy

(⊥̃⊥◦X)[fg] =
(
(⊥̃⊥◦X)(t)

(⊥̃⊥◦X)[g]→ (⊥̃⊥◦X)(I(t; (tp)))
(⊥̃⊥◦X)[f ]→ (⊥̃⊥◦X)(I(t; (tp); (t

q
p)))
)

for fg =
(
I(t; (tp); (t

q
p))

f−→ I(t; (tp))
g−→ t
)
,
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which is expanded to the exterior of the commutative diagram∏
(τqp )∈

∏q∈v(tp)

p∈v(t)
tr |q|

µptµ
q
tpµ

r
τqp
X|r|

∏
(τp)∈

∏
p∈v(t) tr |p|

µptµ
r
τpX|r|

∏
µpt Āp →

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µptµ
q
tpµ

r
tqp
µstqp,rX|s|

∏
µptµ

q
tp
Āp

↓ ∏
(τqp )∈

∏q∈v(tp)

p∈v(t)
tr |q|

µp,qI(t;(tp))µ
r
τqp
X|r|

∏
αt;(tp)

∼=
→

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µptµ
q,r
I(tp;(t

q
p)q)

µstqp,rX|s|

∏
µpt Āp

↓
←
∏
µptαtp;(t

q
p)q

∼=

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µp,qI(t;(tp))µ
r
tqp
µstqp,rX|s|

∏
µp,q
I(t;(tp))

Āq
p

↓

∏
αt;(tp)

∼=
→

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µp,q,r
I(t;(tp);(t

q
p))
µstqp,rX|s|←

∏
α
I(t;(tp));(t

q
p)

∼=

∏
α
t;(I(tp;(t

q
p)q))p

∼=
→

Here µpt = µ
p∈v(t)
t = µt( | p ∈ v(t)). Squares commute due to (19).

Let us prove the naturality of χ: for each 3-cluster tree (t; (tp); (t
q
p)) the square below

commutes

µpt
∏

(τqp )∈
∏

q∈v(tp)
tr |q|

µqtpµ
r
τqp
X|r| χ(t;(tp)) →

∏
(τqp )∈

∏q∈v(tp)

p∈v(t)
tr |q|

µp,qI(t;(tp))µ
r
τqp
X|r|

µpt
∏

(tqp,r)∈
∏r∈v(t

q
p)

q∈v(tp)
tr |r|

µq,r
I(tp;(t

q
p)q)

µstqp,rX|s|

µpt (⊥̃⊥◦X)[tp;(t
q
p)q ]

↓
χ(t;(I(tp;(t

q
p)q))p)→

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µp,q,r
I(t;(tp);(t

q
p))
µstqp,rX|s|

(⊥̃⊥◦X)(t : [tp;(t
q
p)q ]p)

↓

Whiskering the equation with the projection pr(tqp) for arbitrary (tqp) we rewrite it as

⟨
µpt

∏
(τqp )∈

∏
q∈v(tp)

tr |q|

µqtpµ
s
τqp
X|s|

µpt pr
(I(t

q
p;(t

q
p,r)r))q→ µptµ

q
tpµ

s
I(tqp;(t

q
p,r)r)

X|s|
αt;(tp)→

µp,qI(t;(tp))µ
s
I(tqp;(t

q
p,r)r)

X|s|
µp,q
I(t;(tp))

α−1

t
q
p;(t

q
p,r)r→ µp,qI(t;(tp))µ

r
τqp
µstqp,rX|s|

α
I(t;(tp));(t

q
p)

q
p→ µp,q,r

I(t;(tp);(t
q
p))
µstqp,rX|s|

⟩
=
⟨
µpt

∏
(τqp )∈

∏
q∈v(tp)

tr |q|

µqtpµ
s
τqp
X|s|

µpt pr
(I(t

q
p;(t

q
p,r)r))q→ µptµ

q
tpµ

s
I(tqp;(t

q
p,r)r)

X|s|
µptµ

q
tp
α−1

t
q
p;(t

q
p,r)r→

µptµ
q
tpµ

r
tqp
µstqp,rX|s|

µptαtp;(t
q
p)q→ µptµ

q,r
I(tp;(t

q
p)q)

µstqp,rX|s|
α
t;(I(tp;(t

q
p)q))p→ µp,q,r

I(t;(tp);(t
q
p))
µstqp,rX|s|

⟩
.

Commuting the second and the third arrows in the left hand side, we reduce the equation
to (19).
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The normalisation property holds due to (18).

The multiplicativity holds: for each 3-cluster tree (t; (tp); (t
q
p))

µptµ
q
tp

∏
(tqp,r)∈

∏
r∈v(t

q
p)

tr |r|

µrtqpµ
s
tqp,r
X|s| µptχ(tp;(t

q
p)q)→ µpt

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)
tr |r|

µq,r
I(tp;(t

q
p)q)

µstqp,rX|s|

µp,qI(t;(tp))

∏
(tqp,r)∈

∏
r∈v(t

q
p)

tr |r|

µrtqpµ
s
tqp,r
X|s|

αt;(tp)

↓
χ(I(t;(tp));(t

q
p)

q
p)→

∏
(tqp,r)∈

∏r∈v(t
q
p)

q∈v(tp)

p∈v(t)

tr |r|

µp,q,r
I(t;(tp);(t

q
p))
µstqp,rX|s|

χ(t;(I(tp;(t
q
p)q))p)

↓

Whiskering this equation with the projection pr(tqp,r) for arbitrary (tqp,r) we get an equivalent

⟨
µptµ

q
tp

∏
(tqp,r)∈

∏
r∈v(t

q
p)

tr |r|

µrtqpµ
s
tqp,r
X|s|

αt;(tp)→ µp,qI(t;(tp))

∏
(tqp,r)∈

∏
r∈v(t

q
p)

tr |r|

µrtqpµ
s
tqp,r
X|s|

µp,q
I(t;(tp))

pr
(t
q
p,r)→ µp,qI(t;(tp))µ

r
tqp
µstqp,rX|s|

α
I(t;(tp));(t

q
p)

q
p→ µp,q,r

I(t;(tp);(t
q
p))
µstqp,rX|s|

⟩
=
⟨
µptµ

q
tp

∏
(tqp,r)∈

∏
r∈v(t

q
p)

tr |r|

µrtqpµ
s
tqp,r
X|s|

µptµ
q
tp

pr
(t
q
p,r)→ µptµ

q
tpµ

r
tqp
µstqp,rX|s|

µptαtp;(t
q
p)q→

µptµ
q,r
I(tp;(t

q
p)q)

µstqp,rX|s|
α
t;(I(tp;(t

q
p)q))p→ µp,q,r

I(t;(tp);(t
q
p))
µstqp,rX|s|

⟩
.

Commuting the first and the second arrows at the left hand side, we reduce the equation to
(19). Thus ⊥̃⊥◦X is indeed a homotopy cooperad.

Remark 10. Passing to the opposite Cat-operad one defines the notion of homotopy operad
and constructs an example of such without the assumption that µt preserves colimits.

Proposition 12. Let C be a strong Cat-operad, C be a cooperad in C, and X = (X(n))n>0,
X(n) ∈ ObC(n). Then the map

hCoopC(SC, ⊥̃⊥◦X)→
∏
n∈N

C(n)(C(n), X(n)), f 7→ f̌ , f̌(n) =

=
(
C(n)

ι−→∼= µτ [n]C(n)
f(τ [n])→ (⊥̃⊥◦X)(τ [n])

prτ [n]→ µτ [n]µτ [n]X(n)
ι−1

−−→∼= µτ [n]X(n)
ι−1

−−→∼= X(n)
)

is bijective.

Proof. Without loss of generality we may assume that µτ [n] = IdC(n) and ι = id: Id→ µτ [n]
for n > 0. First we prove that a morphism f : SC → ⊥̃⊥◦X ∈ hCoopC is determined by

f̌ =
(
C(n)

f(τ [n])→ (⊥̂⊥◦X)(n)
prτ [n]→ X(n)

)
n>0

.
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For an arbitrary t ∈ tr(n) consider the commutative diagram

C(n)
f(τ [n]) → (⊥̂⊥◦X)(n)

SC(t)

SC((◃ : t→τ [n])op)

↓
f(t) → (⊥̃⊥◦X)(t)

(⊥̃⊥◦X)((◃ : t→τ [n])op)↓
pr(τ [|p|]|p∈v(t))→ µt(X|p| | p ∈ v(t))

prt

→

µt(C|p| | p ∈ v(t))

χ(t;(τ [|p|])p) =id
��www

µt(f(τ [|p|])|p∈v(t))→ µt((⊥̂⊥◦X)|p| | p ∈ v(t))

χ(t;(τ [|p|])p)
↑

µt(prτ [|p|]|p∈v(t))
→

It follows that⟨
C(n)

f(τ [n])→ (⊥̂⊥◦X)(n)
prt→ µt(X|p| | p ∈ v(t))

⟩
=
⟨
C(n)

SC((◃ : t→τ [n])op)→ SC(t) = µt(C|p| | p ∈ v(t))
µt(f̌ |p||p∈v(t))→ µt(X|p| | p ∈ v(t))

⟩
.

Denote by ∆̂(n) : C(n)→ (⊥̂⊥◦C)(n), n > 0, the unique collection of maps such that ∆̂(n) ·
prt = ∆t ≡ SC((◃ : t→ τ [n])op) : C(n)→ SC(t) for all t ∈ tr(n). Thus,

f(τ [n]) =
⟨
C(n)

∆̂(n)→ (⊥̂⊥◦C)(n)
(⊥̂⊥◦f̌)(n)→ (⊥̂⊥◦X)(n)

⟩
.

At last, the left bottom square of the diagram gives

f(t) =
⟨
SC(t) = µt(C|p| | p ∈ v(t))

µt(f(τ [|p|])|p∈v(t))→ µt((⊥̂⊥◦X)|p| | p ∈ v(t))
χ(t;(τ [|p|])p)→ (⊥̃⊥◦X)(t)

⟩
=
⟨
SC(t) = µptC|p|

µpt ∆̂|p|→ µpt (⊥̂⊥◦C)|p|
µpt (⊥̂⊥◦f̌)|p|→ µpt (⊥̂⊥◦X)|p| χ(t;(τ [|p|])p)→ (⊥̃⊥◦X)(t)

⟩
. (40)

This proves the injectivity of the map f 7→ f̌ . The bijectivity will be proven once we show
that for an arbitrary f̌ : C(n) → X(n) ∈ C(n), n > 0, formulae (40) define a morphism of
homotopy cooperads f : SC → ⊥̃⊥◦X.

The naturality of this f means the commutativity of the exterior of the following diagram
for an arbitrary map (t; (tp)) : s = I(t; (tp))→ t ∈ Tr

µptC|p|
µpt ∆̂|p| → µpt (⊥̂⊥◦C)|p|

µpt (⊥̂⊥◦f̌)|p| → µpt (⊥̂⊥◦X)|p| χ(t;(τ [|p|])p)→ (⊥̃⊥◦X)(t)

µptµ
z
I(tp;(t

q
p)q)

C|z|

µpt pr
(I(tp;(t

q
p)

q))p↓

µptµ
z
I(tp;(t

q
p)

q)
f̌ |z|
→

µpt∆I(tp;(t
q
p)

q)

→

µptµ
z
I(tp;(t

q
p)q)

X|z|

µpt pr
(I(tp;(t

q
p)

q))p↓
pr

(I(tp;(t
q
p)

q))p←

µptµ
q
tpC|q|

µpt∆tp

↓
µptµ

q
tp
∆

t
q
p→ µptµ

q
tpµ

r
tqp
C|r|

µptα
−1

tp;(t
q
p)

q↓ µptµ
q
tp
µr
t
q
p
f̌ |r|
→ µptµ

q
tpµ

r
tqp
X|r|

µptα
−1

tp;(t
q
p)

q↓

µvsµ
r
tqp
C|r|

αt;(tp)↓ µvsµ
r
t
q
p
f̌ |r|

→ µvsµ
r
tqp
X|r|

αt;(tp)↓

µvsC|v|

αt;(tp)

↓
µvs∆̂|v| →

µvs∆t
q
p

→µvs(⊥̂⊥◦C)|v|

µvs pr
(t
q
p)

q
p

↑

µvs(⊥̂⊥◦f̌)|v| → µvs(⊥̂⊥◦X)|v|

µvs pr
(t
q
p)

q
p

↑

χ(s;(τ [|v|])v)→ (⊥̃⊥◦X)(s)

(⊥̃⊥◦X)[t;(tp)]

↓
pr

(t
q
p)

q
p

←
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Notice that v ∈ v(s) is identified with some pair (p, q), p ∈ v(t), q ∈ v(tp). In order to prove
the commutativity of the exterior, whisker it with pr(tqp)qp (directed inward as in the diagram).
Then this diagram is partitioned into commutative cells and the naturality is proven.

The multiplicativity of f is expressed by the exterior of the following diagram commuta-
tive for each 2-cluster tree (t; (tp)) with s = I(t; (tp))

µptµ
q
tpC|q|

µptµ
q
tp
∆̂|q|
→ µptµ

q
tp(⊥̂⊥◦C)|q|

µptµ
q
tp
(⊥̂⊥◦f̌)|q|
→ µptµ

q
tp(⊥̂⊥◦X)|q| µ

p
tχ(tp;(τ [|q|])q)→ µpt (⊥̃⊥◦X)(tp)

µvsC|v|

αt;(tp)↓
µvs∆̂|v| → µvs(⊥̂⊥◦C)|p|

αt;(tp)↓
µvs(⊥̂⊥◦f̌)|v|→ µvs(⊥̂⊥◦X)|v|

αt;(tp)↓
χ(s;(τ [|v|])v) → (⊥̃⊥◦X)(s)

χ(t;(tp))↓

The rightmost square is a particular case of multiplicativity (39) for the 3-cluster tree

(t; (tp); (τ [|q|])q∈v(tp)p∈v(t) ). Therefore, f is a morphism of homotopy cooperads.

Introduce the filtration trK(n) = {t ∈ tr(n) | | v(t)| 6 K} of the sets tr(n). We say that
a morphism f : ⊥̂⊥◦X → Y has a finite support if for all n ∈ N there is K ∈ N such that

f(n) =
⟨
(⊥̂⊥◦X)(n) =

∏
t∈tr(n)

µptX|p| ◃
∏

t∈trK(n)

µptX|p|
∼=−→

⨿
t∈trK(n)

µptX|p|
(ft)→ Y (n)

⟩
.

Proposition 13. Let a morphism f : ⊥̂⊥◦X → Y have finite support. For each t ∈ tr define
a morphism f̂(t) : (⊥̃⊥◦X)(t) → (⊥̃⊥◦Y )(t) ∈ C(Inp t) by the equations for a 2-cluster tree
(t; (tp))

f̂(t) · pr(tp|p∈v(t)) =
∑

(tqp)∈
∏

p∈v(t)

∏
q∈v(tp)

trK |q|

⟨ ∏
(τp)∈

∏
p∈v(t) tr |p|

µptµ
r
τpX|r|

pr
(I(tp;(t

q
p)q))p→

µptµ
r
I(tp;(t

q
p)q)

X|r|
µptα

−1

tp;(t
q
p)q→ µptµ

q
tpµ

v
tqp
X|v|

µptµ
q
tp
f
t
q
p→ µptµ

q
tpY |q|

⟩
.

Then the family f̂ : ⊥̃⊥◦X → ⊥̃⊥◦Y is a morphism of homotopy cooperads.

Proof. We have to prove the naturality of f̂ , expressed by the following square for each
2-cluster tree (t; (tp))

(⊥̃⊥◦X)(t)
f(t) → (⊥̃⊥◦Y )(t)

=

(⊥̃⊥◦X)(I(t; (tp)))

(⊥̃⊥◦X)[t;(tp)]↓
f(I(t;(tp)))→ (⊥̃⊥◦Y )(I(t; (tp)))

(⊥̃⊥◦Y )[t;(tp)]↓
pr

(t
q
p)

q
p→ µp,qI(t;(tp))µ

v
tqp
X|v|.

The commutativity of the square is equivalent to the equality of two compositions in this
diagram for all (tqp) ∈

∏
p∈v(t)

∏
q∈v(tp) tr |q|. Both compositions here are sums over (tq,rp ) ∈∏

p∈v(t)
∏

q∈v(tp)
∏

r∈v(tqp) trK |r| of expressions that begin with

pr(I(tp;(tqp)q ;(tq,rp )rq))p
:

∏
(τp)∈

∏
p∈v(t) tr |p|

µptµ
r
τpX|r| → µptµ

z
I(tp;(t

q
p)q ;(t

q,r
p )rq)

X|z|.
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The remaining two compositions are presented as the exterior of the following diagram

µptµ
z
I(tp;(t

q
p)q ;(t

q,r
p )rq)

X|z|
µptα

−1

I(tp;(t
q
p)q);(t

q,r
p )rq→ µptµ

q,r
I(tp;(t

q
p)q)

µvtq,rp
X|v|

µptµ
q,r

I(tp;(t
q
p)q)

f
t
q,r
p→ µptµ

z
I(tp;(t

q
p)q)

Y |z|

µptµ
q
tpµ

v
I(tqp;(t

q,r
p )r)

X|v|

µptα
−1

tp;(I(t
q
p;(t

q,r
p )r))q

↓ µptµ
q
tp
α−1

t
q
p;(t

q,r
p )r → µptµ

q
tpµ

r
tqp
µvtq,rp

X|v|

µptα
−1

tp;(t
q
p)q↓ µptµ

q
tp
µr
t
q
p
f
t
q,r
p → µptµ

q
tpµ

r
tqp
Y |r|

µptα
−1

tp;(t
q
p)q↓

µp,qI(t;(tp))µ
v
I(tqp;(t

q,r
p )r)

X|v|

αt;(tp)↓ µp,q
I(t;(tp))

α−1

t
q
p;(t

q,r
p )r→ µp,qI(t;(tp))µ

r
tqp
µvtq,rp

X|v|

αt;(tp)↓ µp,q
I(t;(tp))

µr
t
q
p
f
t
q,r
p→ µp,qI(t;(tp))µ

r
tqp
Y |r|

αt;(tp)↓

Let us verify the multiplicativity of f̂ , which is the commutativity of the following square
for each 2-cluster tree (t; (tp))

µpt (⊥̃⊥◦X)(tp)
µpt f(tp) → µpt (⊥̃⊥◦Y )(tp)

=

(⊥̃⊥◦X)(I(t; (tp)))

χ(t;(tp))↓
f(I(t;(tp)))→ (⊥̃⊥◦Y )(I(t; (tp)))

χ(t;(tp))↓
pr

(t
q
p)

q
p→ µp,qI(t;(tp))µ

v
tqp
X|v|

Equivalently, two compositions in this diagram are equal for all (tqp) ∈
∏

p∈v(t)
∏

q∈v(tp) tr |q|.
Both compositions here are sums over (tq,rp ) ∈

∏
p∈v(t)

∏
q∈v(tp)

∏
r∈v(tqp) trK |r| of expressions

that begin with

µpt pr(I(tqp;(tq,rp )r))q : µ
p
t

∏
(τqp )∈

∏
q∈v(tp)

tr |q|

µqtpµ
v
tqp
X|v| → µptµ

q
tpµ

v
I(tqp;(t

q,r
p )r)

X|v|.

The remaining two compositions are presented as the exterior of the following diagram

µptµ
q
tpµ

v
I(tqp;(t

q,r
p )r)

X|v|
µptµ

q
tp
α−1

t
q
p;(t

q,r
p )r→ µptµ

q
tpµ

r
tqp
µvtq,rp

X|v|
µptµ

q
tp
µr
t
q
p
f
t
q,r
p → µptµ

q
tpµ

r
tqp
Y |r|

= =

µp,qI(t;(tp))µ
v
I(tqp;(t

q,r
p )r)

X|v|

αt;(tp)↓ µp,q
I(t;(tp))

α−1

t
q
p;(t

q,r
p )r→ µp,qI(t;(tp))µ

r
tqp
µvtq,rp

X|v|

αt;(tp)↓ µp,q
I(t;(tp))

µr
t
q
p
f
t
q,r
p→ µp,qI(t;(tp))µ

r
tqp
Y |r|

αt;(tp)↓

Thus f̂ is a morphism of homotopy cooperads.
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