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The theory of 2-monads is used as a ground to study non-symmetric cooperads. We give
a new definition of homotopy cooperads. Ordinary and homotopy cooperads are placed in lax
Cat-operads which are lax algebras over the free-operad strict 2-monad. We give an example
of a homotopy cooperad cofree with respect to ordinary cooperads.
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Teopust 2-MOHaJ| HCIOIB3YeTCsl KAK OCHOBA JjIsl U3yYeHHs HECUMMETPUIECKUX KOOIEPAI.
JlaHo HOBOE ompejie/ieHre TOMOTOMYIEeCKuX Koorepa . OObIYHbIE U TOMOTONMYECKHE KOOIIEpa-
JIbI TIOMeTeHbl B paccabienbie Cat-omepapl, KOTOPBIE SIBIAIOTCA PACCIADICHBIME AredpaMn
HaJT CTPOTOi 2-MOHa I0#1 cBOOOIHOM omepaibl. [IpuBeseH mpuMep rOMOTOTHIECKONH KOOIEPAIhI
KOCBOOO/THOM IO OTHOIIEHUIO K OOBITHBIM KOOIIEPAIaM.

1. Introduction. We use the theory of 2-monads as a ground to (non-symmetric) cooper-
ads. The main tool is an explicit construction of colax morphism classifier for the free-operad
strict 2-monad T : Cat" — Cat", where Cat denotes the 2-category of categories and the set
of natural numbers is N ={0,1,2,... }.

The choice between ‘lax’ and ‘colax’ for monoidal categories made in [2] was dictated by
the relationship: a lax monoidal category gives rise to a multicategory. We shall switch the
usage to the opposite. The reason is that lax (in the sense opposite to [2]) monoidal categories
are lax algebras over the free-monoid 2-monad T. Similarly colax monoidal categories are
colax algebras over the same 2-monad. This way the present article becomes closer to many
other works (in which often ‘oplax’ is used instead of ‘colax’).

Strict/strong=pseudo/lax/colax T -algebras and T-morphisms are renamed to corre-
sponding Cat-operads and Cat-multifunctors. In sequel article a (co)operad will mean
a non-symmetric (co)operad. (Co)operads in a lax Cat-operad C are defined as (co)lax
Cat-multifunctors 1 — C, where 1 is the terminal Cat-operad. Applying to the latter the
colax morphism classifier ). we get Q.1 = TR°P, where the Cat-operad of trees TR is intro-
duced by T. Leinster ([12]). This motivates the definition of homotopy cooperads in a strong
Cat-operad C as lax Cat-multifunctors TR’ — C. We discuss in detail an example of a ho-
motopy cooperad, so called “cofree cooperad”, which is different from the familiar notion of
cofree conilpotent cooperad. This is the reason for introducing the notion of a homotopy
cooperad.

Let L: € — € be a comonad. The category of |-coalgebras is denoted €, . The following
lemma is well known.
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Lemma 1 (Kleisli). The forgetful functor €, — C has the right adjoint L: € — C,: for
any V € ObC and any L-coalgebra (X,0) there are mutually inverse bijections

C(X,V) +— CL(X,LV),
f— f=05-(L)),
g=g-€ < g.

This is generalized to multicategories in [2, Lemma 5.3]. The composition of h: U — V
and k: V — Wis denoted h-k =kh =koh: U — W. Og denotes the category of finite
totally ordered sets n = {1,2,...,n}, n > 0, and their non-decreasing maps (denoting this
category by A would introduce the risk of confusing it with its full subcategory that does
not contain the empty set as an object).

In Section 2 we recall definitions of algebras of various kind over a strict 2-monad.

In Section 3 we concentrate on the free-monoid strict 2-monad T: Cat — Cat and
strict /strong=pseudo/lax/colax algebras over it, which are corresponding monoidal cate-
gories. We recall the related notion of homotopy comonoid due to T. Leinster. An example
of homotopy comonad is given. Coalgebras over it are ordinary coalgebras in a strong
monoidal category. We discuss also m-cluster trees. A 2-cluster tree is a family of trees
which can be substituted into internal vertices of a given tree. 2-cluster trees are morphisms
of the category TR. m-cluster trees are composable sequences of m — 1 morphisms of TR.

The fourth section is devoted to the free-operad strict 2-monad T : Cat" — Cat". T-al-
gebras, T-morphisms and T -transformations are called Cat-operads, Cat-multifunctors and
Cat-transformations. There is a colax morphism classifier 2-functor Q.: , T-Alg, — , T-Alg,,
left biadjoint to the inclusion , T-Alg, < ,T-Alg, (pseudoalgebras with pseudomorphisms
are included into pseudoalgebras with colax morphisms). The new possibility exploited in
this article is to define (co)operads inside a strong Cat-operad C as (co)lax Cat-multifunctors
1 — C. We identify augmented cooperads with non-counital cooperads. There is a comonad
1L, whose coalgebras constitute part of non-counital cooperads. Under certain condition on
categories C(n) we show that the category of conilpotent non-counital cooperads is isomor-
phic to the category of I -coalgebras. Summing up, there is a way to obtain augmented
cooperads in the form 1L, X =16 1L X.

Homotopy cooperads are introduced in the fifth section as lax Cat-multifunctors Q.1 =
TR — C. There is an example of a homotopy cooperad, “completion” 1L, X of 1,X. In
a sense L, X is cofree with respect to the ordinary cooperads in C. We describe a wide class
of morphisms 1, X — 1Y of homotopy cooperads.

2. 2-monads. For the sake of simplicity we use the notation as if (Set, x,1) were a sym-
metric strict monoidal category (instead of weak=strong one). A 2-category X is viewed as
a Cat-category. A strict 2-monad (7, m,i): X — K is a monad enriched over Cat.

Recall [19, 1], [7, Definition 4.1] that a lax T-algebra for a strict 2-monad (7, m, i) in
a 2-category X is the quadruple (A, u: TA — A, «, ), where 2-morphisms

A " sTA A A
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(=== means identity 1-morphism) satisfy the equations

TA TA TA—" A
T
T’iA id iTA == iA
2 T id 2 Tu L
id T°A———F4& = ,|l&|p = i T°A ——TA<«—|ud
m ¢ I m “ w
s TA £ A A s TA <= A
A DAL - RN ) AN ) NN
mrTA _ m Tu mrA Ta yn
o Tm
T2A— % s TA e TA = T A+ = TPAE ,TA
m 1z iz m iz
TA v A < TA < - Ay
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Colax T-algebras are the same notion with the direction of 2-morphisms «, ¢ reversed.
Pseudo (=weak =strong) T-algebras are lax ones with invertible «a, ¢. Strict T-algebras are

those with a =id, ¢ = id.
Let A, B be lax T-algebras for a 2-monad (7', m, ) in a 2-category X.

Definition 1 (e. g. [9, Section 4.1]). A lax T-morphism (f, ¢): (A, p?, a, ) — (B, u®, 8, .7)

is a 1-morphism f: A — B € X and a 2-morphism

TA—Y TR

A -%ﬁ
such that

A" g 24 1 2R

m Tt T¢ Tu? m _ m Tp?
TA—rTA—L s7B — TA " 7B TB,
A 6 %

pt ¥ pt B uP

A« B A = s B <
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Definition 2. A colax T-morphism (f,v): (A, p?, a, 1) — (B, uP, 3,18) is a 1-morphism
f: A— B € X and a 2-morphism

TA—Y TR

A %ﬁ
such that
724 "1, 12p A" g
TUA Ty m TH'A m o m
TuB o B
T At Pt TB = T Adme—s TA — 2 TB
! " uBﬁ A o
pA ub p ub
A 7 > B A 7 ==
AL \ A1 ,
LA - Tf B
—TA—TB = = — 1B
oy
B B
B A—— B+
f f
Definition 3 (e.g. [9 Section 4.1]). A T'-transformation between lax T-morphisms p:
(f, ) = (g,0): (A, a, ) — (B, P, 8,1P) is a 2-morphism p: f — g: A — B in X such
that T
TA  |yr, TB 7A—2 718
Tg e uB
P - ¢
e
“A\L ULB -
A %;B: A o

A T-transformation between colax T-morphisms p: (f,¢) — (g,%): (4, pu?, a, ) —
(B, 1P, 3,18) is a 2-morphism p: f — g: A — B in X such that

Tg
e T
TA 41, TB TA—~—TB
rf A uB
= (4
“A\L ¢ \LMB %}
A %
; A
!

Let s,p,l,c stand for strict, pseudo, lax and colax. Denote by ;T-Alg, (resp. ,T-Alg,,
»T-Alg,) the 2-category of lax T-algebras (resp. pseudo (=weak =strong) T-algebras), lax
T-morphisms (resp. pseudo (=weak =strong) T-morphisms, colax T-morphisms), and their
T-transformations, see e.g. [9, Section 4.1]. Similarly for the other reasonable combinations
«T-Alg, with 2,y € {s,p, [, c}.
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Exercise 1. Let X be a 2-category with a 2-monad (T, m,i): X — K. For any B € ObX
and any lax T-algebra (C, %, v, 1) there is a functor

TP uC

E: X(B,C) — [T-Alg(TB,C), (P: B— C)— (TB TC

g TP e T o

- o

TB X 10 e

with the obvious value on 2-morphisms. (Hint: use associativity (2) for v and unitality (1)
for v and ¢.)

The following statement is already known.

Lemma 2 (Kleisli lemma for 2-categories). Let K be a 2-category with a 2-monad (T, m, 1) :
K — K. For any B € ObX and any strong T-algebra (C,u“,~,.°) the functor E:
X(B,C) — ,T-Alg,(TB,C) given by (4) is an equivalence.

Proof. Introduce the functor

i

G: ,T-Alg,(TB,C) — X(B,C), ((g9,¢): TB— C)+— (B TB 5 C). (5
Then invertibility of ¢ implies that E - G = Idgp,c). Due to (3) there is a natural trans-
formation G - £ — Id, 7 a1 (rB,c) Involving ¢ from (9,v) € yT-Alg,(T'B,C). This natural
transformation is invertible thanks to the invertibility of . O

Recall that a 2-monad 7' is said to have a rank if it preserves a-filtered colimits for some
regular cardinal « ([1]). Assume that X is complete and cocomplete and 7" has a rank. It
is shown in [1] that the inclusion 2-functor ,T-Alg, — /T-Alg, (resp. ,/T-Alg, — /T-Alg)
admits a left adjoint, which could be called a pseudo/strict (resp. lax/strict) morphism clas-
sifier. Furthermore, C. Hermida ([7, Theorem 6.1]) proved that under certain assumptions
the inclusion 2-functor ,7-Alg, — ,T-Alg. admits a left biadjoint Q.: ,T-Alg. — ,T-Alg,,
which could be called a colax/pseudo morphism classifier. We shall encounter examples of
such Q). below.

3. Coalgebras as colax morphisms. As an example of a 2-monad consider the free-
monoid strict 2-monad T : Cat — Cat,

TC = ]_[ek.

keN

A lax T-algebra (C,pu,«,t) is the same as a lax monoidal category [12, Section 3.1] or
a lax monoidal category (€, @', A, p) (Definition 2.5 [2] applied to CP): &' = pul,,, M =
a|njeJ es—1; forany f: I — J € Oy, t =p: X — ®@1X. A strong T-algebra is the same as
a strong monoidal category [ibid.] or an unbiased monoidal category [12, Definition 3.1.1].
A (co)lax T-morphism (F,¢): (C,®, \, p) = (D, ®, A, p) between lax T-algebras is the same
as a (co)lax monoidal functor between lax monoidal categories ([12, Definition 3.1.3] or
Definition 2.6 ([2]) with appropriate arrows reversed). A T-transformation is the same as

a monoidal transformation ([12, Definition 3.1.4] or [2, Definition 2.7] mutatis mutandis).
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The free-monoid monad T: Set — Set preserves small filtered colimits, thus is finitary.
This follows from the property of Set that filtered colimits commute with finite limits, see
Example 9. This is extended further to a monad T : Cat — Cat being finitary and to 2-monad
T: Cat — Cat being finitary. The monad T: Set — Set as well as T: Cat — Cat is cartesian
[12, Example 4.1.4].

Remark 1. As noticed in [7, Section 11| the 2-category Cat admits a calculus of bimodules.
The 2-functor T: Cat — Cat preserves pullbacks and comma-categories. It preserves also
coidentifiers f* o gy — f* ® g4, the notation and definitions are in [7, Section 2|. In fact, for
Cat we have f*eg, = | dom g f* % g4, the above projections are induction maps for the coend.
The rest is the direct inspection.

A coalgebra (=comonoid) in a lax monoidal category (M, ®, A, p) is defined as an algebra
in the colax monoidal category (M°P, ®, \°P), or as a colax monoidal functor C: 1 — M,
cf. [2, Definition 2.25] where 1 is the terminal (one-morphism) category. Equivalently, it is
an object C' of M equipped with a morphism A;: C — C®! for each I € Ob Oy, such that
A; = id and for every map f: I — J € Og the following equation holds
A = (C AJ; %7 &N Qi€ oot *f} C®I)‘
The following result of [2] treats algebras in colax monoidal categories, however, we cite
it in dual form.

Proposition 1 (Proposition 2.27 of [2]). A coalgebra C' in a lax monoidal category M defines
a lax monoidal functor

(F’ ¢I) : (O(S)E7 UI’ 1d) — (M7 ®I7 >\f>7 F(J) = C®J7
iEIA Y . .
(P 1= J) € O% & (f1J =) € Oy Al = (051 21N giel gor i My cor),

Let n; € N = ObOZ fori € I € ObOg. The natural transformation ¢': & C®" —
C®%iermi js defined as \9: @€ C®9 ' —5 CON for N = Ujen;, g: N — I € Oy such that
|g7Yi| = n;. If M is strong monoidal (X is invertible), then (F,$) is strong monoidal.

If M is a strict monoidal category then a coalgebra C'in M gives rise to a strict monoidal
functor, as proven by S. Mac Lane ([16, Proposition VIIL.5.1]).

The previous statement of the proposition admits a stronger version: the described func-
tor

Mon,(1,M) =, T-Alg,(1,M) — pT-Algp(O_ff, M) = Mon (0, M)

is an equivalence ([14, Propositions 1.11, 1.12]). Further strengthening is given by Proposi-
tion 4.

Proposition 2. There are a 2-functor Q.: sT-Alg, — T-Alg, and a 2-natural isomor-

phism ,T-Alg,(Q.B, C) = ,T-Alg,(B, C), which turn Q. into a left adjoint to the inclusion
s T-Alg, — ;T-Alg,.

Since 2-monad T is finitary, this statement follows from [1, Theorem 3.13]. Also it follows
from [7, Theorem 6.1.1] whose hypothesis is satisfied due to Remark 1. We leave the other
proofs in this section to the reader since the results follow from analogous statements of
Section 4.

For the moment we recall that every unbiased monoidal category is equivalent to a strict
monoidal category ([12, Theorem 3.1.6]). We reformulate this as follows.
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Proposition 3. The embedding 2-functor T-Alg, — ,T-Alg, admits a left adjoint L:
p 1 -Alg, — (T-Alg, such that the unit of the adjunction B — LB is an equivalence.

A more general result is given by C. Hermida ([7, Corollary 7.5]).

Corollary 1. The embedding 2-functor ,T-Alg, — , T-Alg, is a biequivalence with a quasi-
inverse L.

Proposition 4. There are a 2-functor ().: Mon, — Mon and a 2-natural equivalence
Mon(Q.B, €) = Mon,(B, C),
which turn Q). into left biadjoint to the inclusion Mon — Mon.,..
This follows from Hermida’s Theorem 6.1 ([7]) applicable due to Remark 1.

Remark 2. The 2-functor (). from Proposition 2 is the restriction of the 2-functor (). from
Proposition 4

(sT-Alg, &5 T-Alg, — ,T-Alg,) = (,T-Alg, < ,T-Alg, 25, T-Alg,). (6)

Corollary 2 (to Propositions 2, 4). There are a 2-functor Q;: sT-Alg, — T-Alg, (resp.
Qi: p T-Algy — , T-Alg,) and a 2-natural isomorphism (resp. equivalence)

ST-Alg,(QiB,€) = ,T-Alg,(B,C), resp. ,T-Alg,(QiB,€) = ,T-Alg(B,€),

which turn @, into a left adjoint (resp. biadjoint) to the inclusion ¢ T-Alg, < (T-Alg; (resp.
p 1-Alg, — ,T-Alg;). 2-functors Q; agree similarly to (6).

The proof and the construction of (); is made by dualising the results for ). using
opposite monoidal categories. Thus, ();B is the universal strict monoidal category generated
over TB by the morphisms &7: (X;)se; — ®%€] X, subject to naturality, normalisation and
multiplicativity.

In particular, if B = 1 then the category Q.1 is Ogr. This is the monoid classifier
for monoidal categories ([7, Corollary 9.1, Theorem 9.2]). The classical description of the
monoid classifier for monoidal categories is usually credited to Lawvere.

3.1. Trees. We use conventions, terminology and notation for trees from [15, § 2.1]. A rooted
tree t can be defined as a parent map P,: V(t) — V(t), where V (¢) is a finite set (of vertices),
such that | Im(PF)| = 1 for some k € N. The only element r € Im(PF) is called the root. An
oriented graph without loops G is constructed out of P, whose set of vertices is V'(¢) and
arrows are v — P;(v) if vertex v is not the root. Since G is a connected graph, whose number
of edges is one less than the number of vertices, it is a tree. Thus the rooted tree is oriented
towards the root. The only oriented path connecting a vertex v with the root consists of
v, P(v), P?(v), ..., the root. This gives a partial ordering on the set of all vertices V (t),
namely, u < v if and only if v lies on the oriented path connecting u with the root. For each
vertex p € V/(t) the non-negative number |p| = |P,!(p) \ {root}| of its children is called its
arity.

A planar rooted tree is a rooted tree with a chosen total ordering < of the set of incoming
edges for each vertex. A rooted tree with inputs is a rooted tree t with a chosen subset Inp()
of the set L(t) of leaves, vertices without incoming edges. For instance, a 1-vertex tree has
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one leaf — the root. It gives rise to two rooted trees with inputs: 7[0] = ¢ = (1;Inp e = &)
and 0y = o = (1;Inpo = 1). The set of internal vertices is defined by v(t) = V(¢) — Inp(t).

The total ordering < of the set V(¢) of vertices of a planar rooted tree ¢ is defined as
follows. For any two vertices u,v € V (t) either they are comparable with respect to < and
we set u < v iff u < v, or they are not <-comparable. Then there are unique n,m € Ny
such that P"(u) = P™(v) and both P""(u) # P™ (v) are distinct from the root. We set

w<v iff P 1(u) < P™7(v) in the set of descendants (incoming edges) of P"(u).

Let tr be the set of isomorphism classes of planar rooted trees with inputs. It splits up,
tr = | |-, tr(n), in components tr(n) = {t € tr | [Inpt| = n}. We view tr = (tr(n)),>o
as a collection of sets. Thus, for any finite set S’ the notation tr(S) means tr(|S|). Also for
any internal vertex p the notation tr |p| means tr(|p|).

For each tree t € tr there is an operation of substituting trees into internal vertices

I;: H tr|p| — tr(Inpt) (7)

peV(t)

which takes a family (t,)pev(r) With |Inpt,| = |p| to the tree I;(t, | p € v(t)) obtained from ¢
by replacing each internal vertex p € v(t) with the tree ¢,. If ¢ = o, then I,() = o. If t # o,
then 7 = L(t, | p € v(t)) has

Vir)= || Vit,)/ ~. (8)
)

pev(t

Notice that the projection map

o L (V). Q) — (V(1),9) (9)

pe(v(t),9)

is not necessarily non-decreasing, where the first set is lexicographically totally ordered (p<q
for p,q € v(t) implies (p,z) < (q,y) for all x € v(t,), y € v(t,).
The set Inp 7 of input vertices of 7 by definition consists of single elements (u, z), u € v(t),
z € Inpty, \ ¢u(v(t) N (P u \ root(t))). Clearly, InpT C L(7) and Inp7 = V(1) — v(7),
where
v(T) =v(Li(t, | p € v(t))) ~ I_l v(ty). (10)

pEV(?)
The set of staged trees str(m) consists of sequences in Og

t1 to t3

t = (£(0) — #(1) t(2) —= ... t(m—1) - t(m) = 1),
str(m) = {t € Cat([m], Ox) | t(m) = 1}.

It is partitioned into subsets str(n,m) of staged trees ¢ of height m with ¢(0) = n. The set
str(n, m) is naturally embedded into tr(n) so that Inp t = #(0), respectively, v(t) = U}~ t(j).

3.2. Homotopy comonoids.

Definition 4. A homotopy comonoid in a lax monoidal category (M, ®, \) is a lax monoidal
functor (F, ¢"): (0%, Uz, id) — (M, @1, \).
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If (M, ®,A) is a strong monoidal category then the notion of homotopy (co)monoid is
due to T. Leinster ([10, Definition 2.2]) with detailed exposition in [11]. Based on this, Le-
inster defined homotopy monoidal categories ([12, Definition 3.3.7]). Examples of homotopy
comonoids are given in [14].

Definition 5. A homotopy comonad is a homotopy comonoid in the strict monoidal category
of endofunctors M = End € for some category C.

The necessity to consider such structures is motivated by the following example.

Example 1. We take a strong monoidal Category V for € and consider the functor F': Og —
M =EndV, F(m)(X) = [Tcqtrim) X=?. A morphism fP: J — I € Og which corresponds
to the map f: I — J € Oy is taken by F' to the morphism

fop H X®r N H X®t

restr(J) testr(l)
F( foP r, — X®7’(0) N X®t(0).
(f°P) - pr, = pr : }—>[1}—>@sk TESI;I(J)

Recall that ¢t € str(7) is a functor ¢: [I] — Og such that ¢(|I|) = 1. The functor [f]: [J] — [{]
is described in [2, Section 2.1]. Notice that [f](0) = 0 and [f](|]]) = |I].

If (F,¢): OF — End C is a homotopy comonad then it makes sense to define F-coalgebras
as follows.

Definition 6. An F'-coalgebra is an object C' of C together with a coaction morphism
|opP

§: C = F(1)(C) such that [C % F1)(C) 225 P0)(0)] = ¢°, with 1P 1 — 0 € OF

corresponding to the only map !: @ — 1 € Og and

c—2 raye) 22 payp) )

5J = lcf,l
F(VoP)
F(1)(C) F(2)(C)
with VP: 1 — 2 € O corresponding to the only map V: 2 — 1 € O

In Example 1 an F-coalgebra is a map d = (Ay)nz0: C = [[,en C¥" such that A} =

id: ¢ — C®! and
8 ok IL0%" ek ®n;
C—= ][ ]I Il
keN keN iek n;eN
6‘[ = HC;\L Cf,l

H0®n F(VoP) H H O® ni+- +nk

neN kEN (n;)eNk

The comultiplication F'(V°P) in the homotopy comonad F' is determined by F'(V°P)-pry,.,,,
=PIy 4.in,- Lhe above commutative diagram is equivalent to the following equation

-----

ny ® @A

A n &
[C Ay N O®kz Ky C«®n1 R---® @ =y C®(n1+..‘+nk)] — An1+~~+nk- (11)

This amounts to ordinary coalgebra C' in V with the associative comultiplication A, and the
counit Ay, use equation (2.25.1) and Proposition 2.28 of [2].
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Definition 7. A morphism of F-coalgebras is a morphism f: C'— D € C such that

C—5 F1)(C)

fl = J{F(l)(f)

D —5 F(1)(D)

In Example 1 a morphism of F-coalgebras is the same as a morphism of ordinary coal-
gebras in V. Thus, in this case the category of F-coalgebras is isomorphic to the category
of coalgebras in V.

Example 2. In a non-counital version of Example 1 we consider the functor F’: AP —
EndV, F'(m)(X) = Htesstr(m) X®H0) where Agy C Oy is the subcategory consisting of non-
empty totally ordered sets n, n > 0, and surjective non-decreasing maps, and sstr(m) C
str(m) consists of sequences of surjective maps (thus sstr C N(Ay,)). The remaining
structure is that of F. An F'-coalgebra is a map ¢ = (A,)p>0: C = [[,,20 C®" such that
A; = id and (11) holds for k,ny,...,nx > 0. Thus the category of F’-coalgebras is the

category of non-counital coassociative coalgebras in V.
3.3. Cluster trees.

Definition 8. An m-cluster tree (n;t; (tp,); (tp1ps)i- -5 (Eprporpm_1)), M = 0, is a collection
consisting of an integer n € N, a tree t (a planar rooted tree with n inputs), a tree ¢, € tr |p;|
for each internal vertex p; € v(t), a tree t,, ,, € tr|ps| for each internal vertex py € v(t,,),
etc., a tree ty, py. pn_o € tr |pp_1| for each internal vertex pp—1 € V(tp, py. pms)-

By definition, a 0-cluster tree (n) has a single parameter, the number of inputs n € N.
A 1-cluster tree is just a tree. For a 2-cluster tree (¢; (t,)pev(r)) One can substitute trees ¢,

into vertices p € v(t) and get the resulting tree I(; (tp)pev(r)) &of Li(t, | p € v(t)). Thus
I(t; (t,)) € tr is obtained from a 2-cluster tree via multiplication in the operad tr. Similarly,
I(t; (tp,); (tpypn)i - - -5 (Bprpospma)) € tr is obtained from an m-cluster tree by applying
multiplication in tr m—1 times. An m-cluster tree is precisely a datum needed for performing
multiplication in tr m — 1 times. In the particular case of m = 1 the tree I(t) is ¢, and if
m = 0, then I(n) is the corolla 7[n] = {n — 1 | Inp = n}.

One can imagine a 2-cluster tree as a circled planar tree of [13, Appendix C.2.3]. More
generally, an m-cluster tree (¢;(¢p,);...;(tpy,..p1)) as an ordinary tree I(t;(tp,);
oo (tpy. 1)), Whose internal vertices are partitioned into clusters is subtrees I(t,,;
(tpypo)pai---)s p1 € v(t), which are in turn partitioned into clusters of the second level
etc. Presence of o spoils this picture, however, there is another presentation of cluster trees,
more important for applications.

With a rooted tree t we associate the partially ordered set (V' (), <). Recall that z < y
means that y lies on the oriented path connecting z with the root. The poset (V(¢), <)
admits suprema of arbitrary non-empty families. It suffices to notice that it admits joins
rVy =sup_{x,y}, the least upper bound of = and y.

If ¢ is a planar rooted tree then the set V(t) is equipped also with a total ordering <
such that x < y implies x < y, see Section 3.1.

Definition 9. The set tr of planar rooted trees with inputs is the set of objects of a category
Tr whose morphisms r — ¢ are mappings f: V(r) — V(t) such that



HOMOTOPY COOPERADS 129

(i) the map f: (V(r), <) — (V(t), <) is non-decreasing;
(ii) the map f respects the partition into inputs and internal vertices, f(Inp(r)) C Inp(t),
fv(r)) Cv(®);
(iii) the restriction f|: Inp(r) — Inp(t) is bijective;
(iv) f(L(r)) > L(t);
(v) f preserves joins V, f(x Vy) = f(x)V f(y).

Proposition 5. Morphisms f: r — t are in bijection with 2-cluster trees (t;(tp)pev(t))-
The bijection is established by assigning t, = o if p ¢ Im f and t, is a subtree of r with
v(t,) = f1(p) if p € Im f, all vertices of t,, given by V(t,) = P-(v(t,))Uv(t,). The inverse
bijection is given by r = I(t; (tp)pev())-

The category Tr of trees whose morphisms are 2-cluster trees was first described by
T. Leinster ([12, Section 7.3]). He calls ordinary trees by the name of 2-pasting diagrams (in
other terms, 3-opetopes), while 2-cluster trees are maps of 2-pasting diagrams. Subcategories
of Tr with only surjective maps were used by many authors, see e.g. V. L. Ginzburg and
M. M. Kapranov ([6]), M. Kontsevich and Yu. I. Manin ([8]), R. E. Borcherds ([5]) and
Ya. S. Soibelman ([18]).

Proof. Given a tree t # o and a tree t, € tr|p| for each p € v(¢), let us construct a map

L v V(t).

pev(t)

For any v € v(t,) impose g(v) = p.
Let g € v(t), ¢ # root(t), p = P,q. There is the order preserving bijection
)

p: (P (p) \ {root(t)}, <) — (Inpt,, Q).

In 7 = I(t; (tp)pev(r)) Vvertices root(t,) and ¢,(q) are glued by equivalence relation (8). We

impose
9(ép(q)) = g(root(ty)). (12)
If root(t,) € v(t,), then we already know g(root(t,)). Otherwise, t, = o and |¢| =
Proceeding we include ¢ in a maximal string of consecutive vertices Pv # P?v # -+ # P™y
such that tp, = tp2, = -+ = tpm, = o, m > 1, either v ¢ v(t) or t, # o, and either
Pty = P™y is the root of t or tpm+1, # o. Iterating equation (12) we conclude that
9(¢,(q)) = g(root(t,)) which is already known if ¢, # o. It remains to define g on elements
(u,z), u € v(t), € Inpt, \ ¢u(v(t) N (P "u\ root(t))). The set of such elements is in
bijection with Inpt. We choose g on the set of (u,z) to be the only <-order preserving
bijection with Inp¢. This determines g completely.
By construction, g factors through canonical projection (9) and determines a unique
map f as in
m /
9= L Vit o vUE @) S V). (13)
pev(t)
Equip now v(t), V(¢,), V(I(t; (t,))) and V (t) with the partial order <. Equip the source
of (13) with the lexicographic order. Any pair of elements y < z € V([ (t; (tp))) lifts to
apair w <@ € ||, < (V(tp), <) such that 7(w) =y, m(z) = 2. Since by construction g
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preserves the order =, so is f. Thus f satisfies condition (i) of Definition 9. Clearly,
conditions (ii)—(iv) are also satisfied. By induction on the size of V(r) we prove also (v).
Let f: V(r) — V/(t) satisfy all the conditions of Definition 9. For p € v(t) let us

construct a tree t,. The set v(t,) def f~Y(p) is closed with respect to joins V. For all vertices
u,w € f~!(p) and any vertex v € V(r) inequalities v < v < w imply that v € f~!(p).
Therefore, f~1(p) is a subtree of r, possibly empty. If f~!(p) = @, then |p| = 1 by (iv)
and (v). In this case set t, = o, otherwise set V(t,) = P-1(f*(p)) U f~(p), this gives all

T

vertices of subtree ¢, of r. Let v € V(t,) — v(t,) = Inp(¢,). There is k = k(v) € N such
that PFf(v) # p and PF* f(v) = p. The map Inpt, — P'p\ {root(t)}, v — PF f(v), is
injective by (v) and surjective by (iv). Therefore, | Inpt,| = [p|.

Let f: r — t satisfy conditions of Definition 9. If ¢ = o then the only possible f is id,
and I,() = o = r. If ¢ # o, then ~-equivalent points of | | ., V(f,) represent the same
vertex of 7. Hence, I(t; (tp)pevr)) = r. By construction, the map I(¢; (t,)pev(r)) — t coincides
with f.

Starting with a 2-cluster tree (¢;(t,)pev(r)) construct f. By construction the subsets
f7t(p) and P71(f7(p)) U f~1(p) determine the tree ¢, we have started with. Thus, the
described maps are inverse to each other. O

It follows that recursive definition of a morphism of trees [12, Section 7.3] is equivalent
to Definition 9.

Remark 3. The category Tr is a disjoint union of its subcategories Tr(n), each of which
has the terminal object 7[n]. Hence, we obtain the following corollary.

Hence, we obtain the following corollary.

Corollary 3. m-cluster trees are in bijection with sequences r(0) — r(1) — -+ = r(m—1)
— r(m) of m composable morphisms in Tr such that r(m) is a corolla, namely, r(m) =
7[Inp (0)].
Denote the set of such sequences by
Ctr(n,m) = {t = (t0) L5 t(1) & . = t(m = 1) L% t(m)) | t(m) = 7n], Vi f; € Tr(n)},
Ctr(n,m) = {t € Cat(|m|, Tr(n)) | t(m) = 7[n]}.

It is shown above that Ctr(n,m) is in bijection with ctr(n,m). Namely, an m-cluster tree
(n3t; (tpy); (Epupn)i - - -5 (Bpypanpm 1)) 1S taken to the sequence

](t§<tp1)§(tm,m)?-”;(tpum ----- pm71))_>'~_>](t§<tp1)§(tp1,p2))_>](t§(tp1>)_>t_>7[n]~ (14)

Define the linear tree of height m as 6,, = (6,(0) =1 -1 -1 —= ... -1 1=
0 (m)) with Inp6,, = 6,,(0) = 1. In particular, fp = o = (1;Inpo = 1). The full and
faithful functor 6: Oy — Tr(1), n +— 6, induces the injection

str(m) < > Ctr(1,m)

|

Cat([m],0) N eat([m],TI‘(l)>

Cat([m], Og) <

(2(0) = p(1) = -+ = p(m)) ——= (Op(0) = Op1) = =+ = Opm))-
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Each cluster tree ¢ € Ctr(n, m) has another form

(n;t; (tm)? (tp1,p2>3 S (tpl,pz,...,pmq)) € ctr(n,m).

The internal vertices of ¢(m — k), 0 < m, are found from the latter presentation as

V(t e I_I V(tpl,pzw,pkq)' (15>

p1EV(L) p2€V(lp,) Pr—1€V(tpy,....pp_o)

).

In particular, v(t(m)) =1, v(t(m — 1)) = v(t
s)). The same point j is identified with

Let s=m—Fk,0<s<m, andjév(t

(pl>p27 cee apk) = (fm—l e fs+2fs+1(pk)7 cee >fs+2fs+1(pk)7 fs+l(pk)7pk>~

Define t‘é 4 as the (s — g)-cluster subtree of ¢ formed by

(’pk‘;tm,pz,m,pm (tp17~--’pk7pk+l>pk+1; S (tm,~~.,pk,pk+1,m,pqu71)pk+17~..,pqu71) € ctr(|px|, s —q).

As explained by T. Leinster [12, Section 7.3] Proposition 5 implies the following enforce-
ment of Example 3, see also Description 1 of Cat-operads.

Corollary 4. The collection TR of categories Tr(n), n € N, equipped with functors I,
from (7) and identity transformations o, ¢ is a strict Cat-operad — (strict algebra over the
strict 2-monad T : Cat" — Cat").

4. Cat-operads. Consider the free-operad monad

T Set” — Set™, X = (X(n)wzo = TX, (TX)n)= [[ [] Xlol,

tetr(n) pev(t)

on the category of collections of sets. For any p € v(t) the notation X|p| means X(|p|).
The multiplication m: T2X — T X is taking identically a summand [Lcv Hievir,) Xldl
indexed by a 2-cluster tree (t; (t,)pev(y)) to the summand [T, e,y X1Vl 1ndexed by the
tree I(t; (tp)pevr)) = Le(tp | p € v(t)) from (7). The identity mapping here is due to (10):

V(I(t; (t)pevin)) = |_| v(ty).

pEV(t)

This monad is described by T. Leinster [12, Example 4.1.11] as the monad substituting
trees into vertices, see also [13, Section 5.9.5] and (7). Algebras over this monad are (non-
symmetric) operads in Set. Equivalence of this definition of an operad and the conventional
ones is shown in [13, Section 5.9]. Similar monad using abstract (non-planar) labeled trees
is described in [17, Section 1.12], a reduced monad is in [13, Section 5.6.1]. This is the free-
symmetric-operad monad. Equivalence of algebras over it and usual definitions of symmetric
operads is proven in [17, Theorem 1.105], see also [13, Chapter 5]. The version for graphs
instead of trees is in [3, Proposition 1.7.1].

The free-operad monad T : Set" — Set" preserves small filtered colimits, thus is finitary.
This follows from the property of Set that filtered colimits commute with finite limits, see
Example 9. This extends further to monad T: CatY — Cat" being finitary. The monad
T: Set" — Set" as well as T: Cat" — Cat" is cartesian ([12, Example 6.5.5]).
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This monad lifts to a free-operad strict 2-monad

T: Cat" — Cat™, P = (P(n))uz0 — TP, (TP)(n)= [] H Plu].

tetr(n) vev(t
Due to the above remarks the 2-monad T is finitary.

Remark 4. As noticed in [7, Section 11], the 2-category Cat" admits a calculus of bimodules.
The 2-functor T: Cat — Cat™ preserves pullbacks, comma-categories and coidentifiers
f*ogy — [*eg;similarly to Remark 1.

Strict T-algebras are operads in Cat (see also [3, Definition 4.5.1]). We describe lax
algebras over the 2-monad T : Cat" — Cat" named lax Cat-operads. These are collections
of categories C = (C(n)),>0 equipped with a family of functors

I] clpl = Cinpe),  tetr.
pev(t)
Equations for p are replaced with natural transformations indexed by a 2-cluster tree

IT TI clol—2=2 TT chl

pev(t) gev(ty) pev(t)
Qg (tp)p

%l lut (16)

H Q%J/i KIy(tplpev(t)) r(h’lp t)

zev(Ii(ty|pev(t)))

We are interested in pseudo (=weak=strong) T-algebras for which a,,), are invertible.
Let us introduce some technical notation. For an arbitrary ¢ € tr we denote by ~t
the |Inpt|-corolla, ”t = (Inpt — 1;Inpt) if Inpt is not empty and ~t = 7[0] = (1;9) if
Inpt = @. For any p € v(t) denote by ¢, the |p|-corolla, ¢, = (P 'p — 1; P 'p) if p is not
a leaf and t; = 7[0] if p is a leaf. In particular, for £ = o = (1;1) we have ~¢ = 7[1] and
there are no t; for v(t) = @. For t = 7[0] = @ we have ~t = 7[0] =t =t7.
The notion of a lax T-algebra for T'= T is realized as follows.

Description 1. A laxz Cat-operad (=lax T -algebra) consists of

— a collection of categories C = (C(n)),>0,

— functors pe: [] e, Clpl = C(Inpt) for ¢ € tr,

— natural transformations (16) for ¢ € tr and for family ¢, € tr |p|, p € v(t),
— and natural transformations for n > 0,

such that
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(i) for every t € tr unitality-1 holds

H Clpl

pEv

(=23

Hpev(t) Lti

id

) Ll

PEV(t) gev(ty)

|

p@(t)“t;
e

ti(ty )p

Ht

1T p| = idm?
pev(t)

lut

——— [ clrl
peEV(1)

(ii) for every ¢ € tr unitality-2 holds

pev(t)

gev(>t) pev(t)

|

— ][ ¢l =

gl —
id H HCH eveor H C(Inpt) &——=|ia =idy;

>
as gev(>t)

Mt

> C

C

——— [ clrl
peV(?)

€(Inpt)

(Inp?)

|

J/M>t

(Inpt) «—

133

(17)

(18)

(iii) for every t € tr, every family ¢, € tr[p|, p € v(t), and all families tJ € tr|q|,
q € v(ty), p € v(t), that is, for any 3-cluster tree (¢; (tp)pev(e); () gev(ty) Jpev(r)), associativity
equation (2) holds, which is equality of two natural transformations

Hpevt quv tp) Mty
HHHCM (®) ()“HH

pev(t) gev(ty) rev(t)

Hzev(t(l)) “tg
AN

1%

pEV(t) q€v(tp)
vy Htp

R

X3 (tp)
» 1 Clebe—=22 T] cil
zev(t(1)) pev(t)
Qe(1);e4)g
Ht(1) Ht
C(Inp &———
Ht(0) ( P
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I I on e T ] e

pev(t) qev(ty) rev(td) peEV(t) qev(tp)
[pevie) @p02), [peve Bty

R
1%

Cloel . 1 |HP€v<t>“I<tp;(tg)q)\ C
| e - II Il ==+ I1 civl

(p,q)ev(t(1)) rev(ty) pev(t) zev(I(tp;(td)q)) pEv(t)

R

QI (tpi(t)g))p

- = Clrnd
[I ci

Ht(0)

(19)

A strong (=weak =pseudo) Cat-operad C is a lax Cat-operad (C, yuy, v, ) such that a, ¢ are
invertible. A strict Cat-operad C is an operad enriched over Cat (of the form (C, uy,id,id)).

Associate with an m-cluster tree, (n;t; (£5,); (tpp0)i -3 (Epyponpm_1)) OF equivalently
with ¢(0) = t(1) —» --- = t(m — 1) — 7[n] from (14) the product

P »-->r)= I I =+ II  Clal

p1Ev(t) p2€vitp;)  Pr—1€V(Epy,...pp o)
For m = 3 the cluster tree is
(t(0) = £(1) = 1(2) = £(3)) = (L(t; (tp); (1)) — 1(t; (tp)) — = 7[n]).
Then equation (19) can be schematically written as

P(t(0) = t(1) —» t — 7[n]) > P(t(1) >+—=n])

IR

14

P(t(0) — =n}¥ Dl

in order to stress cubical origin of this equation.

We have not expanded the definition of a colax Cat-operad. Nevertheless, given a lax
Cat-operad C = (C(n), s, a,t), one can produce the opposite colax Cat-operad CP =
(C(n)°P, u®, P, 1°P). If o and ¢ are invertible then one has also the opposite strong Cat-
operad (C(n)°P, uy®, P~ 1P~ If C is strict then so is C°P.
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Example 3. The discrete category tr equipped with functors I; from (7) and identity
transformations «, ¢ is a strict Cat-operad — strict algebra over the 2-monad T : Cat" —
Cat".

Example 4. Let (V,®!, M\, p) be a lax symmetric monoidal category, which is the opposite
to a colax symmetric monoidal category ([2, Definition 2.5]). Note that a weak(=strong)
monoidal category is the same as an unbiased monoidal category ([12, Definition 3.1.1]). It
gives rise to a lax Cat-operad C with C(n) = V, ut = @"®. VWO - V being the tensor
pI'OdllCt 0. N )\f ®P€V(t) O®V(tp) ®V(It(tp|pEV ’\7V L (tp|pev(t))) N '\7’ where

f =ty [ pev) = [ v(t) = v(©)

peV(t)

is the natural “projection on the index” map, iy =4 - p: Id =i - ¢ - @V =V
for each n € N. The total ordering of v(¢) is the canonical one. The first factor of f is
not necessarily order-preserving, see (9), while the second is. Equality (i), (ii) follow from
properties (2.5.1), (2.5.2) of [2]. Equality (iii) follows from equality (2.5.4) [ibid.], written
for the pair of “projection on the index” maps

| | v(t9) AN | ] v(t).

(P.@)€EUrey(r) v(tr) peEv(t)

For T = T: Cat" — Cat" (co)lax T-morphisms are also called (co)lax Cat-multifunctors.
(An operad is a particular case of a multicategory; a morphism of operads is a particular case
of a multifunctor.) The notion of lax T-morphisms is equivalent to coherent lax morphisms
of strict operads in categories ([3, Definition 4.5.2]). Let us describe it in detail.

Description 2. A lax Cat-multifunctor (=lax T-morphism) f: (B, u, 5,t) — (C, g, v, t)
consists of a morphism of collections f: B — C € Cat" and a natural transformation

H B| ’ pev(t)f H C’p|

peEv(t) st pev(t)

Mtl J/ut

B(Inp t%i (Inpt)

for each tree ¢ € tr such that 2-cluster tree (¢;(¢,))

IT II sle—25% TT T cla—

pev(t) gev(ty) pev(t) gev(ty)
= TT 4ty W [T p,
[1f
Btz Clp|
! Bt (tp) H
zev(I(t;(tp))) " pev(t) & pev(t)
t
R (t:(tp)) H
B(Inp &) >Clhp K
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T II 8ld—M— T T] cla——

pev(t) gev(tp) pEv(t) qev(tp)
>~ o =~ H:utp
I1f
- i1 @t T
sev(I((t))) zev(I(t(ty))) “iltp) pevit
BI(t:(tp) ! (1:(tp)) It (1)) e
B(Inp &= - > C(Inp ——
B(n) — 21— C(n) B(n) —L—— C(n)
d)‘r[n] L L
“T[n]l /”“r[n]l<: l - /“r[n]l [ - j 9
B(n) %ﬁ:&(n) B(n) —F C(n)

where we identify [] ¢ ) X with X.

Description 3. A colaz Cat-multifunctor (=colax T-morphism) f: (B,u:,f,t) —

(C, e, v, 1) consists of a morphism of collections f: B — C € Cat" and a natural trans-
formation

[T &l == T] cio

pev(t) ot pev(t)
e e
LT
B(Inp ti======C(Inpt)

for each tree t € tr such that for each 2-cluster tree (¢; (¢,))

IT II 8ld M= 11 II Cla——

pev(t) gev(ty) pev(t) gev(ty)

Htp >~
[Tw' [Tk,

il rr el
Bl T Cpes o H Clz|
pEV(?) pEV(t) P zev(I(t;(tp)))

Pt ot

1243

KI(ti(tp))

B(Inp & 7 > C(Inp &)——
IT II sle—BY— 1T I <a—

I 1Z§V( ) g€V (ty) N _pGV(t) gev(tp) N
Btitp) I/
Blp - I sl IT <=l . (20
pev(t) Wi (tp)) ev(I(t;(tp))) I (E(tp)) zev(I(t;(tp)))
H BI(t5(tp))
B(Inp &) =Cnp4

7 7 T
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B(n) ! C(n) B(n) —L— C(n)
D N
B(n) st (n) B(n) —5— C(n)

Strong (=weak =pseudo) Cat-multifunctors are colax Cat-multifunctors (f,) with inver-
tible ¢. Strict Cat-multifunctors are those enriched over Cat (of the form (f,id)).

Example 5. For any lax Cat-operad C the category C(1) has a canonical lax monoidal struc-
ture. It is due to the linear trees 6,,, v(6,,) = n. Namely, the tensor product functors are @™ =
po, - C(1)® — C(1) and the natural transformations are \/ = Q,3(0,-1,)je0 - QI QT X,
®€'X; for each f: I — J € Oy, and p = ¢;pp: Id — ®@': C(1) — C(1). The functor
lax-Cat- Op, — lax- mono-Cat,, C — C(1), has a left adjoint € — C = (2,C,0,9,...),
where C(1) = €, C(n) = @ for n # 1, whichever version of morphisms z € {lax, colax, weak,
strict} we choose.

Furthermore, for any lax Cat-operad C the category C(0) is a module over the lax
monoidal category C(1) in the obvious sense. This is due to linear trees without inputs
b =(01—1—---—1|Inph, = @) (1 +m singletons), m > 0. Namely, the action is
@M = pg + C(0) x C(1)™ — C(0), the natural transformations are

QG55(0,-10,(0-1,)je0) * @7et] ®i€f_1in — ®i€mXi7 Xo € C(0), X;eC(1)foriel,
for each f: [I] = 0|/ — 0JJ = [J] € O such that f(0) =0, and ¢j: Id = pg,: C(0) —
C(0). Axioms for module categories and their morphisms can be read from Descriptions 1,
2, 3. Given a module category, one can construct a lax Cat-operad. In fact, the functor
lax-Cat- Op, — lax- mono-Cat-Mod,, C — (C(0),C(1)), has a left adjoint (M, C) — C =
(M, C,2,9,...), where C(n) = & for n > 1.

Example 6. The terminal collection 1 = (1),>0 consisting of terminal (1-morphism) cate-
gories I is a strict Cat-operad.

Definition 10. A (co)operad in a lax Cat-operad C is a (co)lax Cat-multifunctor (=(co)lax
T-morphism) 1 — C.
In detail, a cooperad (C, A;) in a lax Cat-operad (C, uy, o, ¢) is the following data:

— a collection of objects C'(n) € C(n), n > 0,
— morphisms A;: C(Inpt) = wu(Clp| | p € v(t)) € C(Inpt) for t € tr,

such that
(i) for any family ¢ € tr, ¢, € tr|p|, p € v(t), and the tree 7 = L(t, | p € v(t))

(Cn) 25 w(Clp| | p € v(t) 2R, (Clal | g € (L) | p € v(E)

S (Clrl | r e V(T))>: Ay (22)

(ii) for allm € N Arp, = LSMZ C(n) = prp (C(n)).

In the main for us Example 4 a cooperad in a lax symmetric monoidal category V is the
following data:
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— a collection of objects C'(n) € V, n > 0
— morphisms A;: C(Inpt) — @O Cp| € V for t € tr, v(t) = (v(t), ),

such that
(i) for any family ¢ € tr, ¢, € tr|p|, p € v(t), and the tree 7 = L(t, | p € v(t))

(C(n) 25 @revcp| Z702 gpevt) guevn ol A @re @ opr|)= A

(ii) for all n € N Ay = p: C(n) = @'C(n).

Conditions (i), (ii) are precisely equations (2.2.2), (2.2.3) of [15], at least in the case of
strongly symmetric monoidal V. Therefore, in this case the same notion can be presented
as a collection equipped with coassociative counital comultiplication A; for staged trees t
of height 2 [ibid., Corollary 2.2.2]. Other ways to put this definition are equations (2.4.1)—
(2.4.3) [ibid.], Proposition 2.4.4 [ibid.] (a cooperad is a coalgebra in a lax monoidal category
(VN '), or most traditional definition via binary comultiplication(1)—(4) [ibid.].

Equivalence of Definition 10 for operads and more traditional definitions is similar.

Description 4. A Cat-transformation between lax Cat-multifunctors v: (f,¢) — (g,v):
(B, ¢, B, 1) = (C, g, oy 0) is a collection of natural transformations v: f — g: B(n) — C(n),
n € N, such that for any tree t € tr

HmmWﬂqm IT Blol 4 TT clo

pev(t Hg peV(?) pev(t) pev(t)

ot = ¢t
ot It Kt <:f bt
—

B(Inp t%b:@éhfpp t) B(Inpt) iLV C(Inpt)

A Cat-transformation between colax Cat-multifunctors v: (f, ) — (g,¢): (B, s, 5,¢) —
(C, g, v, 1) is a collection of natural transformations v: f — g: B(n) — C(n), n € N, such
that for any tree t € tr

HmmWqu HmW“qu

pev(t m pEV(t) pev(t pEV(t)

5 - vt . (23)
B(Iip @Efﬁ%@ip t) (Illj—ﬁii (Iip t)

Morphisms of (co)operads in a lax Cat-operad are Cat-transformations. For instance,
morphisms of cooperads are those collections of morphisms that agree with comultiplica-
tions Ay.

Example 7. Given a category € we describe its endomorphism strict Cat-operad € = End C.
This Cat-operad is introduced by Borisov and Manin [3, Example 4.2.2]. By definition,
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categories €(n) = Cat(C™, €) consist of functors " — € and natural transformations between
them. Multiplication functors

pe: [] Cat(e?,€) — Cat(e™’ e
peV(t)

are compositions of functors with several arguments. In particular, p.: 1 — Cat(C, @),
* > Ide. Since compositions are strict, we choose a@ = id and ¢ = id.

Example 8. Category of (co)operads in the strict Cat-operad End € is isomorphic to the
category of (co)lax monoidal structures of the category € and their (co)lax monoidal functors
of the form (Ide,¢). In fact, a colax Cat-multifunctor 1 — End C consists of a functor
®™: " — C (the image of x € Ob1(n)) for each n € N and a natural transformation

Pt Pt o !
pev(t)

for each tree t. Condition (21) says that 17" = id for all n € N. Denote p = ¢°: @' — Ide
f > . . 1.
and N = U777 @l & @€ (@€ ) for every map f: I — J € Og. Then (20)
for the 2-cluster staged tree t = (I LN 1), t; = o for i € t(1) = I, t, = 7[I] for
x € t(2) = 1, implies N7 - @1(p) = id, see [2, (2.5.1)]. Relation (20) for the 2-cluster
staged tree t = (I = 1 SN 1), t. = 7[I] for x € t(1) = 1, t, = o for x € #(2) = 1,
implies equation \>* 171 . p = id, see [2, (2.5.2)]. Equation (20) for the 2-cluster staged trees
t=(U LT3, ¢, =7f Y forjetl)=J t. = DK 1) for € t2) =1,
andt = (I 2% K 2 1), 6, = (Flg%k 2 g% 2 1) for k € t(1) = K, t. = 7[K]
for « € t(2) = 1 implies the qualities A - A9 = ¢ = M9 . QFE(N:F79 k=97 k) - where
0 =1(t(t,)) = (I ER N 1), see [2, (2.5.4)]. Thus a cooperad in End € defines
a colax monoidal structure on €. Vice versa, equation (20) allows to express an arbitrary °

f >
via p = ¢° and M = U770,
4.1. Morphism classifiers.

Proposition 6. There are a 2-functor Q.: s T-Alg, — s T-Alg, and a Cat-natural isomor-
phism

ST-Alg,(Q.B,C) = ,T-Alg.(B, C),
which turn Q). into a left adjoint to the inclusion T -Alg, — ;T-Alg,.

Since 2-monad T is finitary, this statement follows from [1, Theorem 3.13]. Also it
follows from [7, Theorem 6.1.1] whose hypothesis is satisfied due to Remark 4. We give
a proof mostly in order to describe colax/strict morphism classifier Q). explicitly.

Proof. Let (B, p,id,id) be a strict Cat-operad. Define .B as the universal strict Cat-operad
generated over T B by the morphisms

&' =E&x,t (Tl (X, [ p € V(1) = (6 (Xp)pevi) (24)

t € tr(n), n € N, X, € ObB|p|, subject to
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— naturality: for all families f,: X, = Y, € Blp|, p € v(¢), t € tr(n), n € N,

t
(Xp)

([n); (X, | p € V(1)) —= (5 (Xp)pevir))

(T[n];ut(prEV(t)))J/ = l(m(fp)pev(t)) (25)

t

(el 1Yy | p € ¥(1)) ~225 (£ (¥, )pets)

— normalisation: for ¢t = 7[n|, X € ObB(n), we have §§([n} = id: (7[n]; prpy (X)) —
(7[n; X);

— multiplicativity: for a 2-cluster tree (n;t;(t,)), t € tr(n), t, € tr|p|, p € v(t), and objects
X1 €Blql, g €v(t,), we have

t

(7[n)s (e, (X | @ € v(8)) | p € V(1)) —— (£ (1, (X} | ¢ € ¥(t)pevir)

(T[n]ﬁt;(tp))l = l(ftp)pEV(t) (26)
€1 (5:(tp))
(T[n]; o) (X2 | g € v(ty),p € v(t) —— (1t () (XD qevi,) )pev))

(where 8 = id for strict B).

There is a canonical colax Cat-multifunctor (e,&): B — @Q.B, e = (B Sy o RN
QCB). Naturality (25) implies that £ is a 2-morphism; normalisation for £ is the same as
relation (21); multiplicativity (26) implies equality (20).

Precomposition with e = (e, §) gives a functor

s T-Alg.(e,C): s T-Alg,(Q.B,C) — (T-Alg.(B,C), (F,id) — (F

g €. (27)

Let us prove that this is an isomorphism of categories. First of all, ;T-Alg (TB,C) =
Cat"(B, C) by enriched in Cat version of Kleisli Lemma 1. Therefore, F‘TB is determined by
G= F{B. The remaining datum

Uiy = Féix,) Fru(Xp [ p € v(1) = m(FX, [ p € v(t))

is precisely the one that makes (G, ) into a colax Cat-multifunctor. In fact, F' applied to
naturality (25) is naturality of ¢; F' applied to normalisation condition ¢ = id, gives
Yl = F¢ll = idp; F applied to multiplicativity (26) is the equation

(Fpuelpe, (X2 | 0 € ¥(t)) | p € V(8) = ju(Fpue, (X2 | g € V(t,)) | p € v(1))

(Fe'ripev(i)
e e, (FX | g € 9(t,)) [ p € v(D))
FEI(t§(tp))
= (Fure,n(Xg [ € v(tp), p € V() —— b)) (FX] | ¢ € v(ty), p € V(1))),

which is (20) for ' = F¢'. Thus ,T-Alg,(e, C) is bijective on objects.

A 2-morphism x: (F,id) — (G,id): (Q.B, u,id,id) — (C, pu,id,id) is taken by
sT-Alg(e,C) to v = e x: (F|,¢) = (G|,¥): (B,p,id,id) — (C, . id,id), ¢ = FE,
Y = G&. In particular, x(rf,,x) = vx for X € ObB(n). To restore x from v we have
to write X(s(x,),eu0) = te(Vx, | p € v(t)): m(FX, [ p € v(t)) = w(GX, | p € v(1)).



HOMOTOPY COOPERADS 141

For an arbitrary collection of natural transformations vx(n) this gives a transformation x
natural with respect to T B. Naturality of y with respect to §pr) is the equation

Fuu(X, | p € v(t) ——— Gu(X, | p € v(t))

T
e (Vxp, [PEV(E))
p(FXy [ pev(t) ———— m(GX, | pev(t)

which is (23) Naturality of x with respect to ('),ev) does not impose extra conditions
since ul(t ) = /L?CB(M%B | p € v(t)). Thus, (27) is bijective on morphisms as well. O

Proposition 7. The embedding 2-functor (T-Alg, — ,T-Alg, admits a left biadjoint
L:,T-Alg, — ;T-Alg, such that the unit of the adjunction B — LB is an equivalence.

Proof. Any strong Cat-operad C is strongly isomorphic to a strong Cat-operad B=(B, y, 3,1d)
which coincides with C as a collection of categories, has the same multiplications u; for
t # 7[n] and such that ji,p,) = Id and ¢;,) = id: Id = prp) for n € N. It suffices to describe
L on the full 2-subcategory of , T-Alg, formed by B’s with the above property. We define
LB as the universal strict Cat-operad generated over TB by the morphisms & from (24)
and their inverse morphisms n' = (£')~!. The morphisms &' are subject to naturality (25),
multiplicativity (26) and normalisation as in the proof of Proposition 6.

There is a canonical strong Cat-multifunctor (e,¢"): B — LB, e = (B — TB —
TB(, n) — LB). The functor e is essentially surjective on objects. Let us construct a one-
sided inverse to it. First of all there is the action 1-morphism p: TB — B, (t; (Xp)pe\,(t)) >
1(Xp | p € V().

Of course, (B — TB L4 B) = Id. Further we extend y to a 1-morphism TB(¢"), 41, — B
from the strict Cat-operad generated over T B by fpr), t # 7[n|. Namely, for any 2-cluster
tree (£ (1))

(€ )pevi s (s (e, (X [ @ € v{E)peviny) = e (1 (X gevien) | 0 € v(1) =
= (I(t; (1p)); (XD gevty) )pevv)) (28)

(where 7" denotes id) is taken to

Brty) : b, (X7 [ g €v(Ep)) [P € V(E)) = pircee,)( Xy | @ € v(Ep),p € V(1))

Note that this recipe includes particular cases in which all but one ¢, are corollas and &'
are identity morphisms. In order to verify that this assignment is correct we check that
defining identities satisfied by (28) are taken to valid equations. (The identities follow
from commutation relations between morphisms (28) in which all but one ¢, are corollas.)
Namely, for each 2—Cluster tree (t; (tp)pev(r)) and each decomposition v(t) = I L J we get
(%) pevity = (E7)peviry - (€7 )yev(l( t:(rp))), Where 7, = t, forp € I, 7, = 7[|p|| for p € J, 7, =1,
for y € J Cv(I(t; (7)) and 7, = 7[|y|] for y € V(I(t (7,))) — J. In detail

(€™ ) pev(n)
= ((t; (e, (X2 | g € v(tp)peviny) —2=2%

Mt [(tp5 (Xg)qGV(tp))pela ( Hp”a (Htp(Xg | qc V(tp)))p6J>]

, (€ ?/’)yEV(I(z (o))
= (1t (7)) (g (X, | 7 € V(T yevtituinyy) —————

)
(e (75 (X reviep) |y € VI (5 (7)) = (10 (1)); (Xaeve) Jpevi) ). (29)
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Here pry y = pfory = (p, q). Respectively, identity By, pev(i 5t;(Tp)pev(t>'ﬁf(t;(Tp));(T;,)yev(,(t;(m))
holds in B(Inpt) due to (19) written for the 3-cluster tree

(t; () pev(y; (Ty)yevrwm))) = (& (Tp)peviey; (1) gev(ry) Jpev(t))s

where t1 =t, =7, forp € J, ¢ € v(7,) = 1 and t = 7[|q|] = forpel, gev(ty). In
fact, B9, _1dand[(7'p,( 1)) =ty forallp e TUJ =v(t).
Slnce B are invertible, the - morphism is extended to TB(&, (§") ™ )izrp) — B. It remains

to check that defining relations for LB are taken to identities valid in B.

(p q)

Naturality. The defining relation of LB

(ftp>pEV(t) ) (I(t; (tp))? ((fg)QEV(tp))pGV(t)) = (t§ (Htp(fg | q € V(tp)))pEv(t)) : (ftp)pEV(t)

is taken to the valid identity

Brty) - 1)) (fi | @ € V(tp),p € v(E)) = pu(pn, (fy | 4 € v(Ep)) | p € V(H)) - Brry)s

which is nothing else but naturality of 3.

Normalisation. We have to check that in the case of all ¢, = 7[|p|] the identity morphism
(£%)pev(r) is taken to the identity morphism. Indeed, By (), = id by (17).

Multiplicativity. The defining relation (26) of LB is taken to the identity id-S3,)
Bit,) - id. Thus LB — B is constructed.

Clearly (B = LB — B) = Id. On the other hand, ¢: (LB — B = LB) — Id;g is a natural
transformation, as seen from naturality relation (25) and from multiplicativity (26). Since
¢ is invertible, the functor LB — B is quasi-inverse to e: B — LB.

Precomposition with the functor (e, &*): B — LB gives a functor

R =,T-Alg,(e,D): ; T-Alg (LB,D) — ,T-Alg,(B,D), (G,id)— (F,¢), F = G‘B,
¢ = (Fu(X, | p € v(t) = Gu(X, | p € v(8) 25 G(X, Dpewty = m(FX, | p € v(£).
Let us prove that it is an equivalence. A quasi-inverse functor
S:,T-Alg,(B,D) — ,T-Alg,(LB,D), (F,¢)+ (G,id), (30)
is constructed as follows: GX = FX, Gf = Ff,
G(§') = ¢" Fu (X, | p € v(t) = m(FX, | p € v(t)). (31)

Since we plan G to be a strict Cat-multifunctor, we conclude that

G((Xp)peviry) = m(FXp [ pev(®)),  G((foeviy) = m(Efy [ p € v(1)),
G((E7)peviv) = (@™ | p € v(t): ma(Fe, (X7 | ¢ € v(ty)) | p € V(1))
= pu(p, (FX L g €v({tp)) [ p € V(1) =t (FXJ | g € v(Ly), p € V(1))

Applying G to relations (naturality, normalisation, multiplicativity) imposed on & gives
valid identities in D. For instance, applying G to multiplicativity (26) gives (20). The
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transformation part of the Cat-multifunctor (G,-) under construction may be chosen equal
to identity morphism since for any 2-cluster tree (t; (¢,))

G(((XD)gevi) Jpevn) = tr ) (FXG [ g € v(tp), p € v(t) =
= pu(pe,(FX2 | q € v(ty) | p € v(t) = e (G((XDgevr,)) | 0 € v(1))-
Obviously, this identity transformation is natural and satisfies necessary conditions, making

(G,id) into a Cat-multifunctor.
Clearly R and S are mutually inverse functors, thereby, isomorphisms of categories. [

Corollary 5. The embedding 2-functor , T-Alg, — ,T-Alg, is a biequivalence with a quasi-
inverse L.

Proof. Assume that B is a strict Cat-operad. Applying (30) to Idg gets a strict Cat-multifun-
ctor I' = S(Idg): LB — B. Explicit description (31) of I' shows that

(B 2% 1B U B) = (1dg, id).
Therefore, I' is an equivalence, quasi-inverse to e. The composition of two equivalences

JT-Alg,(B,D) — ,T-Alg,(LB,D) — ,T-Alg,(B,D), F—F, v,

is the inclusion (and an equivalence). O

Proposition 8. There are a 2-functor Q.: , T-Alg, — ,T-Alg, and a 2-natural equiva-
lence , T-Alg,(Q.B, C) = ,T-Alg.(B,C), which turn Q. into left biadjoint to the inclusion
p T-Alg, — , T-Alg,.

This follows from Hermida’s Theorem 6.1 [7], applicable due to Remark 4. We give
a proof mostly in order to describe colax/pseudo morphism classifier ). and related functors
explicitly.

Proof. Let B, C be strong Cat-operads. We replace them with isomorphic strong Cat-operads
B = (B, i, f,id), C = (C, puy, a,id) as in the proof of Proposition 7. Define @.B to be the
universal strict Cat-operad generated over TB by the morphisms &' from (24) subject to
naturality (25), normalisation and multiplicativity (26) as in the proof of Proposition 6.

There is a canonical colax Cat-multifunctor (e,&): B — Q.B, e = (B iy f: N QCB).
Precomposition with e = (e, ) gives a functor

R = ,T-Alg.(e, C): p"IT-Algp(QCB, C) — ,T-Alg.(B,C), (G,¢¥)— (F,¢), F=G -
o' = (Fu(X, | p € v(t)) = Gue(X, | p € v(1)) 5 G(Xpenin) 2> me(FX, | p € V(1))

Let us prove that R is an equivalence. We construct a quasi-inverse functor
S:,T-Alg.(B,C) — ,T-Alg,(Q:B,C), (F,¢)+— (G,v), (32)
by (31) extended by assignment

G((Xp)pevy) = (FX, [ pev(t), G((fopevi)) = m(Ffy | p € v(1)),
GU(E7)pevtn) = {ue(Fpue, (X2 | g € ¥(t,)) | p € v(1)) 2P0

at;(tp
pe(e, (FXE | q € V(ty)) | p € v(£)) —2 piru, (FXE | g € V(t,), p € v(1)). (33)
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In order to prove that G is a well-defined functor we follow the reasoning from the proof of
Proposition 7 extending G from TB to TB({) and further to .B. It suffices to show that
relations (26) and (29) are taken by G to valid identities. We combine these relations into
a single one: for any 3-cluster tree (; (¢,); (¢]))

(€P)peve) vt
(1 Gy (g X | € (D) | 0 € ¥t pentn) S22 (105 (1)) g (X5, | € (20130
(ﬁ(ﬁtp;(tg))va(t))l = \ll/(ftq)iiz(?;)

(¢! trip)a)) () v(t
(t; (Ml(tp;(tg)q)(Xgr | re V(tg), q e V(tp)))pEV(t)) = (I(t (t ) (tq)) (Xpr);l;ivgt;)rev(tg))

Applying G to this equation we get the diagram

¢> cv
e (g, (s (X3, | 7 € v(19)) | qevim e &S

Mt(F’Btp;(tg)q \pev(t))
po o, (Frag (X, | 7 € V(#) [ 0 € V(1)) | p € (1)
pe(Fiusap (X | 7 € V(t),0 € V(1)) | 9 € v(1) ewt

e (7P Da pev (1)) trsey)) (Frg (X5 [ r e v(td)) [ g € v(t,), p € v(t))
11 (or(eysezy) (F XS | m e v(td), g € v(t,)) | p € v(t)) By (87 [9Ev () pEV (D)
O (i (D)) trsey) (e (F X | r e v(td)) [ g € v(t,), p € v(t))
(e (FXL | € v(t)sg-evltpyp-evtin)
ity (F X | 7 € V(1) - Extipzp et

Due to naturality of ) the two maps in the second column can be replaced with

(e, (8P |qEv (tp)) IpEv(t)) Ut (tp)
L - > i (p, (g (FX 2 [ e v(t)) [ g € v(ty)) | p € v(t)) k2%

The above middle term can be related by the map ji(cv,,qq), | p € v(t)) with

11t (or(eys0)) (F X2 [ rev(td), g e v(ty)) | p e v(t))

in the first column. This decomposes the diagram into a commutative pentagon due to (20)
and a commutative square (19).

The transformation part ¢ of the Cat-multifunctor (G, ) under construction is chosen
as follows for any 2-cluster tree (t;(¢,))

—1
«
t;(tp)

= (G (t; (XD gevt)ev(n) = Hige) (FXE | g € v(ty), p € v(t) —5
:U’t(:utp(FXq g ev(ty) | pevt) = m(Glty; (X eevw,)) | 0 € v(H))). (34)
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The necessary property: for any 3-cluster tree (; (,); (¢7))

~

G ® (ty; (g (X2 | 7 € V(1) NoevrmHo--v(t))
G B((EP) gev sy IPEV(D))
11 (G (tp; (b (X5 | 7 € v(t9)))gevir,)) | P € V(1))

Gi™® (1(ty; (£0)); (X ) Teviipp-e~ete)) ) B (CUED ) gen o) IPEVIE)

11 (G (1 (82)g); (XL, )32 ) | pev(t)
is verified below

11ty (Fragg (X5 | € v(t)) dg-eltpp-e)

H1Gs(tp)) (DP [V (tp) pEV (1))
pe (e, (Frug (X5 [ e v(td) | g € v(tp)) [ p € v(t))

1) (s (F XS | € v(t0)) dg-evltpyrp-ei) ety (8P g€v (1)) Ipev (1))

QI (tp))i(th)d

pe (e, (e (F X5, | 7 € v(8)) [ g € v(tp)) | p € (1))

) (e, 1), IPEV(D)
P

1o (B (FX g | € v(t0),q € v(t,)) | p € V(1))

The top parallelogram commutes due to naturality of ay,,) and the bottom is equation (19).
The functor S is constructed on objects with obvious extension to morphisms.

Clearly RoS = 1d. Let us construct an isomorphism of Cat-multifunctors ¥: Id — SoR.
Start with (G,v) € Ob,T-Alg,(Q.B,D), and denote (H,x) = SR(G,): Q.B — D. Then
H(X,)pevy = (GX, | p € v(t)) and the Cat-transformation V: (G,v¢) — (H, x) is taken
in the form ¢*: G((X,)pev) = 1(GX, | p € v(t)) = H(X,)pevw)- Naturality of ¥ with
respect to the morphism (£7),ey() from (28) is the exterior of

G, (X7 | q € V(tp))pevi) ———— (G, (X2 | g € V(1)) | p € v(#))

G(E™P) pev(t) = pt(GE*PIpev(t))
,d}t
G (X qevity) Jpev(t)) > 11t (G (X geviry) | p € V(1))
I (ti(tp) (20) pe (' [pev(t))

B (GXE | q € v(t,), p € V() €22 1y, (GXE | g € v(t,)) | p € v(E)).

Commutativity is proven via naturality of ¢* and property (20). The family ¥: (G,¢) —
(H, x) is a Cat-transformation again due to (20). Clearly the Cat-transformation W is natural
with respect to change of (G, ). O
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Remark 5. 2-functor (). constructed in Proposition 6 is the restriction of 2-functor (). from
Proposition 8

(s T-Alg, LN sT-Alg, — ,T-Alg)) = (, T-Alg, — , T-Alg, Qe » T-Alg,). (35)

Corollary 6 (to Propositions 6, 8). There are a 2-functor Q;: s T-Alg, — (T-Alg, (resp.
Qi: p T-Alg; — ,T-Alg,) and a 2-natural isomorphism (resp. equivalence)

ST-Alg,(QiB,C) = ,T-Alg,(B,C), resp. ,T-Alg,(Q;B,C) =, T-Alg(B,C),

which turn Q) into a left adjoint (resp. biadjoint) to the inclusion s T-Alg, < (T-Alg, (resp.
p T-Alg, < ,T-Alg). 2-functors Q; agree similarly to (35).

The proof and the construction of @); is by dualising the results for (). using opposite
Cat-operads. Thus, ;B is the universal strict Cat-operad generated over TB by the mor-
phisms &' (t; (Xp)pevy)) = (T[n]; 1e(Xy | p € v(t))) subject to naturality, normalisation and
multiplicativity.

Remark 6. It follows from the proof of Proposition 8 that there is a functor
S: Z—H—'Algc(Ba C) — Z—H—'Algl(Qch C)7 (F7 (b) = (G7 w)a
where B, C are lax T-algebras, G is given by (33) and 9" = () is the inverse to (34).

A non-counital cooperad (C,A;) in a lax Cat-operad (C, uy, cv, ) consists of

— a collection of objects C'(n) € C(n), n > 0,
— morphisms A;: C(Inpt) = . (Clp| | p € v(t)) € C(Inpt) for t € tr o,

such that

(i) for any family ¢t € tr~o, t, € tr|p| \ o, p € v(¢), and the tree 7 = L;(t, | p € v(t))
equation (22) holds;

(ii) for allm € N Arp, = LSMI C(n) = prp (C(n)).

Morphisms of non-counital cooperads are those agreeing with comultiplications A,.

Example 9. Let a strong Cat-operad C consist of additive categories C(n) with countable
colimits, countable products and finite limits and additive functors j,;, which preserve count-
able colimits. We assume that C(n) is idempotent-split (Karoubian). For some results we
assume that

(FF) for any functor F': C' x D — C(n) with filtered countable category C' and finite cate-
gory D the canonical morphism colim¢ limp F' — limp colimg F' is invertible.

This axiom is satisfied for Set, Ab and similar categories but not for the category of topo-
logical spaces ([4, Section 2.13]). For any collection X (n) € C(n), n > 0, define a collection

(LX)m)= ] m(Xlpl|pev(t) € Cn)

tetr(n)~o
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which defines a functor AL: ] .yC(n) — [[,enC(n). It admits a comonad structure,
namely, A: (LX)(n) = [, cipn)o #r(Xv] | v € V(7)) = (LLX)(n) is a family indexed by
T € tr(n) \ o of morphisms

weXlol [vevm) 2 I wXlelloevi) S [ welXJol|vev(n)

diag

f: 7>t€Tr(n) f: 7>t€Tr(n)
— I I M) (Xlal [ a € v(ty),p € V(1))
tetr(n)no (tp)€ll ey tripino
[IIla"!
= 11 1T pur (e, (X gl | g € V(1)) | p € V(1))

tetr(n)o (t)E€lT ey (s trlpl~o

=S I w( JI mXlallgevt) | pevt) = (LLX)(n).
tetr(n)~o

tpetr |p|~o

Notice that for a fixed 7 the number of surjective morphisms f: 7 — ¢ € Tr(n) is finite (the
map f|: v(7) — v(t) is surjective), which explains the second arrow. The third arrow is the
canonical split embedding, coming from the inclusion of indexing sets

7\ surTr(n) — |_| |_| tripl~o, (f:7—>1t) = (£ (L)),
tetr(n)~o pev(t)

described in Proposition 5. The corresponding subtrees ¢, C 7 are determined by v(t,) =
[t (p), p € v(t), and 7 = I(t;(tp)pev(r))- Associativity of the comultiplication A is the
observation that t-partitioning of 7 followed by ¢,-partitioning of the obtained pieces f~1(p)
amounts to I(t; (¢,))-partitioning of 7. The counit of the comonad is given by

(LX) () 27 (X (0) ~— X ().

An example of Il -coalgebra is the cofree I -coalgebra 1LX. Its coaction 6 = (4 -
ing)ietro: LX — 11X is specified by comultiplications for Inpt = Inp 7

Ay

pr (X ol [vev(r)) — Z (e (X o] [ v € (7)) = pren (Xv| | v € v(I(#: (1))

f: T7—>tesurTr
-1
I(t:(tp)) ¢(ing; )
— (1, (X gl | g € ¥(t)) | p € V() E p(1LX)[p| | p € V1)), (36)

where t, = f~1(p).
1l -coalgebras are non-counital cooperads. In fact, a Il -coalgebra §: C' — 1LC' determines
morphisms ¢ € tr(n) \ o

Av=(Cm) S T we(Clol [ € v(m) 2% w(Clol | p € V().
retr(n)~o

Postcomposing the equation 6- A = §- 1.6 with pr, - (pr,, | p € v(t
t € tr~o,t, €trlp|~o, pev(t), weget (22). Equality d -, =1
for all n € N.

)) for an arbitrary family
implies that A, = LSM

Definition 11. A non-counital cooperad (C,A;) is conilpotent if it has a filtration C; C
-+ C Cy C Cpqy C -+ C C by subobjects in ], . C(n) such that colimy.o Cy = C and for

any t € tr with | v(¢)| > k we have At|0k = 0.
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Proposition 9. Assume that all C(n) satisfy axiom (FF). The full subcategory of nuCoop
consisting of conilpotent non-counital cooperads is isomorphic to the category of I -coalge-
bras.

Proof. Let (C,d) be a I -coalgebra. Then pull-backs C}, from

Ch—— @ wlClpl|pev(t)
l _ tetr, 0<| v(t)|<k
. )

C > L C

define the required filtration due to axiom (FF).
If C is a conilpotent non-counital cooperad with the filtration (Cj), then the morphisms
(Atley)izot Crk = i te(Clp| | p € v(2)) are decomposed as

G—2% @l pevt)) — [ mClpl | p e v(t)

tetr, 0<| v(t)|<k A t#o
l I
d
Chpr — B wClplpevt) = [[mClpl | pevt)).
tetr, 0<| v(t)|<k+1 t#0

Passing to the colimit we decompose (A;);xo into

5
C S UC < []m(Clpl | p € v(t)).
t#o
The second arrow is a monomorphism due to axiom (FF). As noticed above, 1 -coalgebra

property of (C,d: C' — 1L.C') is equivalent to equation (22) and normalization condition (ii).
]

For any strong Cat-operad C there is a functor p.: I — C(1), whose image is an ob-
ject 1. This is the unit object of the strong monoidal category C(1). We shall use the same
symbol for the cooperad 1(1) = 1, 1(n) = 0 for n # 1, whose structure maps are canonical
isomorphisms.

Proposition 10 (Proposition 3.2.4 of [15]). The category augCoop of augmented cooperads
n: (1,A) — (C,A) € Coop is equivalent to the category nuCoop.

Example 10. Using (36) and the above proposition we get an augmented cooperad 1, X =
1o 1X,
(LoX)(n) = [T m(Xlpl|pev(t) € Cn),

tetr(n)

with the comultiplications for Inp¢ = Inp 7

pr (X ollvev(r)) — Z (- (X[l [ v € (7)) = prgen (X vl [ v € v(I(t;(t,))))

f:7—teTr

Ay

-1

S (i, (XJal | g € Vi) | p € v(0)) S22 (LX) [p| | p € ¥(1))),

wheret, = f~1(p)ifp € Im(f: v(7) — v(t)) and ¢, = o otherwise. In fact, N = v(¢)—Im f C

u(t).
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4.2. Monoidal category of collections. Let a strong Cat-operad (C, v, t) consist
of categories C(n) with countable coproducts and functors p,;, which preserve countable

coproducts. Denote C = [1,cn C(n). The category C admits a strong monoidal structure

P R neN
oM. Cm — C
(@Xj)w: [T (G0 em, ket(), 1G.E)] =%,
JEmM testr(n,m)

where p = (p1,p2) = (J, k) € v(t) is an internal vertex of ¢. The structure isomorphisms Az
for f: I — J € Og, are the compositions

(@ sz-) I M( I uqevtp<qu|q\>)

jeJ ief-1j testr(n,J) (Ipl,f~1p1)
v(t v(tp) Xt (tp) rev(r
I1 [T =0 () e [T =0 r) =<@X>
testr(n,J) tpestr(|pl,f~1p1) Testr(n,l) i€l

In fact, 7 = I(t; (tp)pev(r)) Tuns over all staged trees from str(n, ). At last,

p=(X(n) i> forfn) (X H L] (X @X

t=7[n]

Operads in C are the same as algebras in (E, ©) similarly to [13, Section 5.9.2]. Also the
category of coalgebras in (C,®) is contained in the category of cooperads in C.
4.3. Conilpotent augmented cooperads. Let a strong Cat-operad (C, uy, o, ¢) consist

of the abelian categories C(n) with countable limits and colimits and additive functors i,
which preserve countable colimits. Denote by ¢(n,...,n;) the two-level tree

44+ Lk31)=m |
k
where ¢g7'(j) = n; for all j € k. Let us consider an augmented cooperad (C, A, ) in the
Cat-operad C such that for all n > 0 the morphism

(Asrn): C0) = T st (C(m), -, Clng), C(R))
ni+--+ng=n
factors through the coproduct
A: C(n) - H Ht(na,..., nk)(c(nl)> S C(nk)> C(k)) = (O © C)(n)
ni+-+ng=n

followed by the extension-by-0 embedding. The augmentation n: 1 — C' € Coopc is reduces
to the coalgebra morphism 7(1): 1 — C(1) € C(1), since n(m) necessarily vanishes for
m # 1. Similarly to [13, Section 5.8.6] we define another morphism

313 C(n) — H Mt(ng,..., nk)(C(Th),,C(nk),C(k)),

—(C) 2 gy (C(n), 1) LI (O, C(1))) - in,

(n)
~ o~ 11y (M1 (1),in) n .
—(C(n) = puerny ("1, C () = gy ("C(1), C () - iy
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The trees occurring here are

The restriction of Al to 1 </, C(1) vanishes by definition. Define also A° = Id —¢ -
C — C and inductively for m > 1

A"L* Al
Am _ <C A 1> C@m A ®1C®(m71)\ CQ(m+1)>.

Following [13, Section 5.8.6] we define the coradical filtration
l1=FKCcHCC---CF,CcCc---CC (37)

by subobjects F,C' = Ker(A™: C' — C®mD) In the case where C'(0) = 0 and the canon-
ical morphism colim,, F;,C — C' is invertible, Loday and Vallette call such an augmented
cooperad conilpotent.

Proposition 11. If a non-counital cooperad C' in C with C’(Q) = 0 is conilpotent in the
sense of Definition 11 then the augmented cooperad C = 1 & C' is conilpotent in the sense
of Loday and Vallette.

Proof. Assume that C' is conilpotent in the sense of Definition 11 and C'(0) = 0. Having
coradical filtration (37) define

F,,C = Ker(F,,C — C ——1).
Then F,,C =1® F,,C and we have to show that

FCcECc---cFE,Cc---cC

i§ an exhaust_ive filtration. Let us compare it with the exhaustive filtration C,cCycC---C
Cp C -+- C C given by
tetr
Cn = ﬂ Ker A,
[ v(t)|>m
We have
n; >0 B
Alow= 2 Dirm: Cn) = (COCO)n),
ni+--+ng=n
n; >0
R ni+--+ng=n B - -
Al Cn) — Z At(nl ----- n )N Ht(ng,e.., nk)((C(i))f*Dld) C(n) = (C o C)(n),
NcC{iek|n;=1}
N#£k
where

i) = {77(1), for v € N, (38)

id, for i ¢ N.
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The formula for Al allows to compute

A, =(C 2000t cococ 2O | AROL gum (oma)),
tesstr(n,m+1)
Am‘é(n) - Z Apn - e ((€(1) )ier(r), (id)veneq))

Nc{iet(1)||t; ti|=1}
Vpet(2) Npty 'p

where ((i) is given by (38). Clearly
tesstr(n,m+1)
ch(n) = Ker Am‘@(n) = ﬂ Ker AtN ‘C’(n)
Nc{ict(1)||t] 1i|=1}

vpet(2) Npty 'p

This is bigger than C,, ﬂTEtr Ker A, since |v(tN)| > m + 1. O

|v(T)|>m+1

Remark 7. For the cooperad C' = ILX the subcollection F5C is strictly bigger than Cs. I
guess the two conilpotency conditions are not equivalent.

5. Homotopy cooperads.

Remark 8. If B = 1 is the terminal Cat-operad (1(n) = I is the one-morphism category)
then the strict Cat-operad Q.1 is TR?, where the strict Cat-operad TR is introduced by
T. Leinster in [12, Section 7.3]. The bijection on morphisms assigns to (£),ev@) € Q.1 the
morphism [t; (¢,)] = (¢;(¢,))?: t — I(t;(t,)) € TR, As noticed in Corollary 3 a pair of
composable morphisms f, g of Tr identifies with a 3-cluster tree

UEt):er)

(0 15 (01 = |08 ) (1) === 10 (1) 55 1.

whose composition is (¢; (1(ty; (t8)gev(t,)) )pev(ry) € Tr. On the other hand,

q (44
(Epev(v) - (€7) papevtuiy = (€ @Waeen)) g

since for all p € v(t) we have &% - (£%),ev(,) = ¢Htilth)eevt) due to (26). Thus the compo-
sitions in Q.1 and TR? agree. Obviously the operadic multiplications p; agree as well.

Let C be a strong Cat-operad. According to Proposition 8, a cooperad C': 1 — C is iso-

morphic as a colax Cat-multifunctor to 1 = TRP L, C for some strong Cat-multifunctor D.
Moreover, the category of cooperads in C is equivalent to the category of strong Cat-
multifunctors TR® — C.

Definition 12. A homotopy cooperad in C is a lax Cat-multifunctor TR®® — C. The
category of homotopy cooperads in C is the category , T-Alg, (TR, C).

D. Borisov and Yu. I. Manin ([3, Section 4.6]) studied generalized operads, i.e. lax Cat-
multifunctors C — &, concentrating on the case in which C is a collection of groupoids and
€ is the endomorphism Cat-operad of a category €, see Example 7.

As noticed above, the category of ordinary cooperads in C admits a full and faithful
functor to the category of homotopy cooperads in C.
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Description 5. A homotopy cooperad (C,x) in C consists of

— an object C(t) € C(n) for each t € tr(n);
— morphism C[t; (t,)]: C(t) = C(I(t; (t,))) for each 2-cluster tree (¢;(t,));
— morphism x(¢; (¢,)): (C(t,) | p € v(t)) = C(I(¢; (t,))) for each 2-cluster tree (t;(t,));

such that

o Cis a functor Tr* — C;
« naturality of y holds: for each 3-cluster tree (¢; (t,); (%))

(t:(tp))
1 (C(ty) | p € v(t)) - » O(1(t; (1))
ut(C[tp;(tZ)qJPGV(t))J( = J{C(I(t;[tp;(tg)]))
q X(t§(l(tp§(tg)q))p) q
e (C U (tps (8)q)) | p € V(1) ——————— C(I({t; (L(tp; (£3)q))p))

« normalization: for each t € tr(n)

(C() — pepC (1) ™ 0 (1)) = i,

[

o multiplicativity holds: for each 3-cluster tree (; (t,); (1))

i, (C83) | g € v(ty) | p € v(t)) LSO (012, (12),)) | p € (1)

Olt;(tp)l = \[X(t (tpi(t3)q

(Ut (4)3)
Haee (C(E0) | 4 € v(ty), p € V(1) — CI(t; (8); (1)) (39)

Description 6. A morphism of homotopy cooperads

f(Cx) = (G7)
in C consists of a family of maps f(t): C(t) = G(t) € C(n) for ¢t € tr(n), n € N, such that
« naturality holds: for each 2-cluster tree (¢; (¢,))

C(t) UGN

C[té(tp)}l = \[G[t?(tp)}

CI(t; (1)) L2 1 (1,))

« multiplicativity holds: for each 2-cluster tree (t;(t,))

1w (Ct,) | p e v(t)) LSO (G (1,) | p e vit))

x(t;(tp))J/ = lv(t;(tp))

CI(t; () — 2D 1t (1,))

As was shown in the proof of Proposition 8, the functor S from (32) in

Coop =, T-Alg,.(1,C) 5 p T-Alg,(Q.1,C) — ,T-Alg;(Q.1,C) = hCoop
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is a split embedding and an equivalence. The second functor is a full embedding. The
functor S takes a cooperad (C,A;) to the following homotopy cooperad (SC, x):

SC(t) = m(Clpl | p € v(t)),
SCt; (tp)] = < Clp| | p € v(t)) M)

1, (Clal | g € V() [ p € v(E) 22 pya (Clal | @ € v(E,), p € V(E)),
X(t; (tp) = e,y (e, (Clal | g € v(ty)) | p € V(t)) — fr(ee,) (Clal | g € v(ty), p € v(1)).

\_//-\

Remark 9. Let C be a strong Cat-operad. A homotopy cooperad (G, ) is isomorphic to
a one of the form (SC,x) for some cooperad C' in C if and only if all v are invertible.
In fact, S is an equivalence of the category of cooperads in C and the category of strong
Cat-multifunctors TR® — C.

Example 11. Let C be a strong Cat-operad. Let C' = 1.,X be the cooperad of Example 10.
Then G = (SC, x) is specified by

G(t) = Mt( I wnXIrllrevn) e V(ﬂ)

TpEtr p|

=~ 1 mlun (Xl | rev(n) [pev(),

()€l lpev (e tr Ipl

G“;“p”:<G<t>=ﬂt< 1 %<X|r||TEV<TP>>|peV<t>) el et}

TpEtr [p|

“t( T s (X[ [ revt)) laev(t)) Ipe v(t)) =
(tg)Equv(tp> tr|q|

Qt;(tp)

g (e, (Lo X)lal | g € v(ty)) | p € v(t))
paceste) (LX) [0l [ v € v(I( (1)) = G(I(L: (4)))),

where A, is a matrix, whose entry is a, (tq) if 7, = I(tp; (t]),) and vanishes otherwise.
Furthermore,

X(t; (tp)) = )+ b, (Lo X)lgl | ¢ € V(1)) | p € V(1))
= puese) (Lo X)g] [ ¢ € v(ty), p € v(1)).

Example 12. Let C be a strong Cat-operad. We shall provide with a non-trivial example
of a homotopy cooperad. For a collection X (n) € C(n) define

(LoX)(t) = I1 g (i, (X | 7 € v(7)) | p € (1))

(mp)Ellpevq) trlpl

oo T (Xl v € v(7)),

f:7—>teTr
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(Lo X)[t; (t,)] = (Lo X)(t) = I1 e (pir, (X | [ 7 € V(7)) | p € v(t))

(Tp)enpev(t) tr|p|

e rlpevio) [T ep)
BT PRV H it (e, (s (X |7 | 7 € v(#2)) | g € v(tp)) | p € V(1)) 12 %ilte),

(tg)GHpEV(t) HqEV(tp) trq|

11 pre ey (g (X[ | € v(t0)) | g € v(ty),p € v(1)) = (Lo X)(I(t; (t0))))-
(tg)enpev(t) HqEv(tp> tr|q|

Here the first map postcomposed with pr(gye equals pr .9y, He(c, tq) | p € v(t))

(LX)t ()] prog = ([T sl (XIr |7 € v(m) [ p € V(D)

(mp)Ellpev ) tr Ipl

pa (L)) (X[ L€ V(I (3 (t9),))) | 0 € V(1))

lpev(t))

PL(1(tpi(t1)g))p
_

Ht (az (tq

g (pi, (g (X[l | 0 € V(t2)) | q € v(t,)) | p € v(0))
28 e (g (XTo] |0 € ¥(82)) | 4 € ¥(ty),p € ¥(1) ).

Furthermore, for any 2-cluster tree (¢; (,)) the morphism

X6 () (Lo X)(t) [ p € v(1) = (LX) (I(E; (1))
is determined by its composition with the following projection
X(; () - Prgays = <,Ut< 1T pe, (g (XIr [ m € v(t7) [a € V() | p € V(t)>

(tg)enqe\;(tp) trq|

pe(priay, [pev(t))
- e (g, (g (X Ir| | € V() [ g € v(1)) | p € v(1))
Qs (tp)

P i (g (X | 7 € V(#)) | q € V(ty),p € V(D)) ).
Let us introduce the endofunctor I, : [L20C(n) = [0 Cn):

(LoX)(n) = (LX) (r[n]) = [T (Xl | € v(1)).

tetr(n)

Let us verify the conditions of Description 5. In order to be a functor 1L X: Tr°® — C
has to satisfy

(Ao X)[g

N—
—
=
o
o
-
-
—~
=
[e]
s
—~
~
—~
\S‘F
—~
~
=
~—
—
~
L)
N—
N—
N—
~—

(LoX)[fg] = (LoX)(t) (Lo X)(I(t; (1))
for fg = (I(t; (t,); (1) L 1(t; (1,)) 2 1),
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which is expanded to the exterior of the commutative diagram

Hat:(t )
p,a,r i(tp
T sl e X|r] ~
v t
(r)elller ) rlg
lHui’ugpAp
PAV II
v,y LA p,4,T 8 ) D,q T
I e 11 s sy Xls| ——Ff— b, unXIr]
TEV q EV(t )
(Tp)eanV(t)tI'|p| (t9.,) Hqgvgii’“”” (rg)en;fev(tg’ tr|q|
_ pEV(t) ) 1
H#prJ( J{Hﬂg(g;(tp))“‘g
p
H p JH el Loy H P r s, X
He M@y g T ’ For(es(ep)) Freg g 4 1
rev(td) rev(td)
(t5,r)El e ey tr 1] (2 ,)e HqEv(tp tr|r|
pEV(t) pEV(t)
11 par 1@
Fr(ei(e,); Et%)’*t%*jé 7
rEv(t
(tgm)enqev(t )tr|r|
pev(t)
t
Here - = 7" _ = 1, (_| p € v(t)). Squares commute due to (19).

Let us prove the naturality of x: for each 3-cluster tree (t;(t,); (t)) the square below
commutes

TN | TR e I X
(TIL?])Equv(tp) tr|q| (r )GHZE:’/(?))) tr|q|
uf(JloX)[tp;(tZ)q]J( l(loxxt: [tp3(t2)al)
,U%? H N?&p;(tq) [Ltq X| ’ x (; I(tpv(tp) )p) H M;Io(q,( ) (tg))utsngB’
(19, el b (19, ElTer ) e
pEV(t)

Whiskering the equation with the projection pr for arbitrary (¢7) we rewrite it as

HE P 03(65 107 Qi (tp)
b q s p,r)r))a p
<Mt | | MtpMTgX’3| ,Utﬂtpﬂl(t (3 )r X’ | —

(T;g)enqev(tp) tr |CI|

H o) %0 a 4y9
tp)) gty ) 1&tp))i(tp)p  pog,r

i) M .00 X 13 s Prattes, X 18| == 1G5 D) iy, X|sl)
prr(f(tg;(z “t”tp t‘? st

)
= (up i 15 X |s] S MR X |8]
: (t5(t8.)r)
(Tﬁ)el'lqev@p) tr g

P
(0%
ot tpi(td)q

s o s Ct5(I(tp3(th)q)) e
Nfﬂgpﬂtgﬂtng|S| Mfﬂ?(tp;(tg)q)ﬂtng|S| — Mp(z (tp):(t2)) ,utq Xls |>

Commuting the second and the third arrows in the left hand side, we reduce the equation
o (19).
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The normalisation property holds due to (18).
The multiplicativity holds: for each 3-cluster tree (; (t,); (t1))

15X (tp3(t3)q) K s

Mfﬂgp H Mﬂﬂﬂ Xls| ————— H M?(tp;(tg)q)utg,rX|S|

q

(thT')EHTEV(tg) tr ‘7"| (th)EHZE:EEP) tr |7‘|
at;(tp)l lX(ﬂ(I(tp;(tg))q))p)
7 XL ()3 (t5)5) o

H1 (1)) I1 pyapigy X|s| =" 11 HiGigey ey e, X151

(t3.r) €l cvqugy tr 17l (t2, T)en;;(“’) tr |r|

peEV(t)

Whiskering this equation with the projection P for arbitrary (t7,) we get an equivalent

D, 4 t(tp) p,q r 8
<:U’t:utp II Mtq,utq X|s| — H1t(t,)) MtZMtZ,rX|S|
(tp:r) €l evg) trIrl (881 )€l ] ey (eg) tr 7|
p,q
Prei(ep)) Pred ) XI(t3(tp)); (49)
! o p,q r 8 i\ep))iltp)p - p.q,T
—_ X|s| ——= X
(s Highes X 18] ey M, X |s )
p,q
Hi By PTd Mt tps(td)
_ p,q r oS P D, pi(tplg
= (i, [] fya by X || ———= py i, s piyy X|s| ———

(tp.r) €] ey eg) tr Ir]
(e (44
P q,r s 6 (tpi(tp)a)p. p.g,r
%
“t“I(tp;(tZ)q)“tZ,r‘<|5| For ety ):(1)) pg X|s ).

Commuting the first and the second arrows at the left hand side, we reduce the equation to
(19). Thus 1L, X is indeed a homotopy cooperad.

Remark 10. Passing to the opposite Cat-operad one defines the notion of homotopy operad
and constructs an example of such without the assumption that u,; preserves colimits.

Proposition 12. Let C be a strong Cat-operad, C' be a cooperad in C, and X = (X(n))n>o,
X(n) € ObC(n). Then the map

hCoopc(SC, ILOX) — H C(n)(C(n),X(n)), frf, fln)=

neN
. el P 1 1
= (C(n) = pepC(n) === (LX) (r[n]) == pirimppte X (0) = g X (n) = X (n))
is bijective.

Proof. Without loss of generality we may assume that - hrfn] = Idcny and ¢ = id: Id — pirpy
for n > 0. First we prove that a morphism f: SC — 1L, X € hCoopc is determined by

= (Cn) TR (LX) (n) 7 X (n),
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For an arbitrary ¢ € tr(n) consider the commutative diagram

f(r[n]) "
C(n) » (Lo X)(n) »
SC((b: t|—>r[n])°p) (LoX)((: t—>r[n])°P)J( Pre
' f@) 5 PT(7[|p|}|pev(t))
SC(t) » (Lo X)(2) (X pl [ p e v(t))
x(t;(T[pIJ)p)”id x(t;(T[lp])p)T
ue(F(llpl) Ipev (D)) . He(Prr1p) [PEV(E))

(Lo X)|p| | p € ¥t

1e(Clpl | p € v(2))
It follows that

(C(n) L0 (LX) () 25 (Xl | p € V(1))
= (C(n) *C=I 5C(1) = u(Clpl | p € v(B) “PHEOL y(Xp | p € v(2).

Denote by A(n): C(n) = (1L,C)(n), n > 0, the unique collection of maps such that A(n) -
pr, = A, = SC((>: t — 1[n])P): C(n )—> SC(t) for all t € tr(n). Thus,

(Lof)(n) , o
f(r[n]) = (C(n) 20 (L0 (n) 22 (Lo X)(n)).
At last, the left bottom square of the diagram gives
t(f(r v(t -
1) = (SC(t) = u(Clp| | p € v(t)) LR (L X)p| | p € v(2)
X(t§(7—[|p”)?) (ILQX)(t)>
PA| - P(Lof)l - t(rllpl)p)
= (SC(t) = i Clp| “Z 2 (ALoC)lp| P (AL x) p XTI (LX) (1)), (40)

This proves the injectivity of the map f — f. The bijectivity will be proven once we show
that for an arbitrary f: C(n) — X(n) € C(n), n > 0, formulae (40) define a morphism of
homotopy cooperads f: SC — 1L, X.

The naturality of this f means the commutativity of the exterior of the following diagram
for an arbitrary map (¢; (t,)): s = I(t; (¢,)) — t € Tr

PAlp] P(dLo f)lpl A &lely)
1 C|p| — =g . C) | < P il (LX) |p] — 2 (L X)(2)

p P
va Pt PY(1(tpi(t2)9))p He PY(1(tpi(12)0)p
A (L)) Pr(1(tp:(t)2))
’ b,z vl piltp P
—_—
1y Aty A »Cl7| Mtﬂ](tp (t2)9) <5 T2
‘uI(t (tq)q)fl 2|
—1 p_ —1
PO 49y B L
b a A n 7y g S pp ”q
, ;
pi i, Cla| ————— py i, s Clr| > g M, s X |7 (LoX)t:(t)]
Xt;(tp) . QA5 (tp)
Hitg flr
v,,T v,,T
Qi(ty) tg s Clrl > pghtya X|r] <
‘u,gAtq pr(tq)q
g 78 pr(tg)g, 75 pr(ﬂ)q re
pyAly| s ([lvl])w)

v i Yo f)lol m
vl (L C) o] —— e (AL X)) R, (L X)(s)
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Notice that v € v(s) is identified with some pair (p, q), p € v(t), ¢ € v(t,). In order to prove
the commutativity of the exterior, whisker it with pr;s ¢ (directed inward as in the diagram).
Then this diagram is partitioned into commutative cells and the naturality is proven.

The multiplicativity of f is expressed by the exterior of the following diagram commuta-
tive for each 2-cluster tree (¢;(t,)) with s = I(¢; (¢,))

pi i, Algl

~ Y x(tps(rllal])q) ~
Wil Clal —"— pfpd (1L.C)lq] pe i (Lo X)|q| == p (Lo X)(t})

at;(tp)l at;(tp)l at;(tp)l J{X(ﬁ(tp))

wiud, (Lo f)lal
—r 5

v sAlv| Yo f)lv| vy h (si(r[lvl])v) ~
WCl] —2 (1Ol — > 1y (Lo X)[o] — » (Lo X)(s)
The rightmost square is a particular case of multiplicativity (39) for the 3-cluster tree
(t: (tp); (T [|q|])gggp ). Therefore, f is a morphism of homotopy cooperads. O

Introduce the filtration try(n) = {t € tr(n) | | v(t)| < K} of the sets tr(n). We say that
a morphism f: 1L, X — Y has a finite support if for all n € N there is K € N such that

f)=((LX)n) = [ wxlpl —> [ wxiel > JT wxipl 25 vm)).

tetr(n) tetr g (n) tetri(n)

Proposition 13. Let a morphism f: 1LoX — Y have finite support. For each t € tr define
a morphism f(t): (L. X)(t) — (L.Y)(¢t) € C(Inpt) by the equations for a 2-cluster tree
(t; (1))

f(t)- DT lpev(t) = Z ( H i b, X |

(tg)enpev(t) quv(tp) tri |q| (Tp)EHpExz(t) tr |p|

Pr(r(tp:(td)g))p
_—

“t /Jt t ft
Mtﬂ[(tp () XW —> Mtﬂt thX‘U| —5 Nt/ltpquw

Then the family f . 1, X — 1Y is a morphism of homotopy cooperads.

Proof. We have to prove the naturality of f , expressed by the following square for each
2-cluster tree (t; (t,))

; 1® P
(Lo X)(2) (Lo Y)(2)
uloX)[t;(tp)}l = l(itoynt;(tpn

(LX) (8 (1)) L2 (T vy (18 (1)) —25 gt ity X ol

The commutativity of the square is equivalent to the equality of two compositions in this
diagram for all (¢]) € [[,c ) [ ev(,) trlal- Both compositions here are sums over (t1") €

[Lev Hoeviry) Hrev(tq) try |r| of expresswns that begin with

D (1(ty1(12)g: (537 V1)), I1 o, XL = 1 1 0 sy X 2
()€l lpev ) tr Ipl
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The remaining two compositions are presented as the exterior of the following diagram

71

o, (D)5 n HERTG (19 T
D,z prplap Y4 D, QT v p:\"p’a D,z
Ft (a5 (42) 5657 )7 X|Z| ’ Mtl"t_[(tp;(tg)q)utg’rX|v| Ntﬂ](tp;(tg)q)y|z|
|
~1 p -1 —1
pr tpi (15t )r))g b e He e pitd)q o p e tpi(t9)q
ety @t odm, p,a,r v Mokt LT p,a v
N N
HE 1 ey, X V] i Wi g pyar X || > g g py Y|
aﬁ(tp)J( Qt;(tp) Qs (tp)
P,q -1 P,q r
e () %4819 Frle(ep)y M Fogo
P,q v ’ piltp )r P,q rov L 2 P:q r
Hirts(a,n M) X 0] it HeghigX V] st Y 7]

Let us verify the multiplicativity of f , which is the commutativity of the following square
for each 2-cluster tree (t;(¢,))

It Mg)f(tp) T
i (Lo X) (2p) p (oY) (2p)
x(t;(tp))l = J{x(t;(tp))
~ FIE ) Pradd  p, v
(LX)t (,))) 2 (LY )8 (1)) =5 i, i X o

Equivalently, two compositions in this diagram are equal for all () € [[,c, [ ey, tr lal-

Both compositions here are sums over (t1") € [],cv) [ievi,) [revin) trx 7 | of expressions
that begin with

HE PY((135027),)), - H H M?,,M%XM — Mfﬂ?pﬂ?(tg;(tgv")T)X’U|~
(Tg)enq@(tp) trq|

The remaining two compositions are presented as the exterior of the following diagram

-1
U?ngatg:(tg,r)r v q uf“(tzp/‘:gftgv’" » g

’ T v T
141 B, 17 g1 g2y X V] i P, Mg g X 0] > g b, g Y|

O‘t;(tp)l = at?@p)l = laﬁ(tp)
P,q -1 'u‘I(t(t ))uqfqr

By X0 e XJo) ZEEE
Friesep)) sy 1V Frs(a,) P g X [0 Pories(ep)) g

Thus f is a morphism of homotopy cooperads. O
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