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ON SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

OF ARBITRARY FAST GROWTH IN THE UNIT DISC
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disc, Mat. Stud. 45 (2016), 3–11.

We investigate fast growing solutions of linear differential equations in the unit disc. For
that we introduce a general scale to measure the growth of functions of infinite order including
arbitrary fast growth. We describe the growth relations between entire coefficients and solutions
of the linear differential equation f (n) + an−1(z)f

(n−1) + . . .+ a0(z)f = 0 in this scale and we
investigate the growth of solutions where the coefficient of f dominates the other coefficients
near a point on the boundary of the unit disc.

1. Introduction. Let us consider the linear differential equations of the form

f (k) + ak−1(z)f
(k−1) + . . .+ a0(z)f = 0, (1)

where k ≥ 2, a0 ̸≡ 0. There has been an increasing interest in studying the growth of analytic
solutions of (1) in the unit disc D = {z : |z| < 1}. For example, finite order solutions have
been studied in [3], [13], [9], [19], [1], [15], [17], [4] as well as solution of finite iterated order
in [10], [2].

For r > 0 ∈ D define the iterations exp1 r = er, expn+1 r = exp(expn r), n ∈ N, and
log+ = max{log x, 0}, log+1 r = log+ r, log+n+1 r = log+ log+n r, n ∈ N.

For p ∈ N ∪ {0} the p-th iterated order of an analytic function f in D is defined by

σM,p(f) = lim
r→1−

log+p+1 M(r, f)

− log(1− r)
,

where M(r, f) = max{|f(z)| : |z| = r}.
If f is meromorphic in D, then the p-th iterated order is defined by

σp(f) = lim
r→1−

log+p T (r, f)

− log(1− r)
, p ∈ N.

where T (r, f) is the Nevanlinna characteristic of f .

Remark 1. Note that σM,p(f) = σp(f) if p > 1 and σ1(f) ≤ σM,1(f) ≤ σ1(f) + 1.
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In the case of solutions of finite order the following results are known.

Theorem A ([5]). Let σM,0[aj] = pj for j = 0, . . . , k − 1. If

max
0≤j≤k−1

{
pj

k − j
− 1

}
=

p0
k

− 1 ≥ 1,

then all nontrivial solutions f of (1) satisfy σM,1 =
p0
k
− 1.

Theorem B ([13]). Let a0, . . . , ak−1 be analytic functions in D. If max
1≤j≤k−1

{αj} < α0, where

αj = lim
r→1−

log( 1
2π

∫ 2π

0
|aj(reiθ)|

1
k−j dθ)

log 1
1−r

, j ∈ {0, . . . , k − 1},

and α0 ≥ 1. Then every nontrivial solution of (1) satisfies σ1(f) = α0 − 1.

The following result of J. Heittokangas and al. classifies the growth of finite n-th iterated
order solutions of (1) in terms of the growth of the coefficients.

Theorem C ([10]). Let n ∈ N and α ≥ 0. All solutions f of (1), where the coefficients
a0(z), . . . , an−1(z) are analytic in D, satisfy σM,n+1(f) ≤ α if and only if σM,n(aj) ≤ α
for all j = 0, 1, . . . , k − 1. Moreover, if q ∈ {0, . . . , k − 1} is the largest index for which
σM,n(aq) = max0≤j≤k−1{σM,n(aj)}, then there are at least k−q linearly independent solutions
f of (1) such that σM,n+1(f) = σM,n(aq).

If the last coefficient a0 in (1) dominates, one can state more on the order of solutions.

Theorem D ([10]). Let n ∈ N. If the coefficients a0(z),. . . , ak−1(z) are analytic in D such
that σM,n(aj) < σM,n(a0) for all j = 1, . . . , k − 1, then all solutions f ̸≡ 0 of (1) satisfy
σM,n+1(f) = σM,n(a0).

The latter results were generalized on so called [p, q]-orders (see e. g. [19], [1], [15], [17]).
But definition p-th iterated order as well as [p, q]-order has the disadvantage that it

does not cover arbitrary growth, i. e. there exist functions of infinite p-th iterated order for
arbitrary p ∈ N. In the complex plane this case is described in Example 1 in [6].

As well as in the complex plane we consider a more general scale in the unit disc, which
does not have this disadvantage.

Let φ be an increasing unbounded function in the unit disc D. We define the orders of
the growth of an analytic in D function f by

σ̃0
φ[f ] = lim

r→1−

φ(M(r, f))

− log(1− r)
, σ̃1

φ[f ] = lim
r→1−

φ(logM(r, f))

− log(1− r)
.

If g is meromorphic, then the orders are defined by

σ0
φ[f ] = lim

r→1−

φ(eT (r,g))

− log(1− r)
, σ1

φ[f ] = lim
r→1−

φ(T (r, g))

− log(1− r)
.

Let Φ be the class of positive unbounded increasing functions φ such that φ(t) satisfies

∀c > 0:
φ(ect)

φ(et)
→ 1, t → ∞. (2)
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Remark 2. The regularity condition 2 implies the growth condition φ(r) = O(log r).

Indeed, if c > 1, then φ(ect) < cφ(et) for all t ≥ R. If t ≥ R is fixed, there exists
a natural number N such that cN ≤ t ≤ cN+1. Using the inequality above inductively, we
get φ(et) = O(t), and a change of a variable r = log t finishes the proof. On the other hand
([6, Proposition 7], see (6)) implies that (∀ε > 0) eφ(r) = o(r), r → ∞. For example, the
function φ(r) = logj r, where j ∈ N \ {1} belongs to the class Φ, and log r ̸∈ Φ.

Our results do not intersect with that from [4].
The following theorem generalize Theorem D and is a counterpart of a result from [6]

proved for entire functions.

Theorem 1. Let φ ∈ Φ, and a0, . . . , ak−1 be analytic functions in D such that

σ̃0
φ[a0] =: σ̃0 > max{σ̃0

φ[aj], j = 1, . . . , k − 1}.

Then all solutions f ̸≡ 0 of (1) satisfy σ̃1
φ[f ] = σ̃0.

Remark 3. If the coefficient a0 is such that logM(r, a0) = O(log 1
1−r

), then σ̃0
φ[f ] = 0

so conditions of Theorem 1 could not be satisfies. On the other hand, the conclusion of
Theorem 1 is not true in this case as well (see Theorems A and B).

Theorem 2. Let φ ∈ Φ, and a0, . . . , ak−1 be analytic functions in D such that

σ0
φ[a0] =: σ0 > max{σ0

φ[aj], j = 1, . . . , k − 1}.

Then all solutions f ̸≡ 0 of (1) satisfy σ1
φ[f ] ≥ σ0.

In general, the conclusion of Theorem 2 is weaker than that of Theorem 1. Nevertheless,
Theorem 2 is sharp as can be seen from the following example.

Example 1. Consider the equation f (k)+a0f = 0, where k ∈ N, a0 is analytic and such that
σ1(a0) = σM,1(a0) = σ > 0 (see [16]). It follows from Theorem 1, Remark 1 and Proposition 1
that σM,2(f) = σ̃1

φ[f ] = σ = σ1
φ[f ] = σ2(f) for φ(r) = log2 r and any nontrivial solution f .

There are many generalizations of Theorem D based on the observation that it is sufficient
to require that the coefficient a0 dominates on a subset of D which is relatively large (see
also [12]). For example, the following statement has appeared recently in [8].

Theorem E ([8], Th. 2). Let a0(z), . . . , ak−1(z) be meromorphic functions in the unit disc D.
If there exist ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

∑k−1
j=1 |aj(z)|+ 1

|a0(z)|
expn

(
λ

(1− |z|)µ

)
= 0,

with z ∈ γ, where n ≥ 1 is an integer and λ > 0, µ > 0 are constants, then every solution
f(z) ̸≡ 0 of the differential equation (1) satisfies σn(f) = ∞, and furthermore σn+1(f) ≥ µ.

Remark 4. Hypothesis of Theorem E do not provide that a solution is meromorphic in D,
so it is a priori assumed that f is meromorphic.

The generalization of Theorem C is formulated as follows
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Theorem 3. Let a0(z), . . . , ak−1(z) be analytic functions in the unit disc D. If there exist
ω0 ∈ ∂D and a curve γ ∈ D tending to ω0 such that

lim
z→ω0

∑k−1
j=1 |aj(z)|+ 1

|a0(z)|
φ−1

(
log

1

(1− |z|)µ

)
= 0, z ∈ γ, (3)

where φ ∈ Φ, µ > 0 is real constant. Then every solution f of the differential equation (1)
such that

log
1

1− r
= o(log T (r, f)), r ↑ 1, (4)

satisfies σ1
φ[f ] ≥ µ.

2. Preliminaries. To prove the main results we need several auxiliary results.
The following lemma is a consequence of Theorem 3.1 ([3]). The set E ⊂ [0, 1) in the

lemma and thereafter is not necessarily the same at each occurrence, but it is always of finite
logarithmic measure on [0, 1), that is

∫
E

dr
1−r

< ∞.

Lemma. Let f be a meromorphic function in the unit disc D such that f (j) does not vanish
identically. Let ε > 0 be a constant; k and j be integers satisfying k > j ≥ 0 and d ∈ (0, 1).
Then we have∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤
((

1

1− |z|

)2+ε

max

{
log

1

1− |z|
, T (s(|z|), f)

})k−j

, |z| ̸∈ E,

where s(|z|) = 1− d(1− |z|). Moreover, if σ1(f) < ∞, then∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ ( 1

1− |z|

)(k−j)(σ1(f)+2+ε)

, |z| ̸∈ E.

Proposition 1. Let φ ∈ Φ and f be an analytic function in the unit disc D. Then

σ1
φ[f ] = σ̃1

φ[f ].

Proof. By the monotonicity of the function φ and by the known inequality [7, Chap. 7]

T (r, f) ≤ log+ M(r, f) ≤ R + r

R− r
T (R, f), 0 < r < R,

we have σ1
φ[f ] ≤ σ̃1

φ[f ]. Now we prove the converse inequality. We choose R = 1+r
2

and
estimate the value

φ (logM(r, f)) ≤ φ

(
R + r

R− r
T (R, f)

)
≤ φ

(
4

1− r
T

(
1 + r

2
, f

))
. (5)

Now we estimate the value φ(logM(r,f))

log 1
1−r

on the set F = {r ∈ [0, 1) : log 4
1−r

< log T (r, f)}.
In view of (5) and the definition of the class Φ we have for r ∈ F , r → +∞

φ(logM(r, f))

log 1
1−r

≤ φ(elog
4

1−r
+log T( 1+r

2
,f))

log 1
1−r

≤ φ(e2 log T ( 1+r
2

,f))

log 1
1−r

≤

≤ (1 + o(1))φ(T (R, f))

log 1
1−R

≤ σ1
φ[f ] + o(1).
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Since, ε is small in this case the required inequality is proved.
We then estimate φ(logM(r,f))

log 1
1−r

on the complement to the set F that is, on the set {r ∈
[0, 1) : log 1

1−r
≥ log T (r, f)}. Here we use the fact that φ(et) = to(1) when t → +∞ ([18]).

φ(logM(r, f))

log 1
1−r

≤
φ
(
elog

4
1−r

+log 4
1−r

)
log 1

1−r

≤
(
2 log 4

1−r

)o(1)
log 1

1−r

= o(1),

as r → 1−. Hence, lim
r→1−

φ(logM(r,f))
− log(1−r)

= σ̃1
φ[f ] ≤ σ1

φ[f ], which completes the proof of Propo-

sition 1.

We need some properties of functions from the class Φ.

Proposition 2 ([6], Prop.7). If φ ∈ Φ, then

∀m > 0, ∀k ≥ 0:
φ−1(log xm)

xk
→ +∞, x → +∞; (6)

∀δ > 0:
logφ−1((1 + δ)x)

logφ−1(x)
→ +∞, x → +∞. (7)

Proposition 3. Let f(z) be an analytic function in the unit disc D with 0 < σ̃0
φ[f ] =: σ̃0 <

∞. Then, for any 0 < µ < σ̃0, there exists a set F ⊂ [0, 1) of infinite logarithmic measure
such that for all r ∈ F one has φ(M(r, f)) > µ log 1

1−r
.

Proof. The definition of the upper limit implies that there exists an increasing sequence
{rm}, rm → 1− as m → ∞ satisfying

1−
(
1− 1

m

)
(1− rm) < rm+1, lim

m→+∞

φ(M(rm, f))

log 1
1−rm

= σ̃0.

Then, there exists an integer m0 such that for m ≥ m0 and any ε (0 < ε < σ̃0 − µ)

φ(M(r, f)) > (σ̃0 − ε) log
1

1− rm
. (8)

Since µ < σ̃0 − ε, there exists an integer m1 such that for m ≥ m1 we have(
σ̃0 − ε

µ
− 1

)
log

1

1− rm
> log

1

1− 1
m

,
σ̃0 − ε

µ

log 1
1−rm

log 1

(1− 1
m)(1−rm)

> 1. (9)

By (8) and (9) for m ≥ m2 = max{m0,m1} and for any r ∈ [rm, 1 −
(
1− 1

m

)
(1 − rm)],

we obtain

φ(M(r, f)) ≥ φ(M(rm, f)) > (σ̃0 − ε) log
1

1− rm
=

σ̃0 − ε

µ
µ
log 1

1−rm

log 1
1−r

log
1

1− r
≥

≥ σ̃0 − ε

µ

log 1
1−rm

log 1

(1− 1
m)(1−rm)

µ log
1

1− r
> µ log

1

1− r
.

Set F =
∪∞

m=m2
Im, where Im =

[
rm, 1−

(
1− 1

m

)
(1− rm)

]
. Then

ml(f) =
∞∑

m=m2

∫
Im

dr

1− r
=

∞∑
m=m2

log

(
m

m− 1

)
= ∞.



8 N. S. SEMOCHKO

Proposition 4. Let f(z) be an analytic function in the unit disc D with 0 < σ0
φ[f ] =: σ0 <

∞. Then, for any 0 < β < σ0, there exists a set Ft ⊂ [0, 1) of infinite logarithmic measure
such that for all r ∈ Ft one has φ(eT (r,f)) > β log 1

1−r
.

Proposition 4 can be proved similar to Proposition 3 (cf. analogous statement in [6]).
3. Proofs of the main results.

Proof of Theorem 1. First, we prove that σ1 := σ1
φ[f ] ≥ σ̃0. Suppose the contrary. Let f ̸≡ 0

be a solution of the equation (1). In accordance with (1) we have

|a0(z)| ≤
∣∣∣∣f (k)(z)

f(z)

∣∣∣∣+ |ak−1(z)|
∣∣∣∣f (k−1)(z)

f(z)

∣∣∣∣+ . . .+ |a1(z)|
∣∣∣∣f ′

(z)

f(z)

∣∣∣∣ . (10)

Since aj are analytic functions in D which satisfy σ̃0
φ[aj] < σ̃0, j = 1, . . . , k − 1, there

exists a constant β1 > 0 such that σ̃0
φ[aj] < β1 < σ̃0, j = 1, . . . , k − 1. Hence

M(r, aj) < φ−1

(
β1 log

1

1− r

)
, r → 1−. (11)

Without reducing the generality, we can suppose, that

σ1 < β1 < σ̃0 (12)

holds. We apply Proposition 3 to the coefficient a0(z) and a constant β2, where β1 < β2 < σ̃0.
Hence, we have

M(r, a0) > φ−1

(
β2 log

1

1− r

)
, r ∈ F, r → 1−, (13)

where F is a set of infinite logarithmic measure on [0, 1).
The lemma implies the following estimate∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤
((

1

1− |z|

)2+2ε

T (s(|z|), f)

)k−j

, |z| ̸∈ E, (14)

where E is a set of finite logarithmic measure.
Since F\E is a set of infinite logarithmic measure, there exists a sequence of points

|zn| = rn ∈ F\E tending to 1. Set s(|zn|) = Rn. We have 1− |zn| = 1
d
(1−Rn), d ∈ (0, 1).

Using (11), (13), (14) and our assumption (12), we obtain from (10)

φ−1

(
β2 log

d

1−Rn

)
≤

((
d

1−Rn

)2+2ε

T (Rn, f)

)k

+

+

(( d

1−Rn

)2+2ε

T (Rn, f)

)k−1

+ . . .+

(
d

1−Rn

)2+2ε

T (Rn, f)

×

×φ−1

(
β1 log

d

1−Rn

)
≤ k

((
d

1−Rn

)2+2ε

T (Rn, f)

)k

φ−1

(
β1 log

d

1−Rn

)
≤

≤ k

((
d

1−Rn

)2+2ε

φ−1

(
β1 log

1

1−Rn

))k

φ−1

(
β1 log

d

1−Rn

)
≤

≤
(
φ−1

(
(β1 + ε) log

d

1−Rn

))k+2

≤ φ−1

(
(β1 + 2ε) log

d

1−Rn

)
, Rn ∈ F\E, Rn → 1−.
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The latter two estimates follow from the properties (6) and (7). By arbitrariness of ε and
the monotony of the function φ−1 we obtain that β1 ≥ β2. This contradiction proves the
inequality σ̃0 ≤ σ1.

To prove the converse inequality we need the following theorem.

Theorem F ([11]). Let f be a solution of (1) in DR = {z : |z| < R}, where 0 < R ≤ ∞, let
nc ∈ {1, . . . , k} be the number of nonzero coefficients aj, j = 0, . . . , k− 1, and let θ ∈ [0, 2π)
and ε > 0. If z0 = νeiθ ∈ DR is such that aj ̸= 0 for some j = 0, . . . , k − 1, then, for all
ν < r < R,

|f(reiθ)| ≤ C exp

(
nc

∫ r

ν

max
j=0,...,k−1

|aj(teiθ)|
1

k−j dt

)
, (15)

where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,...,k−1

 |f (j)(z0)|
(nc)j max

n=0,...,k−1
|an(z0)|

j
k−n

 . (16)

Since σ̃0
φ[aj] < σ̃0, j = 1, . . . , k− 1 and from the definition of the σ̃0

φ-order it follows that
for arbitrary j ∈ {1, . . . , k − 1} |aj(z)| < φ−1

(
(σ̃0 + ε) log 1

1−r

)
, |z| = r, r → 1−.

Theorem F implies for ν < r < R = 1

|f(reiθ)| ≤ C exp

(
nc

∫ r

ν

max
j=0,...,k−1

|aj(teiθ)|
1

k−j dt

)
≤

≤ C exp

(
nc

∫ r

ν

max
j=0,...,k−1

(
φ−1

(
(σ̃0 + ε) log

1

1− t

)) 1
k−j

dt

)
≤

≤ C exp

(
ncφ

−1

(
(σ̃0 + ε) log

1

1− r

))
≤ exp

(
φ−1

(
(σ̃0 + 2ε) log

1

1− r

))
,

where C is a constant which satisfies (16).
From the last inequality in view of arbitrariness of ε we obtain σ1 ≤ σ̃0.

Proof of Theorem 2. Denote σ1 := σ1
φ[f ]. Suppose the contrary. Let f ̸≡ 0 be a solution of

the equation (1). Since aj are analytic functions in D with satisfy σ0
φ[aj] < σ0, j = 1, . . . , k−1,

then there exists a constant β1 > 0 such that σ0
φ[aj] < β1 < σ0, j = 1, . . . , k − 1. Hence

T (r, aj) < logφ−1

(
β1 log

1

1− r

)
, r → 1−. (17)

We can suppose that σ1 < β1 < σ0 holds. We apply Proposition 4 to the coefficient a0(z)
and a constant β2, where β1 < β2 < σ0. Hence, we have

T (r, a0) > logφ−1

(
β2 log

1

1− r

)
, r ∈ Ft, r → 1−, (18)

where Ft is a set of infinite logarithmic measure on [0, 1). Let E be a set of finite logarithmic
measure on which the estimate (14) holds. Since Ft\E is a set of infinite logarithmic measure,
there exists a sequence of points |zn| = rn ∈ Ft\E tending to 1. Set s(|zn|) = Rn. We have
1− |zn| = 1

d
(1−Rn), d ∈ (0, 1).
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Using (17), (18), (14) and our assumption, we obtain from (10)

logφ−1

(
β2 log

d

1−Rn

)
≤ T

(
Rn,

f (k)

f

)
+ T (Rn, ak−1) + T

(
Rn,

fk−1

f

)
+ . . .+

+T (Rn, a1) + T

(
Rn,

f ′

f

)
+ log k ≤ k logφ−1

(
β1 log

d

1−Rn

)
+ logM

(
Rn,

f (k)

f

)
+

+ logM

(
Rn,

f (k−1)

f

)
+ . . .+ logM

(
Rn,

f ′

f

)
+ log k ≤

≤ k logφ−1

(
β1 log

d

1−Rn

)
+ k log

((
d

1−Rn

)2+2ε

T (Rn, f)

)k

+ log k ≤

≤ k log

kφ−1

(
β1 log

d

1−Rn

)((
d

1−Rn

)2+2ε

T (Rn, f)

)k
 ≤

≤ k log

kφ−1

(
β1 log

d

1−Rn

)((
d

1−Rn

)2+2ε

φ−1

(
β1 log

d

1−Rn

))k
 ≤

≤ log

(
φ−1

(
(β1 + ε) log

d

1−Rn

))k+2

≤ logφ−1

(
(β1 + 2ε) log

d

1−Rn

)
,

where Rn ∈ Ft\E, Rn → 1−.
The latter two estimates follow from the properties of the function φ. By arbitrariness of

ε and the monotony of the function φ−1 we obtain that β1 ≥ β2. This contradiction proves
the inequality σ̃0 ≤ σ1.

Proof of Theorem 3. Let f ̸≡ 0 be a solution of (1). We rewrite (10) in the form

1 ≤ 1

|a0(z)|

∣∣∣∣f (k)(z)

f(z)

∣∣∣∣+ ∣∣∣∣ak−1(z)

a0(z)

∣∣∣∣ ∣∣∣∣f (k−1)

f(z)

∣∣∣∣+ . . .+

∣∣∣∣a1(z)a0(z)

∣∣∣∣ ∣∣∣∣f ′(z)

f(z)

∣∣∣∣ . (19)

By the assumption (3), we deduce that

lim
z→ω0

∣∣∣∣aj(z)a0(z)

∣∣∣∣φ−1

(
log

1

(1− |z|)µ

)
= 0, (20)

Hence there exist ε1 > 0, ε2 > 0 such that for z ∈ γ holds∣∣∣∣aj(z)a0(z)

∣∣∣∣ ≤ ε1

φ−1
(
log 1

(1−|z|)µ

) , 1

|a0(z)|
≤ ε2

φ−1
(
log 1

(1−|z|)µ

) . (21)

Substituting (21) and the estimate of the logarithmic derivative of the lemma, where s(|z|) =
1− d(1− |z|) and d ∈ (0, 1), E is a set of finite logarithmic measure, we obtain

1 ≤ C

(1− |z|)k(2+2ε)φ−1
(
log 1

(1−|z|)µ

)(T (s(|z|), f))k, |z| ̸∈ E,

or
(1− |z|)k(2+2ε)φ−1

(
log

1

(1− |z|)µ

)
≤ C(T (s(|z|), f))k, |z| ̸∈ E, (22)
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where C > 0.
Set s(|zn|) = Rn. We have 1− |zn| = 1

d
(1−Rn), d ∈ (0, 1). In view of (4) we deduce from

(22) that φ−1(log( d
1−Rn

)µ) ≤ (T (Rn, f))
k( d

1−Rn
)k(2+ε) ≤ (T (Rn, f))

k+ε. Hence, log( d
1−Rn

)µ ≤
φ(C(T (Rn, f))

k+ε) ≤ φ(T (Rn, f))(1+o(1)). The last inequality implies the required inequali-
ty.
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11. J. Heittokangas, R. Korhonen, J. Rättyä, Growth estimates for solutions of linear complex differential

equations, Ann. Acad. Sci. Fenn. Math., 29 (2004), №1, 233–246.
12. J.-M. Huusko, Localization of linear differential equations in the unit disc by a confornal map, Bull.

Aust. Math. Soc., 93 (2016), 260–271.
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