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For a time fractional diffusion equation on bounded cylindrical domain the inverse problem
is studied. It consists of the determination of a pair of functions: a classical solution of the second
boundary value problem for such an equation and unknown, depending on all variables, minor
coefficient in the equation under some integral type over-determination condition. Conditions
of the existence and uniqueness of a solution are found.

1. Introduction. Equations with fractional derivatives are appearing in the study of ano-
malous diffusion and other important processes. Conditions of the classical solvability of the
first boundary value problem to the equation

Dβ
t u(x, t)− a2∆u(x, t) = F0(x, t), a2 = const > 0

with regularized (Caputo–Djrbashian) fractional derivative ([1, 2])

Dβ
t u(x, t) =

1

Γ(1− β)

∫ t

0

uτ (x, τ)

(t− τ)β
dτ =

1

Γ(1− β)

[ ∂
∂t

∫ t

0

u(x, τ)

(t− τ)β
dτ − u(x, 0)

tβ

]
, β ∈ (0, 1)

were obtained in [3, 4]. There were proved the existence and uniqueness theorems and the
representations (in terms of the Green vector-function) of classical solutions of fractional
Cauchy problems to equations of the kind in [5]–[7].

Inverse problems to such equations appear in many regions of industry. Some inverse
boundary value problems to diffusion-wave equation with different unknown functions or
parameters were investigated, for example, in [8]–[15]. Comparison on the well posedness
of the inverse problems to the equation of fractional diffusion and corresponding ordinary
diffusion equation was considered in [16].

In this note we find conditions of the existence and uniqueness of a solution of the inverse
problem for a time fractional diffusion equation on bounded cylindrical domain consisting
of the determination of a pair of functions: a classical solution of the second boundary value
problem for such an equation and unknown, depending on all variables, minor coefficient in
the equation under some integral type over-determination condition.
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We study the inverse boundary value problem

Dβ
t u− a(x, t)∆u− b(x, t)u = F0(x, t), (x, t) ∈ Ω0 × (0, T ], (1)

∂u(x, t)

∂νx
= 0, (x, t) ∈ Ω1 × (0, T ], (2)

u(x, 0) = F1(x), x ∈ Ω̄0, (3)∫ t

0

∫
Ω1

K(x, t, z, s)u(z, s)dzds = F2(x, t), (x, t) ∈ Ω̄0 × (0, T ] (4)

where β ∈ (0, 1), Ω0 is a boundary domain in Rn, n ≥ 2 with a smooth boundary Ω1,
ν(x) = (ν1(x), . . . , νn(x)) is the unit vector of the interior normal to the surface Ω1 at the
point x ∈ Ω1, where a, F0, F1, F2, K are given functions. We use the Green function method
in the study of this problem.

Note that some inverse boundary value problems on determination of a pair (u, b) with
b = b(t) for ordinary diffusion equation (β = 1) were studied in [17, 18] and other papers,
where the existence and uniqueness theorems were proved. In [9] the unique solvability of the
inverse problem on determination of a solution u of an abstract fractional Cauchy problem
in a Hilbert space X and a minor coefficient b(t) was studied under the over-determination
condition (u, φ0) = h, where (u, φ0) is the inner product of elements u, φ0 ∈ X, φ0 is a given
element of X, h = h(t) is a given function.

2. Green vector-function and auxiliary results. Assume that Qi = Ωi× (0, T ], i = 0, 1,
Ω1 is a surface of the class C1+γ, γ ∈ (0, 1), C(Q̄0) is the space of continuous functions
on Q̄0, Cγ(Ω̄0) is the space of Hölder continuous functions on Ω̄0, Cγ(Q̄i) (Cγ(Qi)) is the
space of Hölder continuous functions in space variables x ∈ Ω̄i for all t ∈ [0, T ] (t ∈ (0, T ])
and jointly continuous in (x, t) ∈ Q̄i ((x, t) ∈ Ω̄i × (0, T ]), i = 0, 1, C2,β(Q̄0) = {v ∈
C(Q̄0)|∆v,Dβ

t v ∈ C(Q0)}, C1
2,β(Q̄0) = {v ∈ C2,β(Q̄0)|∂v∂ν ∈ C(Q̄1)}, D(R) is the space of

indefinitely differentiable functions compactly supported in R, D′(R) is the space of linear
continuous functionals (distributions) over D(R), D′

+(R) = {f ∈ D′(R) : f = 0 for t < 0}.
We denote by f∗g the convolution of distributions f and g, use the function fλ ∈ D′

+(R):

fλ(t) =

{
θ(t)tλ−1

Γ(λ)
, λ > 0,

fλ(t) = f ′
1+λ(t), λ ≤ 0

where Γ(z) is the Gamma-function, θ(t) is the Heaviside function, understand the derivative
in D′(R)-sense. Note that fλ ∗ fµ = fλ+µ.

We suppose that a ∈ Cγ(Q̄0), min
(x,t)∈Q̄0

a(x, t) = a0 > 0.

Definition 1. A pair of functions (u, b) ∈ Mβ(Q0) := C1
2,β(Q̄0) × Cγ(Q̄0) satisfying the

equation (1) on Q0 and conditions (2)–(4) is called a solution of problem (1)–(4).

Let (Lregv)(x, t) ≡ Dβ
t v(x, t)− a(x, t)∆v(x, t), (x, t) ∈ Q0.

Definition 2. A pair (G0(x, t, y, τ), G1(x, t, y)), such that for rather regular g0, g1 there
exists a classical (from C1

2,β(Q̄0)) solution

u(x, t) =

∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)g0(y, τ)dy +

∫
Ω0

G1(x, t, y)g1(y)dy, (x, t) ∈ Q̄0 (5)



DETERMINATION OF A MINOR COEFFICIENT 59

of the problem
(Lregu)(x, t) = g0(x, t), (x, t) ∈ Q0, (6)

∂u(x, t)

∂νx
= 0, (x, t) ∈ Q̄1, u(x, 0) = g1(x), x ∈ Ω̄0, (7)

is called a Green vector-function of the problem (6), (7).

By Definition 2

(LregG0)(x, t, y, τ) = δ(x− y, t− τ), (x, t), (y, τ) ∈ Q0

where δ is the Dirac delta-function,

(LregG1)(x, t, y) = 0, (x, t) ∈ Q0, y ∈ Ω0, G1(x, 0, y) = δ(x− y), x, y ∈ Ω0.

The Green vector-function (G0
0(x, t, y, τ), G

0
1(x, t, y)) of the first boundary value problem

with homogeneous boundary condition is defined similarly, and it follows from the maximum
principle ([3]) that G0

0(x, t, y, τ) > 0 for (x, t), (y, τ) ∈ Q0, G0
1(x, t, y) > 0, (x, t) ∈ Q0,

y ∈ Ω0.

Lemma 1. The following relations hold

G1(x, t, y) =

∫ t

0

f1−β(τ)G0(x, t, y, τ)dτ, (x, t) ∈ Q̄0, y ∈ Ω0,

G0
0(x, t, y, τ) ≤ G0(x, t, y, τ), (x, t), (y, τ) ∈ Q̄0,

and therefore,

G0(x, t, y, τ) > 0 for (x, t), (y, τ) ∈ Q0, G1(x, t, y) > 0, (x, t) ∈ Q0, y ∈ Ω0.

Proof. The needed relations we prove by the scheme of corresponding results in [19]. The
needed inequality between G0

0 and G0 follows from the maximum principle ([3]–[5]). Indeed,

G0
0(x, t, y, τ) = G(x, t, y, τ) + z0(x, t, y, τ), G0(x, t, y, τ) = G(x, t, y, τ) + z(x, t, y, τ),

where G(x, t, y, τ) is the fundamental function of the operator L = f−β(t) ∗ −a(x, t)∆,
z0(·, ·, y, τ), z(·, ·, y, τ) are solutions (from C2,β(Q̄0)) of the equation Dβ

t u − a(x, t)∆u = 0,
(x, t) ∈ Q0 for all (y, τ) ∈ Q0, such that z0(x, t, y, τ) = −G(x, t, y, τ), ∂

∂νx
z(x, t, y, τ) =

− ∂
∂νx

G(x, t, y, τ) for (x, t) ∈ Q̄1, (y, τ) ∈ Q0. Therefore, G0
0(x, t, y, τ) − G0(x, t, y, τ) =

z0(x, t, y, τ)− z(x, t, y, τ) belongs to C2,β(Q̄0) as a function of (x, t) for all (y, τ) ∈ Q0,

∂z0(x, t, y, τ)

∂νx
− ∂z(x, t, y, τ)

∂νx
=

∂G0
0(x, t, y, τ)

∂νx
> 0, (x, t) ∈ Q̄1, (y, τ) ∈ Q0.

As in [20, 2.5] we obtain

G0
0(x, t, y, τ)−G0(x, t, y, τ) = z0(x, t, y, τ)− z(x, t, y, τ) ≤ 0 for all (x, t), (y, τ) ∈ Q̄0.

Since z0(x, t, y, τ)− z(x, t, y, τ) = −G0(x, t, y, τ) ̸= 0 for (x, t) ∈ Q̄1, (y, τ) ∈ Q0, one has
G0(x, t, y, τ) > 0 for all (x, t), (y, τ) ∈ Q0.
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The existence of a Green vector-function of second boundary value problem (6), (7) can
be proved by the Levi method (see [6, 20]), also as in [15] for the case a = a(t).

We use the notation

(G0φ)(x, t) =

∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)φ(y, τ)dy, (G1φ)(x, t) =

∫
Ω0

G1(x, t, y)φ(y)dy.

As in the cases of the time fractional Cauchy problem ([6, 7]), the first boundary value
problem ([14]) and the second boundary value problem for ordinary diffusion equation ([20])
we obtain the following result.

Theorem 1. If g0 ∈ Cγ(Q̄0), g1 ∈ Cγ(Ω̄0), supp g1 ⊂ Ω0 then there exists a unique solution
u ∈ C1

2,β(Q̄0) of problem (6), (7) which is defined by

u(x, t) =
(
G0g0

)
(x, t) +

(
G1g1)(x, t), (x, t) ∈ Q̄0. (8)

3. The existence and uniqueness theorems. Let the following assumptions hold:
(A1) F0 ∈ Cγ(Q̄0), F1 ∈ Cγ(Ω̄0), suppF1 ⊂ Ω0, ∥F1∥C(Ω̄0) > 0,

(A2) F2 ∈ Cγ(Q̄0), F2(x, 0) = 0, min
(x,t)∈Q̄0

t−p|F2(x, t)| ̸= 0 for some p ∈ (0, 1− β),

K(x, t, z, s) ((x, t) ∈ Q̄0, (z, s) ∈ Q̄1) is a nonnegative function, Hölder continuous
with respect to x ∈ Ω̄0 and such that

K(x, t, z, s) ≤ A0(t− s)α, x ∈ Ω̄0, z ∈ Ω1, 0 ≤ s < t ≤ T, (9)

where A0 = const > 0, p+ β
2
− 1 < α ≤ −β

2
,

(A3) F1(x) ≥ 0, x ∈ Ω̄0, F2(x, t) ≥ 0, (x, t) ∈ Q̄0,
or

F1(x) ≤ 0, x ∈ Ω̄0, F2(x, t) ≤ 0, (x, t) ∈ Q̄0.
Note that there exists the convolution f−α−β

2
(t) ∗ F2(x, t) from Cγ(Q̄0) under assump-

tions (A2).
It follows from Theorem 1 that under assumptions (A1) the solution u ∈ C1

2,β(Q̄0) of
second boundary value problem (1)–(3) satisfies the integral equation

u(x, t) =
(
G0

(
bu+ F0

))
(x, t) +

(
G1F1)(x, t), (x, t) ∈ Q̄0, (10)

and conversely, any solution u ∈ C(Q̄0) of integral equation (10) belongs to C1
2,β(Q̄0) and is

a solution of problem (1)–(3).
Substituting the right-hand side of (10) in condition (4) we obtain∫ t

0

ds

∫
Ω1

K(x, t, z, s)
[ ∫ s

0

dτ

∫
Ω0

G0(z, s, y, τ)(b(y, τ)u(y, τ) + F0(y, τ))dy+

+

∫
Ω0

G1(z, s, y)F1(y)dy
]
dz = F2(x, t), (x, t) ∈ Q̄0,

that is ∫ t

0

dτ

∫
Ω0

K0(x, t, y, τ)v(y, τ)dy = h(x, t), (x, t) ∈ Q̄0, (11)

where

v(y, τ) = b(y, τ)u(y, τ) + F0(y, τ), (y, τ) ∈ Q̄0,
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h(x, t) = F2(x, t)−
∫
Ω0

K1(x, t, y)F1(y)dy, (x, t) ∈ Q̄0,

K0(x, t, y, τ) =

∫ t

τ

ds

∫
Ω1

K(x, t, z, s)G0(z, s, y, τ)dz,

K1(x, t, y) =

∫ t

0

ds

∫
Ω1

K(x, t, z, s)G1(z, s, y)dz.

It follows from the properties of the H-functions of Fox ([21]) and the results [5, 6, 7],
that for the case n ≥ 3 the following estimates hold:

G0(x, t, y, τ) ≤
C

a0(t− τ)|x− y|n−2
,

G1(x, t, y) ≤
C

a0tβ|x− y|n−2
when |x− y|2 < 4a0(t− τ)β,

G0(x, t, y, τ) ≤
C(t− τ)β−1

|x− y|n
·
( |x− y|2

4a0(t− τ)β

)1+ n
2(2−β)

e
−c

(
|x−y|2

4a0(t−τ)β

) 1
2−β

,

G1(x, t, y) ≤
C

|x− y|n
·
( |x− y|2

4a0tβ

) n
2(2−β)

e
−c

(
|x−y|2

4a0t
β

) 1
2−β

if |x− y|2 > 4a0(t− τ)β,

where C, c are positive constants. Using them and (9) for the case n ≥ 3 we obtain∫ t

τ

ds

∫
Ω1

K(x, t, z, s)G0(z, s, y, τ)dz ≤

≤
∫ t

τ

[ ∫
{z∈Ω1:|y−z|<2

√
a0(s−τ)β/2}

K(x, t, z, s)G0(z, s, y, τ)dz+

+

∫
{z∈Ω1:|y−z|>2

√
a0(s−τ)β/2}

K(x, t, z, s)G0(z, s, y, τ)dz
]
ds ≤

≤ A0C

∫ t

τ

(t− s)α
[ ∫

{z∈Ω1:|y−z|<2
√
a0(s−τ)β/2}

dz

a0(s− τ)|y − z|n−2
dz+

+

∫
{z∈Ω1:|y−z|>2

√
a0(s−τ)β/2}

(s− τ)β−1

|z − y|n
( |z − y|2

4a0(s− τ)β

)1+ n
2(2−β)

e
−c
(

|z−y|2

4a0(s−τ)β

) 1
2−β

dz
]
ds ≤

≤ C1

∫ t

τ

(t− s)α
[ 1
√
a0(s− τ)

∫ 2
√
a0(s−τ)β/2

0

dr+

+(s− τ)−1− nβ
2(2−β)

∫ diamΩ1

2
√
a0(s−τ)β/2

r
n

2−β e
−c
(

r2

4a0(s−τ)β

) 1
2−β

dr
]
ds ≤

≤ C2

∫ t

τ

(t− s)α(s− τ)
β
2
−1
[
1 +

∫ ∞

1

η
n−β
2 e−cηdη

]
ds ≤ k̂(t− τ)α+

β
2 ,

and similarly, ∫ t

0

ds

∫
Ω1

K(x, t, z, s)G1(z, s, y)dz ≤

≤ A0C

∫ t

0

(t− s)α
[ ∫

{z∈Ω1:|y−z|<2
√
a0sβ/2}

dz

a0sβ|y − z|n−2
dz+
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+

∫
{z∈Ω1:|y−z|>2

√
a0sβ/2}

1

|z − y|n
( |z − y|2

4a0sβ

) n
2(2−β)

e
−c
(

|z−y|2

4a0s
β

) 1
2−β

dz
]
ds ≤

≤ C3

∫ t

0

(t− s)α
[ 1
√
a0sβ

∫ 2
√
a0sβ/2

0

dr + s−
nβ

2(2−β)

∫ diamΩ1

2
√
a0sβ/2

r
n

2−β
−2e

−c
(

r2

4a0(s−τ)β

) 1
2−β

dr
]
ds ≤

≤ C4

∫ t

0

(t− s)αs−β/2
[
1 +

∫ ∞

1

η
n−β
2

−2e−cηdη
]
ds ≤ k̂tα−

β
2
+1, (x, t) ∈ Q̄0

where k̂, Ci, i ∈ {1, 2, 3, 4} are positive constants. The same kind of estimates we obtain in
the case n = 2. So,

K0(x, t, y, τ) ≤ k̂(t− τ)α+
β
2 = k̂Γ

(
1 + α+

β

2

)
f1+α+β

2
(t− τ), x, y ∈ Ω̄0, 0 ≤ τ < t ≤ T,

K1(x, t, y) ≤ k̂tα−
β
2
+1 = k̂Γ

(
2 + α− β

2

)
f2+α−β

2
(t), (x, t) ∈ Q̄0, t ∈ Ω̄0. (12)

The function

R0(x, t, y, τ) = f−α−β
2
(t− τ) ∗K0(x, t− τ, y, τ) ̸= 0, (x, t), (y, τ) ∈ Q̄0,

is continuous on Q̄0 × Q̄0 (R0 = K0 if α = −β
2
), the function

R1(x, t, y) = f−α−β
2
(t) ∗K1(x, t, y)

is continuous on Q̄0 × Ω̄0 and has the estimate

R1(x, t, y) ≤ k̂Γ
(
α− β

2
+ 2

)
f−α−β

2
(t) ∗ fα−β

2
+2(t) =

= k̂Γ
(
α− β

2
+ 2

)
f2−β(t) = k̂1t

1−β, x ∈ Ω̄0, y ∈ Ω1, t ∈ (0, T ]

where k̂1 = k̂Γ(α− β
2
+ 2)

/
Γ(2− β).

Thus, from (11) we obtain the linear integral Volterra equation of the first kind∫ t

0

dτ

∫
Ω0

R0(x, t, y, τ)v(y, τ)dy = h0(x, t), (x, t) ∈ Q̄0 (13)

with the continuous positive kernel R0(x, t, y, τ) and

h0(x, t) = f−α−β
2
(t) ∗ h(x, t), (x, t) ∈ Q̄0. (14)

Note that h0 ∈ Cγ(Q̄0) and h0(x, 0) = 0.
Conversely, if v ∈ Cγ(Q̄0) is a solution of equation (13), which is equivalent to equa-

tion (11), then the function given by (10), that is

u(x, t) = (G0v)(x, t) + (G1F1)(x, t), (x, t) ∈ Q̄0, (15)

is a solution (from C1
2,β(Q̄0)) of problem (1)–(4).

Moreover, multiplying (15) by b, we obtain

bu = bG0v + bG1F1 ⇐⇒ v = b
(
G0v + G1F1

)
+ F0
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and hence
b(x, t) =

v(x, t)− F0(x, t)

u(x, t)
, (x, t) ∈ Q̄0 (16)

if the ratio is not zero.
If v(x, t) ≥ 0, (x, t) ∈ Q̄0 and F1(x) ≥ 0, x ∈ Ω̄0 then, according to the above remarks,

u = G0v + G1F1 ≥ 0 on Q̄0, and for v(x, t) ≤ 0, (x, t) ∈ Q̄0, F1(x) ≤ 0, x ∈ Ω̄0 we obtain
u ≤ 0 on Q̄0. In the case ∥F1∥C(Q̄0) > 0 we obtain |u(x, t)| ≥ u0 > 0, (x, t) ∈ Q̄0.

Let V(Q̄0) be the class of functions from Cγ(Q̄0) preserving sine on Q̄0.

Theorem 2. Assume that (A1), (A2), (A3) hold, there exists a solution v ∈ Cγ(Q̄0) of
integral equation (13). Then there exist some T ∗ ∈ (0, T ] (Q∗

0 = Ω × (0, T ∗], respectively)
and a solution (u, b) ∈ Mβ(Q

∗
0) of problem (1)–(4). It is defined by formulas (15), (16) for

(x, t) ∈ Q̄∗
0.

Proof. By the above remarks the kernel R0(x, t, y, τ) of integral equation (13) is continuous
on Q̄0 × Q̄0, satisfies the Hölder condition with respect to x ∈ Ω̄0 and is positive. So, if
h0 ∈ V(Q̄0) then a solution v of equation (13) belongs to V(Q̄0), namely, for nonnegative
(nonpositive) h0(x, t), (x, t) ∈ Q̄0 we obtain v(x, t) ≥ 0 (v(x, t) ≤ 0), (x, t) ∈ Q̄0 (see
Lemma 1 and assumption (A2)).

Consider the right-hand side of (13) h0(x, t). Under assumption (A2), using (12), we
obtain ∣∣∣ ∫

Ω0

K1(x, t, y)F1(y)dy
∣∣∣ ≤ k1t

α−β
2
+1∥F1∥C(Ω̄0), k1 = const > 0.

Note that F2(x, t) ·
∫
Ω0

K1(x, t, y)F1(y)dy ≥ 0, (x, t) ∈ Q̄0, in both cases of assump-
tion (A3). Then under assumptions (A2), (A3) there exists T ∗ ∈ (0, T ] such that h0(x, t) ≥ 0,
(x, t) ∈ Q̄∗

0 in the first case of assumption (A3), h0(x, t) ≤ 0, (x, t) ∈ Q̄∗
0 in the second case

of this assumption. Indeed,

t−p
∣∣∣ ∫

Ω0

K1(x, t, y)F1(y)dy
∣∣∣ ≤ k1t

α−β
2
+1−p∥F1∥C(Ω̄0) ≤ min

(x,t)∈Q̄0

|F2(x, t)|t−p ∀t ∈ [0, T ∗],

T ∗ =

[ min
(x,t)∈Q̄0

|F2(x, t)|t−p

k1∥F1∥C(Ω̄0)

] 1

α−β
2 +1−p

.

Thus, the solution v of equation (13) belongs to V(Q̄0).

Remark. If in Theorem 2 we assume in addition that F0 ≤ 0 on Q̄0 in the case of the first
assumption of (A3) (or F0 ≥ 0 on Q̄0 in the case of the second assumption of (A3)) then we
find the solution (u, b) ∈ Mβ(Q

∗
0) of problem (1)–(4) such that u > 0 on Q̄∗

0 (respectively,
u < 0 on Q̄∗

0) and b(x, t) ≥ 0, (x, t) ∈ Q̄∗
0 in both cases.

Theorem 3. Under conditions of the uniqueness of a solution of the uniqueness of a solution
of equation (13), a solution (u, b) ∈ Mβ(Q0) of problem (1)–(4) such that u ̸= 0 on Q̄0 is
unique.

Proof. Take two solutions (u1, b1), (u2, b2) ∈ Mβ(Q0) of problem (1)–(4), u = u1 − u2,
b = b1 − b2. Then

Dβ
t u = a∆u+ b2u+ bu1, (17)
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∂u(x, t)

∂νx
= 0, (x, t) ∈ Q̄1, u(x, 0) = 0, x ∈ Ω̄0, (18)

and, by Theorem 1, the solution u(x, t) of problem (17), (18) satisfies the integral equation

u(x, t) =

∫ t

0

dτ

∫
Ω0

G0(x, t, y, τ)
(
b(y, τ)u1(y, τ) + b2(y, τ)u(y, τ)

)
dy, (x, t) ∈ Q̄0. (19)

Use the condition ∫ t

0

∫
Ω1

K(x, t, z, s)u(z, s)dzds = 0, (x, t) ∈ Q0

which we obtain from (4). As it has been shown before we obtain Volterra integral equation
of the first kind∫ t

0

dτ

∫
Ω0

R0(x, t, y, τ)
(
b(y, τ)u1(y, τ) + b2(y, τ)u(y, τ)

)
dy = 0, (x, t) ∈ Q̄0.

By the theorem’s assumption,

b(y, τ)u1(y, τ) + b2(y, τ)u(y, τ) = 0, (y, τ) ∈ Q̄0. (20)

Then from (19) we obtain u = 0 on Q̄0, and from (20) b(x, t)u1(x, t) = 0, (y, τ) ∈ Q̄0. Since
u1 ̸= 0 on Q̄0, under the assumption of this theorem, one has b(x, t) = 0, (x, t) ∈ Q̄0.

4. The one-dimensional case. Consider the problem

Dβ
t u− A(x, t,D)u− b(x, t)u = F0(x, t), (x, t) ∈ Q := (0, l)× (0, T ], (21)

∂u(0, t)

∂x
=

∂u(l, t)

∂x
= 0, t ∈ [0, T ], (22)

u(x, 0) = F1(x), x ∈ [0, l], (23)∫ t

0

K(x, t, s)u(0, s)ds = F2(x, t), (x, t) ∈ Q̄, (24)

where Au = A(x, t,D)u = a(x, t)uxx + a1(x, t)ux + a2(x, t)u is an elliptic differential second
order expression with Hölder continuous coefficients and min(x,t)∈Q̄ a(x, t) = a0 > 0, β ∈
(0, 1), F0, F1, F2, K are given functions.

A pair of functions (u, b) ∈ M(Q) := C1
2,β(Q̄) × Cγ(Q̄) is called a solution of problem

(21)–(24) if it satisfies equation (21) on Q and conditions (22)–(24).
Let assumptions (A1), (A2), (A3) with [0, l] instead of Ω̄0 hold.
It follows from Theorem 1 that under assumption (A1) the solution u of problem (21)–

(23) satisfies the integral equation

u(x, t) =

∫ t

0

dτ

∫ l

0

G0(x, t, y, τ)
(
b(y, τ)u(y, τ) + F0(y, τ)

)
dy+

+

∫ l

0

G1(x, t, y)F1(y)dy, (x, t) ∈ Q̄, (25)

and conversely, any solution u ∈ Cγ(Q̄) of integral equation (25) belongs to C1
2,β(Q̄) and is

a solution of problem (21)–(23).
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Substituting the right-hand side of (25) in condition (24) we obtain∫ t

0

K(x, t, s)
[ ∫ s

0

dτ

∫ l

0

G0(0, s, y, τ)
(
b(y, τ)u(y, τ) + F0(y, τ)

)
dy+

+

∫ l

0

G1(0, s, y)F1(y)dy
]
ds = F2(x, t), (x, t) ∈ Q̄,

that is ∫ t

0

dτ

∫ l

0

K0(x, t, y, τ)v(y, τ)dy = h(x, t), (x, t) ∈ Q̄, (26)

where

v(y, τ) = b(y, τ)u(y, τ) + F0(y, τ), (y, τ) ∈ Q̄,

h(x, t) = F2(x, t)−
∫ l

0

K1(x, t, y)F1(y)dy, (x, t) ∈ Q̄,

K0(x, t, y, τ) =

∫ t

τ

K(x, t, s)G0(0, s, y, τ)ds, K1(x, t, y) =

∫ t

0

K(x, t, s)G1(0, s, y)ds.

Results of [6, 7] imply the following estimates:

G0(x, t, y, τ) ≤ C(t− τ)
α
2
−1, x, y ∈ [0, l], 0 ≤ τ < t ≤ T,

G1(x, t, y) ≤ Ct−
α
2 , x, y ∈ [0, l], t ∈ [0, T ].

The Green vector-function possesses Hölder properties also.
Using the above estimates and (12) we find∫ t

τ

K(x, t, s)G0(0, s, y, τ)ds ≤ A0C

∫ t

τ

(t− s)α(s− τ)
β
2
−1ds ≤ k2(t− τ)α+

β
2 ,

and similarly,∫ t

0

K(x, t, s)G1(0, s, y)ds ≤ A0C

∫ t

0

(t− s)αs−
β
2 ds ≤ k2t

α−β
2
+1, (x, t) ∈ Q̄

where k2 = const > 0. Repeating the proof of Theorems 2 and 3 we obtain the following
result.

Theorem 4. Assume that (A1), (A2), (A3) with [0, l] instead of Ω̄0 hold, there exists a
solution v ∈ Cγ(Q̄) of the integral equation∫ t

0

dτ

∫ l

0

R0(x, t, y, τ)v(y, τ)dy = h0(x, t), (x, t) ∈ Q̄

with R0(x, t, y, τ) = f−α−β
2
(t− τ) ∗K0(x, t, y, τ) ̸= 0, (x, t), (y, τ) ∈ Q̄, h0(x, t) = f−α−β

2
(t) ∗

h(x, t), (x, t) ∈ Q̄. Then there exist some T ∗ ∈ (0, T ] (Q∗ = (0, l) × (0, T ∗], respectively)
and a solution (u, b) ∈ M(Q∗) of problem (21)–(24). It is defined by the formulas

u(x, t) =

∫ t

0

dτ

∫ l

0

G0(x, t, y, τ)v(y, τ)dy +

∫ l

0

G1(x, t, y)F1(y)dy

and (16) for (x, t) ∈ Q̄∗.

5. Remarks. In the same way we can investigate problem (1)–(3) with the over-determi-
nation condition

∫ t

0

∫
Ω0

K(x, t, z, s)u(z, s)dzds = F2(x, t), (x, t) ∈ Q̄0 instead of condition (4).
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