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EXISTENCE AND UNIQUENESS OF THE SOLUTIONS FOR NONLINEAR
DEGENERATE ELLIPTIC EQUATIONS
IN WEIGHTED SOBOLEV SPACES

A. C. Cavalheiro. Ezxistence and uniqueness of solutions for degenerate nonlinear elliptic equati-
ons in weigthed Sobolev spaces, Mat. Stud. 45 (2016), 182-193.

In this paper we are interested in the existence and uniqueness of solutions for the Dirichlet
problem associated to the degenerate nolinear elliptic equation

n

— Z D; [Aj(x, Vu) wg(x)] + bz, u)wr(z) + g(x) u( Z D;fi(x) on Q

Jj=1

in the setting of the weighted Sobolev spaces Wé’p(Q, W1, ws).

1. Introduction. In this paper we prove the existence and uniqueness of (weak) solutions
in the weighted Sobolev spaces WP (Q,wy,ws) (see Definition 2) for the Dirichlet problem

Lu(z) = fo(z) iDj f(z) i 9
u(z) =0 on 09,

where L is the partial differential operator
Z D;[A;(z, Vu(z)) wa(z)] + bz, u(z)) wi(z) + g(x) u(x),

D; = 0/0x;, Q is a bounded connected open set in R", w; (i = 1,2) are weights functions
and the functions A = (Ay, ..., A,): OxR" — R" | b: QxR — R, g: Q@ — R satisfy the
following conditions:

(H1) z—A;(z,€) is measurable on (2 for all £ € R", {—A;(x,&) is continuous on R” for
almost all z € Q, and A;(x,0) =0 for a.e. z €
(H2) there exist constants p > 2 and A > 0 such that [A(x, ) —A(z,&)]-(£=¢) > X[ =],

whenever ¢,¢ € R”, where A(z,¢) = (Ai(x,€), ..., An(2,§)), a dot denote here the
Euclidian scalar product in R";
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(H3) |A(x,&)| < Ky(z) + hQ(x)|£]p/p/ such that hy and K, are nonnegative functions, with
hy € L(Q) and K, € LP'(Q, wy) (with 1/p+1/p’ = 1);

(H4) z—b(x,n) is measurable on Q for all n € R, n—b(x,n) is continuous on R for almost
all z € Q, and b(x,0) =0 for a.e. z €

(H5) there exists a constant A > 0 such that [b(z, n)—b(x,7")](n—n") > A|np—1|’, whenever
n1 eR;

(H6) |b(z,n)| < Ki(z)+ hi(z)|n[”’"", where K, and hy are nonnegative functions such that
K, € LP'(Q,w;) and hy € L®(Q);

(H7) g/wy € LI(Q,wy), where 1/g=1/p’ —1/p, and g(x) > 0 a.e. z €
(H8) w; and w, are weights from the Muckenhoupt class A, with 2 < p < oo;
(Hg) fo/u)l c Lp,<Q,(,U1) and fj/wg S Lp/(Q,LUQ) (] = 1, ,n)

Under a weight, we mean a locally integrable function w on R" such that 0 < w(z) < oo
for a.e. z € R™ (see [13]). Every weight w gives rise to a measure on the measurable subsets
on R through integration. This measure will be denoted by y. Thus, u(E) = [, w(x) dx for
all measurable sets & C R".

In general, the Sobolev spaces W*?(Q) without weights occur as spaces of solutions for
elliptic and parabolic partial differential equations. For the degenerate partial differential
equations, i.e., the equations with various types of singularities in coefficients, it is natural
to look for solutions in the weighted Sobolev spaces (see [3], [5] and [6]).

A class of weights, which is particulary well understood, is the class of A,-weights (or the
Muckenhoupt class) these classes weve introduced by B. Muckenhoupt (see [11]). They have
found many usefull applications in harmonic analysis (see [12]). Another reason for studying
A,-weights is the fact that powers of distance to submanifolds of R™ often belong to A,
(see |9]). There are, in fact, many interesting examples of weights (see [8] for p-admissible
weights).

In the non-degenerate case (i.e., with wy(z) = we(z) = 1) the problem (P) has been
studied in [1] and [2].

Remark 1. (a) From (H2) and the fact that A;(z,0) = 0 for a.e. z € €, we have
Ae,€) -6 = (A€~ Aln.0)) (6~ 0) = AleP
(b) Since b(z,0) = 0 for a.e. x € Q, we deduce from (H5) that

b(z,m)n = (b(x,n) — b(z,0)) (n —0) > Alnf”.

Definition 1. We say that an element u € Wol’p(Q,wl,wg) is a (weak) solution of problem
(P) if

Z/{)Aj(a:,Vu(x))ngo(x)wg(x)dx+/b(x,u(x))go(x)wl(:ﬁ)dx—i—

Q
+ [ g@ue@is = [ fwede+ 3 [ fDptds,

for all ¢ € Wy (2, wy,ws).
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The following theorem will be proved in Section 3.

Theorem 1. Suppose that conditions (H1)-(H9) hold. Then the problem (P) has the unique
solution u € Wy (€2, wy,w,). Moreover,
)p'/P
LPI(Q,LUQ)

Corollary 1. Under the assumptions of Theorem 1, if uy € Wol’p(Q, w1, we) Is a solution of
the problem

n

fo

w1

fi

Wa

+
LP/ (val) j:].

1
||UHW01”’(Q,w1,w2) < fyp’/p(

where v = min{\, A}.

Lus(z) = folz) — ilpj f@) i Q,
up(z) =0 on 0N

(P1)

Uy € Wol’p(Q,wl,wQ) is a solutions of

Lus(z) = fo(z) — D D, fi(x) in Q,
(P2) j=1
ug(z) =0 on 09,
and vy = min{\, A}, then

/

)p/p
Lp/ (Q,wz) .

Corollary 2. Let the assumptions of Theorem 1 be fulfilled, and let {fo,,} and {f;m}
(j = 1,...,n) be sequences of functions satisfying {3—71" — 5—2 in L¥ (Q,w) and }Z—;” — i—; in
LV (Q,w,). If uy, € W,P(Q, wy,wy) is a solution of the problem

fo—fo -

w1

fi—fi

w2

+
Lp/(Q7w1) ]:1

1
Hul - u2||W5’p(Q,w1,w2) S fyp/p' (‘

mezmm—immm in 0,

Um(x) =0 on 09,

(Prn)

then w, — u in Wy P(Q, wy,w,), where u is a solution of (P).

2. Definitions and basic results. Let w be a locally integrable nonnegative function in R"
and assume that 0 < w < oo almost everywhere. We say that w belongs to the Muckenhoupt
class A,, 1 < p < oo, or that w is an A,-weight, if there is a constant C' = C,,,, such that

(ﬁ /B w(m)dw) (ﬁ /B wl/(l_p)(x)dx>p1 <C

for all balls B C R", where |.| denotes the n-dimensional Lebesgue measure in R”. If 1 <
q <p, then A, C A, (see [7], [§] or [12] for more information about A,-weights).

As an example of A,-weight, the function w(z) = |z|%, « € R™, is in A, if and only if
—n < a <n(p—1) (see Corollary 4.4, Chapter IX in [12]).

The measure p and the Lebesgue measure |- | are mutually absolutely continuous, i.e.,
they have the same zero sets (u(F) = 0 if and only if |E| = 0); so there is no need to specify
the measure when using the ubiquitous expression almost everywhere and almost every, both
abbreviated a.e..
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Definition 2. Let w be a weight, and let 2 C R"™ be open. For 1 < p < 0o we define LP(Q, w)
as the set of measurable functions f on {2 such that

1/p
HfHL:D(QM) = </Q |f(a:')]pw(x)d:v> < Q.

Ifw e Ay, 1 < p < oo, then w™ /P islocally integrable and L?(2, w) C Li..(Q) for every
open set €2 (see Remark 1.2.4 in [13]). It thus makes sense to talk about weak derivatives of
functions in LP(Q,w).

Definition 3. Let 2 C R” be a bounded open set, and let w; and wy be A,-weights (1 < p <
00). We define the weighted Sobolev space WP(Q), wy, ws) as the set of functions u € LP(Q, wy)
with the weak derivatives Dju € LP(Q,ws) (j = 1,...,n). The norm of u in WhP(Q, wy,ws)
is defined by

il = [ Ja@Per@lin + [ 190t Pntoie) " 1)

The space Wy (€2, wy, wsy) is the clousure of C5°(€) with respect norm (1). Equipped with
this norm, Wy (Q, w;,ws) is a reflevixe Banach space (see [10] for more information about
the spaces W1P(€Q,wy,ws)). The dual space of Wol’p(Q, 4, wy) is the space

[W(JLp(Qv w2, w2)]* -

- {T = fo—div(F),F = (fi,.... fn) fo e P (Q,w), /i e L (Qw),j=1, n}

. w1 %)

In this paper we use the following theorem.

Theorem 2. Let w € Ay, 1 < p < 00, and let Q2 be a bounded open set in R". If u,, — w in
LP(Q,w), then there exist a subsequence {u,,, } and a function ® € LP({,w) such that

(1) Upm, () = u(x), mp—ro0, a.e. on ;
(ii) |tm, (x)| < ®(x) a.e. on 2.

The proof of this theorem follows the lines of Theorem 2.8.1 in [4].

Proof of Theorem 1. The basic idea is to reduce the problem (P) to an operator equation
Au =T and apply the theorem below. ]

Theorem 3. Let A: X — X* be a monotone, coercive and hemicontinuous operator on the
real, separable, reflexive Banach space X. Then the following assertions hold:

(a) for each T € X* the equation Au =T has a solution u € X;

(b) if the operator A is strictly monotone, then equation Au = T is uniquely solvable in X
(Theorem 26.A in [15]).

To prove Theorem 1, we define B, By, Bs: W&’p(Q,wl,wg)xW&’p(Q,wl,wz) — R and
T: WyP(Q, w1, ws) — R by

B(“? 90) = Bl(u7 @) + B2(U7 SO)7
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Bs(u, ) :Z/Aj(:v,Vu)ngprd:B:/A(az,Vu).Vgpwgda:,
=0 Q

Bu(u,p) = / b, u(a))p(x)eor (2)d + / o(@)p(e)u(z)dz,

Q

/fo dm+2/fj Dyl

Then u € W, P(Q,w;,w,) is a (weak) solution of problem (P) if and only if
B(u, ) = T(p) for all o € Wy (Q, wi,w,).

Step 1. For j = 1,..,n we define the operator Fj: Wol’p(Q,wl,wQ) — LY(Q,w,) as
(Fu)(xz) = Aj(z, Vu(z)). We now show that the operator F; is bounded and continuous.
(i) From (H3) we obtain

p/
||Fju||}£p,(ﬂ’w2) = /Q |Fiu(z)|” wedz = /Q |Aj(z, Vu)|” wedz < /Q (Kg +h2|Vu|p/p) wadz <
<c, / (K? + 1 |Vl Junde = cp[ / KY wyder + / hg'wu‘%dx] -

Q

< G 1Kl g + Vel g e

where the constant C), depends on p only. Therefore,

IEul g < Gp(nKanmﬁ||h2||Loo<m||u||p/ ))

(ii) Let u, — u in WyP(Q,wi,wy) as m — co. We need to show that Fju,, — Fju in
L7 (Q, w;). We will apply the Lebesgue Dominated Theorem. If w,, — u in Wy7?(Q,wy,ws),
then w,, — u in LP(Q,w;) and |Vu,| — |Vu| in LP(Q,ws). By Theorem 2, there exist a
subsequence {u,, }, functions ®; € LP(Q,w;) and $y € LP(§2, wy) such that

U, (T) = u(z) ae. in Q,  |uy,, ()] < $1(x) a.e. in §,
Djtp, () = Dju(z) ae.in Q (j=1,...,n), |Vuy, (z) < Py(x) a.e. in Q.

Next, applying (H3) yeilds
|Fjumk o Fju|p/w2 = ’Aj(xv Vumk) - Aj(xv Vu)‘p,“& <
(I T )P+ Ay T o <

/

P’ P
< C’p[<K2+hg|Vumk|p/p) + (K2+h2|Vu|p/p) :|(,u2 <
<Gy [Ké’ + || P2l e ) |Vt [P+ K5+ ||h2||§w(m|vu|p] wp <

< 23| K + all 02|z € L' (@),
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By condition (H1), we have
Fjtm, (2) = Aj (2, Vi, (1)) = A;(z, Vu(z)) = Fyu(z),

as my — —4o0o. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
[Fjtm,, — Fjull o () — 0, that is, Fjuy, — Fyju in LP (9, w;). We conclude from the
Convergence Principle in Banach spaces (see Proposition 10.13 in [14]) that

Fjty, — Fyu in L7 (Q,wy). (3)
Step 2. We define the operator G: Wy P(Q,wy,ws) — LP (Q,wy) by (Gu)(z) = b(x, u(z)).

This operator is continuous and bounded. In fact,
(i) By (H6), we obtain

p/
HGuHip,(QWH = / |Gu|” widx :/ 1b(z, w) " widx S/ <K1 +h1\u|p/p) widr <
Q Q Q
< C'p/(Kf/ + B |ul?)wyda = C, {/ KY widx + / h’l’/|u|pw1dx} <
Q Q Q
< o (I gy + 1l 0 )
(ii) Applying (H6) together with a similar argument as in Step 1(ii) yields

|G, — Gl w1 = |b(x, ) — b, w)|P wy < Cp(]b(x,umk)]p/ + yb(x,u)yp’)wl <

P P
S Cp[(K1+h1|umk|p/p) + (K1+h1|u|p/p) :|u)1 S
< [Kf ol gt + KT+ ||h1||fzw(m|u|p] wi <
< 23 [KY 4 [l 1 |ir € L' (@)

Repeated application of the Convergence Principle in Banach Spaces given as: if u,,, — u
in Wy (2, wy,ws) we obtain

Gy, — Gu in L7 (Q,w;). (4)

Step 3. By (H9) we have
- | fol . | fi]
T(p g/ folleldx + /f~ Dwd:z::/—<,0cud93jL ~——|D;p|lwadx <
T (¢)] Q|o||| ;Zlgljllgl Qw1||1 ;:leQIJIQ

< fo/w1ll 1 o 19 oy + D 1557921l 1ot (@) 1 Ps Pl orom) <
j=1

< (Mool g + 2165/t ) €l

j=1
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Moreover, using (H3), (H6), (H7) and the generalized Holder inequality, we also have
| B(u, 0)| < [Bi(u, )| + [Ba(u, @)| <

<3 [ e VollDplonds + [ B wligkade+ [ allullelds. 6)
j=1
The right hand side of (5) admits the estimation:

/ |A(z, Vu)||Ve|wdz < / (K2 + h2|Vu|p/p’) |Vp|wadr <
Q Q
< Eoll 10 (.0 VN Lo (0,0) T 2]l 10 (02 ||VUI|’2/prw2 Vel 1o @) <

< (Ve + Wl 01505 ) Dol
[ e wliplnde < | <K1+h1|u|p/p’)|w|ywlydxs
Q Q
S/Kly\¢|yw1ydx+||h1HLoo(Q)/IUI”/”'IMywlyde
Q
< (Ml + Wl 008 ) B

and, by (H2), since 1/g+ 1/p+1/p' =1 (by (H7)),

[
[ tlulieldz = [ Puliptonde < lo/onllno i [9l6) <

< Hg/wl”m(ﬂ,wl)”UHW(}’P(QMM)HSOHW(}@(QthQ)-

Finally, we obtain

+ 1l oo g 1l P2

le wg) 1p(Q w1,w2)

Blu, )| < [HKlHM,wI) Wl 2,
+HK2HLP/(Q,w2)+Hg/wll‘Lq(Q,wl)HuHWOl’p(Q,wl,wg) HSOHWOLP(Q,wl,wg)

for all u, o € WyP(, wy,ws).

Since B(u,.) is linear, for each u € VVO1 P(Q, w1, ws), there exists a linear continuous
functional on Wy™ (€, wy,w;) denoted by Au such that (Au,¢) = B(u, ), for all ¢ €
Wy (Q,wi,ws). Here (f, x) denotes the value of the linear functional f at the point .
Moreover

[Aull, < TE L o @y + M2l o7 (@) + 112l 1o Hqu/

P(Qw1,w2)

Fllha o Q)IIUIlp/ vy T N9/ La@ o [llwtr . wn)-

Hence, we obtain the operator

A: WOLP(Q,wl,WQ) — [W&’p(Q,wl,wg)]*, u—Au.
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Consequently, problem (P) is equivalent to the operator equation
u € WyP(Q,wy,ws) : Au=T.
Step 4. Using condition (H2), (H5) and (H7), we have

<AU1 — AUQ,Ul — U2> = B(ul,ul — UQ) — B(UQ,'LLl — UQ) =

= / Az, Vuy) - V(uy — ug)wadr + / b(x,uy)(uy — ug)widr + /(u1 — Ug)guidr—
Q 0

Q

— / Az, Vug) - V(up — ug)wadr — / b(x,ug)(uy — ug)wide — / g(uy — ug)usdx
Q Q

Q

— /Q (A(l‘, Vuy) — Az, Vug)) V(w1 — u)wodat
+/ﬂ(b(a:,ul) — b(w, us)) (w1 — us)wrdz + /Qg(ul e >

> )\/ |V (uy — ug)|Pwadx + A/ |uy — ug|Pwide > ||u; — ugﬂivl,p(
Q Q 0

Quwi,wz)’

where v = min{\, A}.
Therefore, the operator A is strongly monotone, and this implies that A is strictly
monotone. Moreover, from Remark 1 and (H7) it follows that

(Au,u) = B(u,u) = By(u,u) + Ba(u,u) = / Az, Vu) - Vuwsdx + / b(x, u)uwdr+
Q 0

N / gulds > / A Vul’wsdz + / AuPandz > Allull, .,
Q Q Q Wo™(

Qw1 ,wa)’
where v = min{\, A} > 0. Since p > 2, we have

(Au, u)

HUHWOI’p(Q,wl,wz)

— +OO7 as HuHWOl’p(Q,wl,wz) - +OO’

that is, A is coercive.

Step 5. We need to show that the operator A is continuous. Let u,, — v in Wol’p(Q,wl,wg)
as m — oo. Then

| Ba(tm, @) — Ba(u, )] < /Q |A;j (2, Vun) — Aj(x, Vu)||Djplwadr =
j=1

-y / Pyt — Fyul | Diglndz < S 1 Fytn — Fyull gy 1058l oirny <
j=1

J=1

n
< Z [ E5tm — Fj““m/(ﬂ,wz)||90||W&*”(Q,w1,w2>7
j=1

Byt ) — Bl )| = \ [ 00) = ) + [ gplm — )

< /Q |G, — Gul|plwndz + /Q 9llspllum — ulde < (|Gum = Gul| Lo () 121l Lo .00+
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+|’9/W1|‘Lq(9,w1)HSOHLP(QM)Hum - uHLP(Q,wl) < |Gum — Gu”LP'(Q,wl)H(AOHWOM’(Q,Wl,wz)_'_

+||g/w1||L‘Z(Q,UJ1)H(IDHWOLP(Q,wl,wQ)Hum - u||W01‘p(Q,w1,w2)’
for all ¢ € WyP(Q, wy,ws). Hence,
| B(um, ¢) = B(u, ¢)| < |Bi(um, ¢) = Bi(u, p)| + | Ba(um, ¢) — Ba(u, )| <

< {Z 1yt — Fyal gy + |Gt — Gty

j=1
+H9/W1 HL‘I(Q,wl) Hum - uHWOl’p(Q,W1,w2):| HSOHWOLP(Q,wl,wﬂ'

Then we obtain

| At = Aull, < | Fyttm = Fyall gy

=1

+| G — Gu“LP'(Q,wl) + ||9/W1||Lq(§z,w1)||um - UHW(}'P(QM,W)'

Therefore, ||Au,, — Aul|, — 0 as m — 400 by (3) and (4). Hence, A is continuous and this
implies that A is hemicontinuous.

By Theorem 3, the operator equation Au = T has a unique solution
u € WyP(Q,wy,ws) and it is the unique solution for problem (P).

Step 6. According to Definition 1, we have
B(u,u) = By(u,u) + Bay(u,u) =T (u). (6)

Therefore, using Remark 1, (H7), we obtain

By (u,u) + By(u,u) = / A(z, Vu) - Vuwsdz + / b(x, w)uw dz + / guidr >
0 Q

Q

Qwi,wa)’

2/)\|Vu|pw2dx—|—/A\u|pw1dx27||u||p
9] O WO (

where v = min{\, A} > 0, and by (H9) we have
T(u) = /Qfoudl‘JrZ/ijDjUdiU < fo/wrll o [l ooy
j=1

n n
+ D fi/well o @ 1Dgull oy < (“fﬁ/wl”LP/(Q,wl) Y Hfj/wz||Lpf(Q,w2)> el ()
j=1

Jj=1

Therefore, in (6), we obtain

’VHUH;/OLP(QMM) < (HfO/leLP/(Q,wl) + Z Hfj/wQHLP’(Q,WQ)> HU’HWOLP(QMhng)'

J=1
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)p'/p
LP/(Q,LUQ) ‘

Proof of Corollary 1. If u;, uy; € Wy ?(Q,w;,w,) are solutions of (P;) and (P,) respectively,
then

/A(:z:, Vul)-Vgowgdx—l—/b(x,ul)gowldx+/gu1<pdx:/f()(pdx+2/ijj<pda:,
0 0 0 0 o Ja

Since p > 2, we have

n

+
LP(Qwi) =1

Jo

w1

5

%)

1
[l 2 (@ 02y < ,yp'/p(

/ A(x, Vusg) - Vipwsdx + /
Q

Q

b(x, ug)pwidr + / guapdr = / foedz + Z/ fiD;pdz,
Q Q = Je
for all p € Wol’p(Q, wi,ws). In particular, we have

/Q (A(m, Vuy) — Az, VUQ)) - V(uy — ug)wodx + /Q(b(gj’ul) — b, us)) (wr — us)wrdz+
+/Qg(u1 — up)’dr = /Q(fo — fo)(uy — ug)dx + ji/g(fj — f)D;(uy — up)dz.  (7)

for ¢ = uy — us.
(i) By (H2), we have

/ (A(x, Vu) — Az, Vu2)> -V (uy — ug)wadzr > )\/ |V (u1 — ug)| wadz,
0 Q

and by (H5), we obtain [, (b(x,u1) — b(z, uz))(uy — ug)wr > A [, |[ug — ug| widz.
(ii) By (H7) we have [, g(u1 — us)*dx > 0.
Hence, in (7), if v = min{\, A}, we obtain

Yur — uaf? W ( <

Q,w1,w2)
(H(fo Fo) el o + Z 105 = ) el )Hul N

Therefore,

/

p/p
Jur — u2||W01‘p(Q,w1,w2) = (H(fo - fo)/wlnm @) T Z 1(f; fy Jwall QW2)) .

Proof of Corollary 2. By Corollary 1 if u,, and u are solutions of (P,,) and (P) respectively,
then

/

1 n p/p
[t — u”w&”’(g,wl,m) < W (H(me - fO)/WIHLP’(Q,wl) + Z 1(fjm — fj)/"u?“Lp’(Q,wQ)) :
j=1

Since fom — Jo iy 1P'(Q wy), fim o Ji gy LP(Q,ws) (j = 1, ...,n), we obtain the convergence
w1 w1 w2 w2
Uy — u in Wy P(Q, w1, ws).
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Example 1. Let Q = {(z,y) € R? : 2> + y*> < 1}. We consider the weights functions
wi(z,y) = (22 +y*) 72 and wy(1,y) = (2% +y*) "2/ (w; and wy are As-weights, p = 3), and
the functions

A: QxR? = R? A((2,y), €) = ha(w,y)[€]€,

sin?(zy)

b: QxR — R? b((%y%m = 77|77|(0052($y) + 1)7 g: Q— Rag<x>y) = Wa

with A = 1/2, A = 1/4, hy(x,y) = cos?(zy) + 1, ho(z,y) = 267" and ¢ = 3. Let us consider
the partial differential operator

Lu(z,y) = —div {A«x,y), vwwz(as,y)} Fb((@,y), wen (@, y) + gla .

By Theorem 1, the problem

U(l’,y) =0 on aQ’

has a unique solution u € Wol’g(Q, Wi, ws).

Remark. To verify the conditions (H2) and (H5) we use the inequality

(Il — 16778 - (€ - f>_2p1<\sr+!s\>p %4,

for every £,£ eR" and 1 < p < 00 (see Proposition 17.3 in [1]). For p = 3, we have
- -1 N N
(I€le = 1€l€) - (€ = &) = 7 (€] + €Dl — &,

| Hence, using

and since €] + |€] > |€ — €|, we obtain (|€|¢ — [€|€) - (€ — &) > i€ — o
£)-(€-6 = 4lE—¢".

that hy(x,y) = 261" > 2 in Q, we have (A((z,y), &) — A((z,y),
Analogously, we have

(B4€o)m) = ), )) = ) = (o) + Dol = i)~ ) = 5l "

Acknowledgements. The author thanks the referee for his/her helpful suggestions which
improved the original results.
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