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In this paper we present a fourth order finite difference method for solving nonlinear
Helmholtz type elliptic boundary value problems in two dimensions subject to the Dirichlet
boundary conditions. The present fourth order method is based on the approximation of
derivative by finite difference method and Helmholtz equation. The truncation error and
convergence analysis are presented for the proposed method. We present numerical experi-
ments to demonstrate the efficiency and accuracy of the method.

1. Introduction. It is well known that to solve the Helmholtz equation ∆u+K2u = f(x, y)
for a higher wave number K and achieve higher order accuracy in numerical solution is
difficult. A scholarly work and discussion on numerical solutions of the Helmholtz equation
can be found in [1, 2, 3] and references there in. In the present paper we do not focus on
exactly the Helmholtz equation, but the treatment of the problem is the same as to that of
the Helmholtz equation.

Let us consider the nonlinear elliptic problem

∂2u

∂x2
+

∂2u

∂y2
+K2u = f(x, y, u, ux, uy), a ≤ x, y ≤ b (1)

in the square region Ω = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b} with the boundary conditions

u(x, y) = g(x, y) on ∂Ω, (2)

where ∂Ω is the boundary of Ω. We propose a finite difference method for finding its numerical
solution. We assume the existence and uniqueness of a solution u(x, y) for the problem (1)
under a following assumption:

(i) f is continuous,

(ii) ∂f
∂u

≥ 0,

(iii) | ∂f
∂ux

| ≤ q1,
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(iv) | ∂f
∂ux

| ≤ q2,

where q1 and q2 are positive constants. Also let us assume that u(x, y) ∈ C6, the set of
all functions of x and y with continuous derivatives up to order 6 in the region Ω. Further
any specific assumption on f(x, y, u, ux, uy), to ensure existence and uniqueness will not be
considered.

Solving the Helmholtz equations numerically by the finite difference method is attractive
and have drawn attention of the many researchers [4, 5, 6]. To obtain more accurate numerical
result for Helmholtz equation recently the sixth order finite difference method was applied
in [5, 7]. Having seen results of this method for a solution of such special boundary value
problems, we are motivated and challenged to investigate what will happen if a similar idea
is used to derive a method for numerical solution of nonlinear boundary value problems (1).

So in this paper we develop a fourth order finite difference method capable for solving
problems (1) numerically. The derivation of the method depends on difference approximation
of the derivative on discrete mesh points in the region of interest and the Helmholtz equation.
We analyse the performance of the method in reference with the different values of wave
number K in solving model problems.

The present work is organized as follows. In Section 2: we present the fourth order finite
difference approximation for elliptic problems (1). A finite difference method that exactly
satisfies the boundary conditions. A derivation of the present method is discussed in Secti-
on 3. A local truncation error and convergence of the proposed method is discussed in
Section 4 and Section 5. Finally, the application of the proposed method presented together
with illustrative numerical results has been produced to show the efficiency and accuracy of
the method in Section 6. A conclusion and discussion on the performance of the method are
presented in Section 7.

2. The finite difference method. Consider the square domain Ω = [a, b] × [a, b] for the
solution of problem (1). Let h = (b− a)/(N + 1) be the uniform mesh size in the x and y
directions of the Cartesian coordinate system parallel to the coordinate axes. Generate mesh
points (xi, yj), xi = a + ih, i = 0, 1, 2, . . . , N + 1 and yj = a + jh, , i = 0, 1, 2, . . . , N + 1.
Let us denote the interior central mesh point (xi, yj) by (i, j). Consider other mesh points
(i ± 1, j), (i, j ± 1) and (i ± 1, j ± 1) neighbouring to the central mesh point (i, j). These
nine points together constitute a compact cell. So using these notations, we can rewrite
problem (1) at mesh points (i, j) as follows,

uxxi,j + uyyi,j +K2ui,j = f(xi, yj, ui,j, uxi,j, uyi,j) (3)

Here after let us further simplify the notation and denote f(xi, yj, ui,j, uxi,j, uyi,j) as fi,j. If
the forcing function in problem (1) is f(x, y), the fourth-order finite difference method for
the problem given in [7] is

2

3
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1) +

1

6
(ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1)+

+
(−10

3
+ h2K2

(
1− h2K2

12

))
ui,j = h2

(2
3
− h2K2

12

)
fi,j +

h2

12
(fi+1,j + fi,j+1 + fi−1,j + fi,j−1).

(4)

Let us denote the exact and approximate values of the solution of (1) at mesh point (i, j)
by uij and uij, respectively. We define following approximations:

uxi,j =
ui+1,j − ui−1,j

2h
, (5)
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uxi±1,j =
±3ui±1,j ∓ 4ui,j ± ui∓1,j

2h
, (6)

uxi,j±1 =
ui+1,j±1 − ui−1,j±1

2h
, (7)

uxxi,j±1 =
ui+1,j±1 − 2ui,j±1 + ui−1,j±1

h2
, (8)

uyi,j =
ui,j+1 − ui,j−1

2h
, (9)

uyi,j±1 =
±3ui,j±1 ∓ 4ui,j ± ui,j∓1

2h
, (10)

uyi±1,j =
ui±1,j+1 − ui±1,j−1

2h
, (11)

uyyi±1,j =
ui±1,j+1 − 2ui±1,j + ui±1,j−1

h2
. (12)

Define f i±1,j = f(xi±1, yj, ui±1,j, uxi±1,j, uyi±1,j), f i,j±1 = f(xi, yj±1, ui,j±1, uxi,j±1, uyi,j±1)

uxi,j = uxi,j + a1(uxi+1,j + uxi−1,j) + a2h(uyyi+1,j − uyyi−1,j) +
h

K2
a3(f i+1,j − f i−1,j), (13)

uyi,j = uyi,j + a4(uyi,j+1 + uyi,j−1) + a5h(uxxi,j+1 − uxxi,j−1) +
h

K2
a6(f i,j+1 − f i,j−1), (14)

where am, m = 1, 2, . . . , 6, are free parameters to be determined. Finally, define

f i,j = f(xi, yj, ui,j, uxi,j, uyi,j).

Following the ideas from [7], we propose a nine points fourth order finite difference method
for the problem (1) as follows,

2

3
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1) +

1

6
(ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1)+

+
(−10

3
+ h2K2

(
1− h2K2

12

))
ui,j = h2

(2
3
− h2K2

12

)
f i,j+

+
h2

12
(f i+1,j + f i,j+1 + f i−1,j + f i,j−1) ∀ i, j = 1, 2, . . . , N. (15)

3. Derivation of the method. To develop a fourth order finite difference method for
problem (1), we apply the ideas from [8, 9, 10]. Let us define the notation we use in derivation
of the method, i.e. ∂p+qf

∂xp∂yq
= f (p,q). Using the Taylor series expansion around the point (i±1, j),

from (6) and (11) we have

uxi±1,j = uxi±1,j −
h2

3
u
(3,0)
i,j ∓ h3

12
u
(4,0)
i,j +O(h4). (16)

From (16) we obtain

uxi+1,j + uxi−1,j = 2u
(1,0)
i,j +

h2

3
u
(3,0)
i,j +O(h4), (17)

uyi±1,j = uyi±1,j +
h2

6
u
(0,3)
i,j ± h3

6
u
(1,3)
i,j +O(h4). (18)
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Define Gi±1,m = ( ∂f
∂ux

)i±1,j ,Hi±1,m = ( ∂f
∂uy

)i±1,j and from (16)–(18), we find

f i±1,j = fi±1,j +
(
−h2

3
u
(3,0)
i,j ∓ h3

12
u
(4,0)
i,j

)
Gi,j ∓

h3

3
u
(3,0)
i,j G

(1,0)
i,j +

+
(h2

6
u
(0,3)
i,j ± h3u

(1,3)
i,j

)
Hi,j ± h3u

(0,3)
i,j H

(1,0)
i,j +O(h4). (19)

Similarly we can obtain

f i,j±1 = fi,j±1 +
(h2

6
u
(3,0)
i,j ± h3u

(3,1)
i,j

)
Gi,j ± h3u

(3,0)
i,j G

(0,1)
i,j +

+
(
− h2

3
u
(0,3)
i,j ∓ h3

12
u
(0,4)
i,j

)
Hi,j ∓

h3

3
u
(0,3)
i,j H

(0,1)
i,j +O(h4). (20)

Thus from (19), we have

f i+1,j − f i−1,j = fi+1,j − fi−1,j −
h3

6
u
(4,0)
i,j Gi, j − 2h3

3
u
(3,0)
i,j G

(1,0)
i,j +

+2h3(u
(1,3)
i,j Hi,j + u

(0,3)
i,j H

(1,0)
i,j ) +O(h4) = 2hf

(1,0)
i,j +

h3

3
f
(3,0)
i,j −

−h3

6
u
(4,0)
i,j Gi, j − 2h3

3
u
(3,0)
i,j G

(1,0)
i,j + 2h3(u

(1,3)
i,j Hi,j + u

(0,3)
i,j H

(1,0)
i,j ) +O(h4) =

= 2h(u
(3,0)
i,j + u

(1,2)
i,j +K2u

(1,0)
i,j ) +

h3

3
f
(3,0)
i,j − h3

6
u
(4,0)
i,j Gi,j −

2h3

3
u
(3,0)
i,j G

(1,0)
i,j +

+2h3(u
(1,3)
i,j Hi,j + u

(0,3)
i,j H

(1,0)
i,j ) +O(h4). (21)

From (12), we have

uyyi±1,j = u
(0,2)
i±1,j +

h2

12
u
(0,4)
i,j ± h3

12
u
(1,4)
i,j +O(h4). (22)

Thus from (22),

uyyi+1,j − uyyi−1,j = 2hu
(1,2)
i,j +

h3

3

(
u
(3,2)
i,j +

1

2
u
(1,4)
i,j

)
+O(h4). (23)

From (5),

uxi,j = u
(1,0)
i,j +

h2

6
u
(3,0)
i,j +O(h4). (24)

Substituting the values from (17), (21), (23) and (24) into (13), we have

uxi,j = (1+2a1+2a3h
2)u

(1,0)
i,j +

h2

6

(
1+2a1+

12

K2
a3

)
u
(3,0)
i,j +2h2

(
a2+

1

K2
a3

)
u
(3,0)
i,j +O(h4). (25)

By similar method and from (14), we have

uyi,j = (1+2a4+2a6h
2)u

(0,1)
i,j +

h2

6

(
1+2a4+

12

K2
a6

)
u
(0,3)
i,j +2h2

(
a5+

1

K2
a6

)
u
(0,3)
i,j +O(h4). (26)

Let us assume that a1 + a3h
2 = 0 and a4 + a6h

2 = 0. Thus from (25) and (26), we have

f i,j = fi,j +
(h2

6

(
1 + 2a1 +

12

K2
a3

)
u
(3,0)
i,j + 2h2

(
a2 +

1

K2
a3

)
u
(3,0)
i,j )Gi,j+
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+
(h2

6

(
1 + 2a4 +

12

K2
a6

)
u
(0,3)
i,j + 2h2

(
a5 +

1

K2
a6

)
u
(0,3)
i,j

)
Hi,j +O(h4). (27)

So (2
3
− h2K2

12
)f i,j +

1
12
(f i+1,j + f i,j+1 + f i−1,j + f i,j−1) will provide O(h4) approximation for

(2
3
− h2K2

12
)fi,j +

1
12
(fi+1,j + fi,j+1 + fi−1,j + fi,j−1) if

a1 + a3h
2 = 0, a4 + a6h

2 = 0, 1 + 2a1 +
12

K2
a3 =

2

8− h2K2
, 1 + 2a4 +

12

K2
a6 =

2

8− h2K2
,

a2 +
1

K2
a3 = 0, a5 +

1

K2
a6 = 0. (28)

Solving system of equations (28) for ai, i = 1, 2, .., 6, we obtain

a2 = a5 =
a1

h2K2
=

a4
h2K2

=
a3

−K2
=

a6
−K2

=
1

16− 2h2K2
, (29)

provided h2K2 ̸= 8. Thus if h2K2 ̸= 8, then for the values of parameters (29) we have the
fourth order finite difference method (15) for a numerical solution of problem (1). If we write
the system of equations given by (15) at each mesh point, we will obtain either linear or
nonlinear system of equations which depends on the forcing function f .

4. Local truncation error. In this section, we consider the local truncation error associated
to the proposed difference method (15). Let the local truncation error in (15) defined as in
[11] be defined by Ti,j at the mesh point (i, j), ∀i, j = 1, 2, . . . , N ,

Ti,j =
(h2K2

12
− 2

3

)
f i,j −

1

12
(f i+1,j + f i,j+1 + f i−1,j + f i,j−1)+

+
[(−10

3h2
+K2

(
1− h2K2

12

))
ui,j+

+
1

6h2
(ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1) +

2

3h2
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1)

]
.

From (16)–(29), we conclude that

Ti,j =
(h2K2

12
− 2

3

)
fi,j −

1

12
(fi+1,j + fi,j+1 + fi−1,j + fi,j−1)+

+
[ 2

3h2
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1) +

1

6h2
(ui+1,j+1 + ui−1,j+1 + ui−1,j−1 + ui+1,j−1)+

+
(
K2

(
1− h2K2

12

)
− 10

3h2

)
ui,j

]
+O(h4). (30)

Write the right hand side of (30) in the Taylor series around the mesh point (i, j) and
simplify,

Ti,j =
h4

720
(5(u

(4,2)
i,j + u

(2,4)
i,j ) − 3(u

(6,0)
i,j + u

(0,6)
i,j ) − 5K2(u

(4,0)
i,j + u

(0,4)
i,j )) + O(h4). (31)

Thus the local truncation error in (15) is of the form O(h4).

5. Convergence of the method. We next discuss the convergence of the method and under
suitable conditions prove that the order of the convergence is O(h4). For each i, j = 1(1)N ,
let us define

ϕi,j = h2
(2
3
− h2K2

12

)
f i,j +

h2

12
(f i+1,j + f i,j+1 + f i−1,j + f i,j−1) + Boundary Values
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and error function Ei,j = ui,j − Ui,j, 1 ≤ i, j ≤ N. Let define matrix SN2×1,

S = [S1,1, S2,1, .........., SN,1, S1,2, S2,2, ........., SN,2, ......., S1,N , S1,N , ......., SN,N ]
T .

The difference method (15) represents a system of nonlinear equations in the unknown
ui,j, 1 ≤ i, j ≤ N . Using the notation S for the ϕ, u, U and T, we can write (15) in matrix
form as given below,

Du + ϕ(u) = 0, (32)

where D=[BAB]N2×N2 is a tri block diagonal matrix, in which the tri diagonal matrics
are A = [−2

3
, 10

3
− h2K2(1 − h2K2

12
),−2

3
]N×N and B = [−1

6
,−2

3
,−1

6
]N×N . If U is an exact

solution of (15), then we can write (15) in a matrix form as given below,

DU + ϕ(U) + T = 0, (33)

where T is the truncation error matrix and each element T is of O(h4). Let us define

F i±1,j = f(xi±1, yj, Ui±1,j, Uxi±1,j, Uyi±1,j), f i±1,j = f(xi±1, yj, ui±1,j, uxi±1,j, uyi±1,j),

F i,j±1 = f(xi, yj±1, Ui,j±1, Uxi,j±1, Uyi,j±1), f i,j±1 = f(xi, yj±1, ui,j±1, uxi,j±1, uyi,j±1),

F i,j = f(xi, yj, Ui,j, Uxi,j, Uyi,j), f i,j = f(xi, yj, ui,j, uxi,j, uyi,j).

After linearization of f i±1,j, we have

f i±1,j−F i±1,j = (ui±1,j−Ui±1,j)Ii±1,j+(uxi±1,j−Uxi±1,j)Gi±1,j+(uyi±1,j−Uyi±1,j)Hi±1,j,

(34)

where I = ∂f
∂U

, G = ∂f

∂Ux
and H = ∂f

∂Uy
. Similarly we linearize and write for f i,j±1 and f i,j,

f i,j±1 − F i,j±1 = (ui,j±1 − Ui,j±1)Ii,j±1 + (uxi,j±1 − Uxi,j±1)Gi,j±1 + (uyi,j±1 − Uyi,j±1)Hi,j±1.

(35)

f i,j − F i,j = (ui,j − Ui,j)Ii,j + (uxi,j − Uxi,j)G
1
i,j + (uyi,j − Uyi,j)H

1
i,j, (36)

where G1 = ∂f

∂Ux

and H1 = ∂f

∂Uy

. By the Taylor series expansions of Gi±1,j, Gi,j±1, Hi±1,j,

Hi,j±1, Ii±1,j and Ii,j±1 at the central mesh point (i, j) and from (32)–(33), we get the matrix
equation

ϕ(u)− ϕ(U) = PE, (37)

where P= (Pl,m)N2×N2 is the tri block diagonal matrix defined as,

P(m−1)N+l,(m−1)N+l =
h4K4

12
+

h2(8− h2K2)

12

{
Il,m − 4

K2
a3(G

2
l,m +H2

l,m)
}
−

−h2

3
(G

(1,0)
l,m +H

(0,1)
l,m ), [l = 1(1)N,m = 1(1)N ].

P(m−1)N+l,(m−1)N+l+1 =
h2(8− h2K2)

12

( 1

2h
+

1

h
(a4 − 2a5)+

+
1

K2
a6(2Hl,m + h(Il,m +H

(0,1)
l,m ))

)
Hl,m+
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+
h2

12

(
Il,m + 2H

(0,1)
l,m + h

(
I
(0,1)
l,m +

1

2
H

(0,2)
l,m

)
+

1

h
Hl,m

)
, [l = 1(1)N,m = 1(1)N − 1].

P(m−1)N+l,(m−1)N+l−1 =

=
h2(8− h2K2)

12

{ 1

K2
a3Hl,mGl,m +

h

2K2
a3(Gl,mH

(1,0)
l,m +G

(0,1)
l,m Hl,m)−

1

h
a2(Gl,m +Hl,m)

}
−

− 1

24
h(Hl,m +Gl,m) +

1

24
h2(H

(1,0)
l,m +G

(0,1)
l,m ), [l = 2(1)N,m = 1(1)N ].

P(m−1)N+l,mN+l =

=
h2(8− h2K2)

12

( 1

2h
+

1

h
(a1 − 2a2) +

1

K2
a3(2Gl,m + h(Il,m +G

(1,0)
l,m ))

)
Gl,m+

+
h2

12

(
Il,m + 2G

(0,1)
l,m + h

(
I
(1,0)
l,m +

1

2
G

(2,0)
l,m

)
+

1

h
Gl,m

)
, [l = 1(1)N,m = 1(1)N − 1].

P(m−1)N+l,mN+l+1 =

=
h2(8− h2K2)

12

{ 1

K2
a3Hl,mGl,m +

h

2K2
a3(Gl,mH

(1,0)
l,m +G

(0,1)
l,m Hl,m)+

+
1

h
a2(Gl,m +Hl,m)

}
+

h

24
(Hl,m +Gl,m) +

h2

24
(H

(1,0)
l,m +G

(0,1)
l,m ), [l = 1(1)N,m = 1(1)N − 1].

P(m−1)N+l,(m−1)N+l+1 =

=
h2(8− h2K2)

12

{
− 1

K2
a3Hl,mGl,m− h

2K2
a3(Gl,mH

(1,0)
l,m −G

(0,1)
l,m Hl,m)+

1

h
a2(Gl,m −Hl,m)

}
−

− h

24
(Hl,m −Gl,m)−

h2

24
(H

(1,0)
l,m +G

(0,1)
l,m ), [l = 2(1)N,m = 1(1)N − 1].

P(m−1)N+l,(m−2)N+l−1 =

=
h2(8− h2K2)

12

{
− 1

K2
a3Hl,mGl,m +

h

2K2
a3(Gl,mH

(1,0)
l,m −G

(0,1)
l,m Hl,m)−

1

h
a2(Gl,m −Hl,m)

}
+

+
h

24
(Hl,m −Gl,m)−

h2

24
(H

(1,0)
l,m +G

(0,1)
l,m ), [l = 2(1)N,m = 1(1)N − 1].

P(m−1)N+l,(m−1)N+l−1 =

h2(8− h2K2)

12

(
− 1

2h
− 1

h
(a1 − 2a2) +

1

K2
a3(2Gl,m − h(Il,m +G

(0,1)
l,m ))

)
Gl,m+

+
h2

12
(Il,m + 2G

(0,1)
l,m − h

(
I
(0,1)
l,m +

1

2
G

(0,2)
l,m

)
− 1

h
Gl,m), [l = 2(1)N,m = 1(1)N − 1].

P(m−1)N+l,mN+l−1 =
h2(8− h2K2)

12

(
− 1

2h
− 1

h
(a4 − 2a5)+

+
1

K2
a6(2Hl,m − h(Il,m +H

(0,1)
l,m ))

)
Hl,m+

+
h2

12

(
Il,m + 2H

(0,1)
l,m − h

(
I
(0,1)
l,m +

1

2
H

(0,2)
l,m − 1

h
Hl,m

))
, [l = 2(1)N,m = 1(1)N − 1].

Let there are no roundoff errors in solution of difference equations (15), so from (32), (33)
and (37) we get the error equations,

JE = T (38)

where J = (D+P) and J = (Ji,j)N2×N2 is defined as follows

J(j−1)N+i,(j−1)N+i =
10

3
− h2K2 +

h4K4

12
+

h2(8− h2K2)

12

{
Ii,j −

4

K2
a3(G

2
i,j +H2

i,j)
}
−
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−h2

3
(G

(1,0)
i,j +H

(0,1)
i,j ), [i = 1(1)N, j = 1(1)N ].

J(j−1)N+i,(j−1)N+i+1 =

= −2

3
+

h2(8− h2K2)

12

( 1

2h
+

1

h
(a4 − 2a5) +

1

K2
a6(2Hi,j + h(Ii,j +H

(0,1)
i,j ))

)
Hi,j+

+
h2

12

(
Ii,j + 2H

(0,1)
i,j + h

(
I
(0,1)
i,j +

1

2
H

(0,2)
i,j

)
+

1

h
Hi,j

)
, [i = 1(1)N, j = 1(1)N − 1].

J(j−1)N+i,(j−1)N+i−1 =

= −1

6
+

h2(8− h2K2)

12

{ 1

K2
a3Hi,jGi,j +

h

2K2
a3(Gi,jH

(1,0)
i,j +G

(0,1)
i,j Hi,j)−

−1

h
a2(Gi,j +Hi,j)

}
− h

24
(Hi,j +Gi,j) +

h2

24
(H

(1,0)
i,j +G

(0,1)
i,j ), [i = 2(1)N, j = 1(1)N ].

J(j−1)N+i,jN+i =

= −2

3
+

h2(8− h2K2)

12

( 1

2h
+

1

h
(a1 − 2a2) +

1

K2
a3(2Gi,j + h(Ii,j +G

(1,0)
i,j ))

)
Gi,j+

+
h2

12

(
Ii,j + 2G

(0,1)
i,j + h

(
I
(1,0)
i,j +

1

2
G

(2,0)
i,j

)
+

1

h
Gi,j

)
, [i = 1(1)N, j = 1(1)N − 1].

J(j−1)N+i,jN+i+1 =

= −1

6
+

h2(8− h2K2)

12

{ 1

K2
a3Hi,jGi,j +

h

2K2
a3(Gi,jH

(1,0)
i,j +G

(0,1)
i,j Hi,j)+

+
1

h
a2(Gi,j +Hi,j)

}
+

h

24
(Hi,j +Gi,j) +

h2

24
(H

(1,0)
i,j +G

(0,1)
i,j ), [i = 1(1)N, j = 1(1)N − 1].

J(j−1)N+i,(j−1)N+i+1 = −1

6
+

h2(8− h2K2)

12

{
− 1

K2
a3Hi,jGi,j −

h

2
a3(Gi,jH

(1,0)
i,j −G

(0,1)
i,j Hi,j)+

+
1

h
a2(Gi,j −Hi,j)

}
− h

24
(Hi,j −Gi,j)−

h2

24
(H

(1,0)
i,j +G

(0,1)
i,j ), [i = 2(1)N, j = 1(1)N − 1].

J(j−1)N+i,(j−2)N+i−1 =

= −1

6
+

h2(8− h2K2)

12

{
− 1

K2
a3Hi,jGi,j +

h

2K2
a3(Gi,jH

(1,0)
i,j −G

(0,1)
i,j Hi,j)

−1

h
a2(Gi,j −Hi,j)

}
+

h

24
(Hi,j −Gi,j)−

h2

24
(H

(1,0)
i,j +G

(0,1)
i,j ), [i = 2(1)N, j = 1(1)N − 1].

J(j−1)N+i,(j−1)N+i−1 =

=
h2(8− h2K2)

12

(
− 1

2h
− 1

h
(a1 − 2a2) +

1

K2
a3(2Gi,j − h(Ii,j +G

(0,1)
i,j ))

)
Gi,j−

−2

3
+

h2

12
(Ii,j + 2G

(0,1)
i,j − h

(
I
(0,1)
i,j +

1

2
G

(0,2)
i,j

)
− 1

h
Gi,j), [i = 2(1)N, j = 1(1)N − 1].

J(j−1)N+i,jN+i−1 =

=
−2

3
+

h2(8− h2K2)

12

(
− 1

2h
− 1

h
(a4 − 2a5) +

1

K2
a6(2Hi,j − h(Ii,j +H

(0,1)
i,j ))

)
Hi,j

+
h2

12

(
Ii,j + 2H

(0,1)
i,j − h

(
I
(0,1)
i,j +

1

2
H

(0,2)
i,j − 1

h
Hi,j

))
, [i = 2(1)N, j = 1(1)N − 1].

Define the sets I0 = {Ii±1,j, Ii,j±1, Ii,j}, G0 = {Gi±1,j, Gi,j±1, G
1
i,j}, H0 = {Hi±1,j, Hi,j±1, H

1
i,j},

Dx = {Gxi,j, Hxi,j}, Dy = {Gyi,j, Hyi,j}.
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Let Ω = ∂Ω ∪ Ω and
I∗ = min

(x,y)∈Ω

∂f

∂u
, I∗ = max

(x,y)∈Ω

∂f

∂u
.

Then I∗ ≥ t ≥ I∗, ∀t ∈ I0. Let us assume that

q1 > |G0| > 0, q2 > |H0| > 0, q3 > |Dx| > 0, q4 > |Dy| > 0,

max|{q1, q2}| < 27
8

and |q1 + q2| < 4. It is easy to verify for sufficiently small h that J has
positive diagonal and negative non diagonal elements. Thus J is a row diagonally dominant
matrix. Let J be the adjacency matrix of some graph GJ . We may easily prove that the
graph GJ is strongly connected. From this fact it follows that the adjacency matrix J is
irreducible [13]. By the row sum criterion it follows that J is monotone [12]. Thus there
exists the positive J−1. Thus from (38), we have

∥E∥∞ ≤ ∥J−1∥∞∥T∥∞. (39)

For the bounds of (J)−1, let R = [R1, R2, ......., RN2 ]T denote the row sums of J = (Ji,j)N2×N2 .
It is easy to verify for sufficiently small h,

R1 =
11

6
+ hK2

(1
2
+ a1 − 2a2

)
+ h

((
K2(a1 − 2a2) +

1

8

)
G1,1 +

1

8
H1,1

)
, (40)

R1 >
11
6
, if 2 ≤ h2K2 < 8. Similarly we can define bounds for Rk, k = 1, . . . N2. Let us define

([14, 15]),

Ri(J) = 2(|Ji,i|)−
N2∑
i=1

|Ji,j| , j = 1, 2, . . . , N2,

and R∗(J) = min1≤i≤N2 Ri(J). Let us assume that Ri(J) ≥ 0, then

∥J−1∥∞ ≤ 1

R∗(J)
. (41)

Thus from (39) and (40), we have

∥E∥∞ ≤ 1

R∗(J)
∥T∥∞. (42)

With the help of (31) and (42), for sufficiently small h, we have

∥E∥ ≤ O(h4). (43)

Thus the proposed difference method (15) converges and the order of the convergence is four.

6. Numerical experiments. We have tested the validity and accuracy of the proposed
finite difference method on uniform mesh on linear and nonlinear model problems. We have
considered nonlinear and linear Helmholtz type equations with the Dirichlet boundary condi-
tions in Cartesian coordinate system regardless the magnitude of the wave number K. We
consider a square as the region of integration which covered with a uniform sub square mesh
of side h. To solve the resulting system of equations which we got after discretization of
the problems, we have used the Gauss-Seidel and the Newton-Raphson methods for linear
and nonlinear equations respectively. In the tables, we have shown the maximum absolute
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error MAE at discrete mesh points, computed for different values of N , using the following
formula,

MAE = max
1≤i,j≤N

|u(xi, yj)− ui,j|,

where ui,j and u(xi, yj) are the value computed by method (15) and the exact value respecti-
vely. All computations were made on the Windows 2007 Ultimate operating system in the
GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20
Ghz PC. The stopping condition for iteration was either error of order 10−10 or number of
iterations 105.

Problem 1. Consider the nonlinear equation

∂2u

∂x2
+

∂2u

∂y2
+K2u = u

(∂u
∂x

+
∂u

∂x

)
+ f(x, y), 0 < x, y < 1,

where u(x; y) is subject to the boundary conditions on all sides of the unit square. The
right hand side of f(x, y) is given such that the exact solution is u(x, y) = exp(K(x + y)).
The resulting system of nonlinear equations is solved by the Newton Raphson method by
guessing zero as initial solution. In table 1, we have presented the computed value of MAE
for different values of N and K for the constructed solution.

Table 1. Maximum absolute errors in u(x, y) = exp(K(x+ y)) for Problem 1.

MAE
N

K 4 8 16 32
.80 .22828579e-2.54621696e-3.13017654e-3.24795532e-4
.60 .10316372e-2.26750565e-3.60319901e-4.61988831e-5
.40 .25475025e-3.67353249e-4.16927719e-4.95367432e-6
.20 .24914742e-4.60796738e-5.35762787e-6.40531158e-5

Problem 2. Consider the linear model problem: to find a solution of the equation

∂2u

∂x2
+

∂2u

∂y2
+ (K2 − 1)u = 0, 0 < x, y < π,

satisfying the boundary conditions on all sides of the unit square. The exact solution is
u(x, y) = exp(x) sin(Ky). In Table 2, we have presented the computed MAE for different
values of N and K for the considered exact solution.
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Table 2. Maximum absolute errors in u(x, y) = exp(x) sin(Ky) for Problem 2.

MAE
N

K 8 16 32
1.6 .75311661e-2.40674210e-3.53405762e-4
.8 .92601776e-3.36239624e-4.38146973e-5
.4 .32663345e-3.17642975e-4.28610229e-5
.2 .13065338e-3.73909760e-5.57220459e-5

Problem 3. Consider the problem of the nonlinear convection equation ([6]): to find a
solution of

∂2u

∂x2
+

∂2u

∂y2
+K2u = u2 + f(x, y), 0 < x, y < 1,

that satisfies the boundary conditions on all sides of the unit square. The function f(x, y)
is given such that the exact solution is u(x, y) = exp(−Kx) sin(y). In Table 3, we have
presented the computed MAE for different values of N and K for the considered exact
solution.

Table 3. Maximum absolute errors in u(x, y) = exp(−Kx) sin(y) for Problem 3.

MAE
N

K 4 8 16 32
.8 .11911988e-3.76889992e-5.41723251e-6.11920929e-6
.4 .35423040e-3.22351742e-4.11920929e-5.11920929e-6
.2 .42659044e-3.26106834e-4.14901161e-5.11324883e-5
.1 .46092272e-3.28192997e-4.21457672e-5.14901161e-6

7. Conclusion. In this paper we have applied the finite difference method for numeri-
cal solution of Helmholtz type PDEs. We have described the fourth order and the Diri-
chlet boundary conditions incorporated into the method in natural way. Under appropriate
assumptions, we have discussed the convergence of the proposed method. We found that in
one model problem, the proposed method converges, but the order of convergence depends
on the wave number K, and for some value of K it is not in agreement with the estimated
order. Thus we conclude that the order of the method in numerical experiment may depend
on the approximations used in experiment and the wave number K. Over all the results
we obtained in numerical experiment with model problems are in good agreement to the
estimated order of the method. The numerical experiments show that this proposed method
has a good numerical stability in model problems. Our future work will be to develop the
numerical method independent of K to solve boundary value problems and improve the
computational performance; work in this specific direction is in progress.
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