A. I. Bandura

SUM OF ENTIRE FUNCTIONS OF BOUNDED L-INDEX IN DIRECTION

Abstract

A. I. Bandura. Sum of entire functions of bounded L-index in direction, Mat. Stud. 45 (2016), 149-158.

It is proved that an entire function F has bounded L-index in a direction \mathbf{b} in arbitrary bounded domain G under the assumption that F does not equal identically zero on the slice $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$ for all $z^{0} \in G$. Also it is obtained sufficient conditions of boundedness of L-index in direction for the sum of entire functions. They are new for entire functions of bounded l-index of one complex variable too. As a corollary, a class of entire functions of strongly bounded L-index in a direction matches with a class of entire functions of bounded L-index in the same direction. Moreover, we gave a negative answer to the question of Prof. S. Yu. Favorov: whether it is possible in theory of bounded L-index in direction to replace the assumption that F is holomorphic in \mathbb{C}^{n} by the assumption that F is holomorphic on every slice $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$ for all $z^{0} \in \mathbb{C}^{n}$.

1. Introduction. To state the problems we need some notation and definitions.

An entire function $F(z), z \in \mathbb{C}^{n}$, is called (see [1]-[5]) a function of bounded L-index in a direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$, if there exists $m_{0} \in \mathbb{Z}_{+}$such that for every $m \in \mathbb{Z}_{+}$and every $z \in \mathbb{C}^{n}$

$$
\begin{equation*}
\frac{1}{m!L^{m}(z)}\left|\frac{\partial^{m} F(z)}{\partial \mathbf{b}^{m}}\right| \leq \max \left\{\frac{1}{k!L^{k}(z)}\left|\frac{\partial^{k} F(z)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq m_{0}\right\} \tag{1}
\end{equation*}
$$

where $\frac{\partial^{0} F(z)}{\partial \mathbf{b}^{0}}:=F(z), \frac{\partial F(z)}{\partial \mathbf{b}}:=\sum_{j=1}^{n} \frac{\partial F(z)}{\partial z_{j}} b_{j}=\langle\operatorname{grad} F, \overline{\mathbf{b}}\rangle, \frac{\partial^{k} F(z)}{\partial \mathbf{b}^{k}}:=\frac{\partial}{\partial \mathbf{b}}\left(\frac{\partial^{k-1} F(z)}{\partial \mathbf{b}^{k-1}}\right), k \geq 2$.
The least such integer $m_{0}=m_{0}(\mathbf{b})$ is called the L-index in the direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ of the entire function $F(z)$ and is denoted by $N_{\mathbf{b}}(F, L)=m_{0}$. If such m_{0} does not exist then F is called a function of unbounded L-index in the direction \mathbf{b} and we suppose that $N_{\mathbf{b}}(F, L)=\infty$. If $L(z) \equiv 1$ then $F(z)$ is called a function of bounded index in the direction \mathbf{b} and $N_{\mathbf{b}}(F)=N_{\mathbf{b}}(F, 1)$.

Let D be an arbitrary bounded domain in \mathbb{C}^{n}. If inequality (1) holds for all $z \in D$ instead of \mathbb{C}^{n} then F is called a function of bounded L-index in the direction \mathbf{b} in the domain D. The least such integer m_{0} is called the L-index in the direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ in the domain D and is denoted by $N_{\mathbf{b}}(F, L, D)=m_{0}$.

In the case $n=1$ and $\mathbf{b}=1$ we obtain the definition of entire function of one variable of bounded l-index (see [6]). Then $N(f, l)=N_{1}(f, l)$. In the case $n=1, \mathbf{b}=1$ and $L(z) \equiv 1$ it is reduced to the definition of the function of bounded index, supposed by B. Lepson [7].

[^0]Note that results from our paper [1] are included also in the monograph [5].
For $\eta>0, z \in \mathbb{C}^{n}, \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ and a positive continuous function $L: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$we define

$$
\begin{gathered}
\lambda_{1}^{\mathbf{b}}\left(z, t_{0}, \eta\right)=\inf \left\{\frac{L(z+t \mathbf{b})}{L\left(z+t_{0} \mathbf{b}\right)}:\left|t-t_{0}\right| \leq \frac{\eta}{L\left(z+t_{0} \mathbf{b}\right)}\right\}, \\
\lambda_{1}^{\mathbf{b}}(z, \eta)=\inf \left\{\lambda_{1}^{\mathbf{b}}\left(z, t_{0}, \eta\right): t_{0} \in \mathbb{C}\right\}, \quad \lambda_{1}^{\mathbf{b}}(\eta)=\inf \left\{\lambda_{1}^{\mathbf{b}}(z, \eta): z \in \mathbb{C}^{n}\right\} \\
\lambda_{2}^{\mathbf{b}}\left(z, t_{0}, \eta\right)=\sup \left\{\frac{L(z+t \mathbf{b})}{L\left(z+t_{0} \mathbf{b}\right)}:\left|t-t_{0}\right| \leq \frac{\eta}{L\left(z+t_{0} \mathbf{b}\right)}\right\}, \\
\lambda_{2}^{\mathbf{b}}(z, \eta)=\sup \left\{\lambda_{2}^{\mathbf{b}}\left(z, t_{0}, \eta\right): t_{0} \in \mathbb{C}\right\}, \quad \lambda_{2}^{\mathbf{b}}(\eta)=\sup \left\{\lambda_{2}^{\mathbf{b}}(z, \eta): z \in \mathbb{C}^{n}\right\} .
\end{gathered}
$$

By $Q_{\mathbf{b}}^{n}$ we denote the class of functions L which satisfy the condition

$$
\begin{equation*}
(\forall \eta \geq 0): 0<\lambda_{1}^{\mathbf{b}}(\eta) \leq \lambda_{2}^{\mathbf{b}}(\eta)<+\infty \tag{2}
\end{equation*}
$$

If $n=1$ and $\mathbf{b}=1$ then we use the notation $Q=Q_{1}^{1}$.
It is known that a product of two entire functions of bounded L-index in direction is a function from the same class (see [5], [8]). But the class of entire functions of bounded index is not closed under addition. The example was constructed by W. Pugh (see [9] and [10]). Recently we generalized Pugh's example for entire functions of bounded L-index in direction ([8]).

Meanwhile, there are sufficient conditions for index boundedness for the sum of two entire functions ([9]). But similar conditions for entire functions of bounded L-index in direction or even of bounded l-index are not known. Therefore, in the present article the following natural question is considered: what are sufficient conditions for L-index boundedness in direction for the sum of two entire functions?

We need the following theorem.
Theorem $1([1,5])$. Let $L \in Q_{\mathrm{b}}^{n}$. An entire function $F(z)$ in \mathbb{C}^{n} is of bounded L-index in the direction \mathbf{b} if and only if for every r_{1} and r_{2} such that $0<r_{1}<r_{2}<+\infty$, there exists a number $P_{1}=P_{1}\left(r_{1}, r_{2}\right) \geq 1$ such that for each $z^{0} \in \mathbb{C}^{n}$ and $t_{0} \in \mathbb{C}$

$$
\begin{align*}
& \max \left\{\left|F\left(z^{0}+t \mathbf{b}\right)\right|:\left|t-t_{0}\right|=\frac{r_{2}}{L\left(z^{0}+t_{0} \mathbf{b}\right)}\right\} \leq \\
\leq & P_{1} \max \left\{\left|F\left(z^{0}+t \mathbf{b}\right)\right|:\left|t-t_{0}\right|=\frac{r_{1}}{L\left(z_{0}+t_{0} \mathbf{b}\right)}\right\} \tag{3}
\end{align*}
$$

2. Boundedness of L-index in direction in a bounded domain. By \bar{D} we denote the closure of a domain D.

Theorem 2. Let D be an arbitrary bounded domain in \mathbb{C}^{n}. If $L: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$is a continuous function and $F(z)$ is an entire function such that $\left(\forall z^{0} \in \bar{D}\right): \quad F\left(z^{0}+t \mathbf{b}\right) \not \equiv 0$ then $N_{\mathbf{b}}(F, L, D)<\infty$ for every $\mathbf{b} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$.

Proof. For every fixed $z^{0} \in \bar{D}$ we expand the entire function $F\left(z^{0}+t \mathbf{b}\right)$ in a power series by powers of t

$$
\begin{equation*}
F\left(z^{0}+t \mathbf{b}\right)=\sum_{m=0}^{\infty} \frac{1}{m!} \frac{\partial^{p} F\left(z^{0}\right)}{\partial \mathbf{b}^{m}} t^{m} \tag{4}
\end{equation*}
$$

in the disk $\left\{t \in \mathbb{C}:|t| \leq \frac{1}{L\left(z^{0}\right)}\right\}$.
The quantity $\frac{1}{m!L^{m}\left(z^{0}\right)}\left|\frac{\partial^{m} F\left(z^{0}\right)}{\partial \mathbf{b}^{m}}\right|$ is the modulus of a coefficient of the power series (4) at a point $t \in \mathbb{C}$ such that $|t|=\frac{1}{L\left(z^{0}\right)}$. Since $F(z)$ is entire, for every $z_{0} \in \bar{D}$

$$
\frac{1}{m!L^{m}\left(z^{0}\right)}\left|\frac{\partial^{m} F\left(z^{0}\right)}{\partial \mathbf{b}^{m}}\right| \rightarrow 0 \quad(m \rightarrow \infty)
$$

i.e. there exists $m_{0}=m\left(z^{0}, \mathbf{b}\right)$ such that inequality (1) holds at $z=z^{0}$ for all $m \in \mathbb{Z}_{+}$.

We prove that $\sup \left\{m_{0}: z^{0} \in \bar{D}\right\}<+\infty$. Assume on the contrary that the set of m_{0} is unbounded in z^{0}, i.e. $\sup \left\{m_{0}: z^{0} \in \bar{D}\right\}=+\infty$. Hence, for every $m \in \mathbb{Z}_{+}$there exist $z^{(m)} \in \bar{D}$ and $p_{m}>m$

$$
\begin{equation*}
\frac{1}{p_{m}!L^{p_{m}}\left(z^{(m)}\right)}\left|\frac{\partial^{p_{m}} F\left(z^{(m)}\right)}{\partial \mathbf{b}^{p_{m}}}\right|>\max \left\{\frac{1}{k!L^{k}\left(z^{(m)}\right)}\left|\frac{\partial^{k} F\left(z^{(m)}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq m\right\} . \tag{5}
\end{equation*}
$$

Since $\left\{z^{(m)}\right\} \subset \bar{D}$, there exists a subsequence $z^{\prime(m)} \rightarrow z^{\prime} \in \bar{G}$ as $m \rightarrow+\infty$. By Cauchy's integral formula

$$
\frac{1}{p!} \frac{\partial^{p} F(z)}{\partial \mathbf{b}}=\frac{1}{2 \pi i} \int_{|t|=r} \frac{F(z+t \mathbf{b})}{t^{p+1}} d t
$$

for any $p \in \mathbb{N}, z \in D$. We rewrite (5) in the form

$$
\begin{align*}
& \quad \max \left\{\frac{1}{k!L^{k}\left(z^{(m)}\right)}\left|\frac{\partial^{k} F\left(z^{(m)}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq m\right\}< \\
& <\frac{1}{L^{p_{m}}\left(z^{(m)}\right)} \int_{|t|=r / L\left(z^{(m)}\right)} \frac{\left|F\left(z^{(m)}+t \mathbf{b}\right)\right|}{|t|^{p_{m}+1}}|d t| \leq \frac{1}{r^{p_{m}}} \max \left\{|F(z)|: z \in D_{r}\right\} \tag{6}
\end{align*}
$$

where $D_{r}=\bigcup_{z^{*} \in \bar{D}}\left\{z \in \mathbb{C}^{n}:\left|z-z^{*}\right| \leq \frac{|b| r}{L\left(z^{*}\right)}\right\}$. We can choose $r>1$ because F is entire. Evaluating the limit for every fixed directional derivative in (6) as $m \rightarrow \infty$ we obtain

$$
\left(\forall k \in \mathbb{Z}_{+}\right): \quad \frac{1}{k!L^{k}\left(z^{\prime}\right)}\left|\frac{\partial^{k} F\left(z^{\prime}\right)}{\partial \mathbf{b}^{k}}\right| \leq \varlimsup_{m \rightarrow \infty} \frac{1}{r^{p_{m}}} \max \left\{|F(z)|: z \in D_{r}\right\} \leq 0
$$

as $m \rightarrow+\infty$. Thus, all derivatives in the direction \mathbf{b} of the function F at the point z^{\prime} equals 0 and $F\left(z^{\prime}\right)=0$. In view of (4) $F\left(z^{\prime}+t \mathbf{b}\right) \equiv 0$. It is a contradiction.

The proof of Theorem 2 is published also in [5, Th.3.2, p.62-64].
Remark 1. Perhaps, the assumption $(\forall z \in \bar{D}): F(z+t \mathbf{b}) \not \equiv 0$ in Theorem 2 not necessary. But nowadays we do not know a rigorous proof of the theorem without this assumption. There was published proof of Theorem 2 in [2] with gaps. Let $M=\max \{|F(z)|: z \in D\}$ and $\varepsilon>0$. If $F\left(z^{0}+t \mathbf{b}\right) \equiv 0$ for some $z^{0} \in \bar{D}$ then by Theorem 2 the function $G(z)=F(z)+M+\varepsilon$ has bounded L-index in domain D in any direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{0\}$.
3. Sufficient conditions of boundedness of L-index in direction for sum of entire functions. We consider an arbitrary hyperplane $A=\left\{z \in \mathbb{C}^{n}:\langle z, c\rangle=1\right\}$, where $\langle c, \mathbf{b}\rangle \neq 0$. Obviously that $\bigcup_{z^{0} \in A}\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}=\mathbb{C}^{n}$.

Let $z^{0} \in A$ be a given point. If $F\left(z^{0}+t \mathbf{b}\right) \not \equiv 0$ as a function of variable $t \in \mathbb{C}$ then there exists $t_{0} \in \mathbb{C}$ such that $F\left(z^{0}+t_{0} \mathbf{b}\right) \neq 0$. Thus, for every line $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$
$F\left(z^{0}+t \mathbf{b}\right) \not \equiv 0$ we fixe point t_{0}. By B we denote the union of those points $z^{0}+t_{0} \mathbf{b}$ i. e.

$$
B=\bigcup_{\substack{z^{0} \in A \\ F\left(z^{0}+t \mathbf{b}\right) \neq 0}}\left\{z^{0}+t_{0} \mathbf{b}\right\} .
$$

Clearly that for every $z \in \mathbb{C}^{n}$ there exist $z^{0} \in A$ and $t \in \mathbb{C}$ with the property $z=z^{0}+t \mathbf{b}$. Indeed,

$$
z^{0}=z+\frac{1-\langle z, c\rangle}{\langle\mathbf{b}, c\rangle} \mathbf{b}, t=\frac{\langle z, c\rangle-1}{\langle\mathbf{b}, c\rangle}
$$

Theorem 3. Let L be the positive continuous function, F, G be entire in \mathbb{C}^{n} functions satisfying the following conditions:

1) $G(z)$ has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{0\}$ with $N_{b}(G, L)=N<+\infty$;
2) there exists $\alpha \in(0,1)$ such that for all $z \in \mathbb{C}^{n}$ and $p \geq N+1(p \in \mathbb{N})$

$$
\begin{equation*}
\frac{1}{p!L^{p}(z)}\left|\frac{\partial^{p} G(z)}{\partial \mathbf{b}^{p}}\right| \leq \alpha \max \left\{\frac{1}{k!L^{k}(z)}\left|\frac{\partial^{k} G(z)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq N\right\} \tag{7}
\end{equation*}
$$

3) for every $z=z^{0}+t \mathbf{b} \in \mathbb{C}^{n}$, where $z^{0} \in A, z^{0}+t_{0} \mathbf{b} \in B$ and $r=\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right)$ the inequality

$$
\begin{gather*}
\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\leq \max \left\{\frac{1}{k!L^{k}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{k} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq N\right\} \tag{8}
\end{gather*}
$$

is valid;
4) $(\exists c>0)\left(\forall z^{0}+t_{0} \mathbf{b} \in B\right)\left(\forall t \in \mathbb{C},\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right) \leq 1\right)$:

$$
\begin{equation*}
\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{L\left(z^{0}+t \mathbf{b}\right)}\right\} /\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right| \leq c<+\infty \tag{9}
\end{equation*}
$$

or for $L \in Q_{\mathbf{b}}^{n} \quad(\exists c>0)\left(\forall z^{0}+t_{0} \mathbf{b} \in B\right)$:

$$
\begin{equation*}
\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 \lambda_{2}^{\mathbf{b}}(1)}{L\left(z^{0}+t_{0} \mathbf{b}\right)}\right\} /\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right| \leq c<+\infty \tag{10}
\end{equation*}
$$

Then for each $\varepsilon \in \mathbb{C},|\varepsilon| \leq \frac{1-\alpha}{2 c}$, the function

$$
\begin{equation*}
H(z)=G(z)+\varepsilon F(z) \tag{11}
\end{equation*}
$$

is of bounded L-index in the direction \mathbf{b} and $N_{\mathbf{b}}(H, L) \leq N$.
Proof. We write Cauchy's formula for the entire function $F\left(z^{0}+t \mathbf{b}\right)$ as a function of one complex variable t

$$
\begin{equation*}
\frac{1}{p!} \frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}=\frac{1}{2 \pi i} \int_{\left|t^{\prime}-t\right|=\frac{r}{L\left(z^{0}+t \mathbf{b}\right)}} \frac{F\left(z^{0}+t^{\prime} \mathbf{b}\right)}{\left(t^{\prime}-t\right)^{p+1}} d t^{\prime} . \tag{12}
\end{equation*}
$$

For the chosen $r=\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right)$ the following inequality holds

$$
\frac{r}{L\left(z^{0}+t \mathbf{b}\right)}=\left|t^{\prime}-t\right| \geq\left|t^{\prime}-t_{0}\right|-\left|t-t_{0}\right|=\left|t^{\prime}-t_{0}\right|-\frac{r}{L\left(z^{0}+t \mathbf{b}\right)} .
$$

Hence,

$$
\begin{equation*}
\left|t^{\prime}-t_{0}\right| \leq \frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)} \tag{13}
\end{equation*}
$$

Equality (12) yields

$$
\begin{gather*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \frac{1}{2 \pi L^{p}\left(z^{0}+t \mathbf{b}\right)} \cdot \frac{L^{p+1}\left(z^{0}+t \mathbf{b}\right)}{r^{p+1}} \times \\
\times \frac{2 \pi r}{L\left(z^{0}+t \mathbf{b}\right)} \cdot \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t\right|=\frac{r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\quad \leq \frac{1}{r^{p}} \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \tag{14}
\end{gather*}
$$

If $r=\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right)>1$ then (14) implies

$$
\begin{equation*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \tag{15}
\end{equation*}
$$

Let $r=\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right) \in(0 ; 1]$. Setting $r=1$ in (12) and (13) we similarly deduce

$$
\begin{gather*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{L\left(z^{0}+t \mathbf{b}\right)}\right\}= \\
=\frac{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{L\left(z^{0}+t \mathbf{b}\right)}\right\}}{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\}} \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\leq \frac{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{L\left(z^{0}+t \mathbf{b}\right)}\right\}}{\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right|} \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\leq c \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\}, \tag{16}
\end{gather*}
$$

where

$$
c=\sup _{z^{0}+t_{0} \mathbf{b} \in B} \sup _{\substack{t \in \mathbb{C},\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right) \leq 1}} \frac{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{L\left(z^{0}+t \mathbf{b}\right)}\right\}}{\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right|} \geq 1 .
$$

If $L \in Q$ then $\sup \left\{\frac{L\left(z^{0}+t_{0} \mathbf{b}\right)}{L\left(z^{0}+t \mathbf{b}\right)}:\left|t-t_{0}\right| \leq \frac{1}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \lambda_{2}^{\mathbf{b}}(1)$. This means that $L\left(z^{0}+t \mathbf{b}\right) \geq$ $\frac{L\left(z^{0}+t_{0} \mathbf{b}\right)}{\lambda_{2}^{\mathrm{b}}(1)}$. Using this inequality we choose

$$
c:=\sup _{z^{0}+t_{0} \mathbf{b} \in B} \frac{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 \lambda_{2}^{\mathbf{b}}(1)}{L\left(z^{0}+t_{0} \mathbf{b}\right)}\right\}}{\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right|} \geq 1
$$

in (16). In view of (15) and (16) we have

$$
\begin{equation*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq c \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \tag{17}
\end{equation*}
$$

for all $p \in \mathbb{N} \cup\{0\}, r \geq 0, z^{0} \in A, t \in \mathbb{C}$.
We differentiate (11) p times, $p \geq N+1$, and then apply (7), (17) and (8)

$$
\begin{gather*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} H\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \\
\leq \frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right|+\frac{|\varepsilon|}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \\
\leq \alpha \max \left\{\frac{1}{k!L^{k}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{k} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq N\right\}+ \\
\quad+c|\varepsilon| \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\leq(\alpha+c|\varepsilon|) \max \left\{\frac{1}{k!L^{k}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{k} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq N\right\} . \tag{18}
\end{gather*}
$$

If $s \leq N$, then (17) is true with $p=s$, but (7) does not hold. Therefore, the differentiation of (11) leads to the following estimate

$$
\begin{gather*}
\frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} H\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right| \geq \\
\geq \frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right|-\frac{|\varepsilon|}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} F\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right| \geq \\
\geq \frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right|-c|\varepsilon| \max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\}, \tag{19}
\end{gather*}
$$

where $0 \leq s \leq N$. Hence, (8) and (19) imply that

$$
\begin{equation*}
\max _{0 \leq s \leq N}\left\{\frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} H\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right|\right\} \geq(1-c|\varepsilon|) \max _{0 \leq s \leq N}\left\{\frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right|\right\} \tag{20}
\end{equation*}
$$

If $c|\varepsilon|<1$, then (18) and (20) yield

$$
\begin{equation*}
\frac{1}{p!L^{p}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{p} H\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{p}}\right| \leq \frac{\alpha+c|\varepsilon|}{1-c|\varepsilon|} \max _{0 \leq s \leq N}\left\{\frac{1}{s!L^{s}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{s} H\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{s}}\right|\right\} \tag{21}
\end{equation*}
$$

for $p \geq N+1$. We assume that $\frac{\alpha+c|\varepsilon|}{1-c|\varepsilon|} \leq 1$. Hence, $|\varepsilon| \leq \frac{1-\alpha}{2 c}$.
Let $N_{\mathbf{b}}\left(z^{0}+t \mathbf{b}, L, F\right)$ be the L-index in direction of the function F at the point $z^{0}+t \mathbf{b}$, i. e. $N_{\mathbf{b}}\left(z^{0}+t \mathbf{b}, L, F\right)$ is the smallest number m_{0} for which inequality (1) holds with $z=z^{0}+t \mathbf{b}$.

For $|\varepsilon| \leq \frac{1-\alpha}{2 c}$ validity of inequality (21) means that for any $z^{0} \in A$ and any $t \in \mathbb{C}$ such that $F\left(z^{0}+t \mathbf{b}\right) \neq 0$ the L-index in direction at the point $z^{0}+t \mathbf{b}$ is not greater than N i. e. $N_{\mathbf{b}}\left(z^{0}+t \mathbf{b}, F, L\right) \leq N$.

If for some $z^{0} \in A F\left(z^{0}+t \mathbf{b}\right) \equiv 0$ then $H\left(z^{0}+t \mathbf{b}\right) \equiv G\left(z^{0}+t \mathbf{b}\right)$ and $N_{\mathbf{b}}\left(z^{0}+t \mathbf{b}, F, L\right)=$ $N_{\mathbf{b}}\left(z^{0}+t \mathbf{b}, G, L\right) \leq N$. Therefore, $H(z)$ is of bounded L-index in the direction \mathbf{b} with $N_{\mathbf{b}}(H, L) \leq N$. This completes the proof of Theorem 3.

Remark 2. Every entire function F with $N_{\mathbf{b}}(F, L)=0$ satisfies inequality (10) (see the proof of necessity of Theorem 2.1 in [5, p. 20-24]).

If $n=1, \mathbf{b}=1, L=l, F=f$ then we obtain the following corollary.
Corollary 1. Let l be positive continuous function, f, g be entire in \mathbb{C} functions, t_{0} be some point such that $f\left(t_{0}\right) \neq 0$, satisfying the following conditions:

1) $g(z)$ has bounded l-index with $N(g, l)=N<+\infty$;
2) there exists $\alpha \in(0,1)$ such that for all $z \in \mathbb{C}$ and $p \geq N+1(p \in \mathbb{N})$

$$
\frac{\left|g^{(p)}(z)\right|}{p!l^{p}(z)} \leq \alpha \max \left\{\frac{\left|g^{(k)}(z)\right|}{k!l^{k}(z)}: 0 \leq k \leq N\right\} ;
$$

3) for every $t \in \mathbb{C}$, and $r=\left|t-t_{0}\right| l(t)$:

$$
\max \left\{\left|f\left(t^{\prime}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{l(t)}\right\} \leq \max \left\{\frac{\left|g^{(k)}(t)\right|}{k!l^{k}(t)}: 0 \leq k \leq N\right\} ;
$$

4) $(\exists c>0)\left(\forall t \in \mathbb{C},\left|t-t_{0}\right| l(t) \leq 1\right): \max \left\{\left|f\left(t^{\prime}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2}{l(t)}\right\} /\left|f\left(t_{0}\right)\right| \leq c<+\infty$, or for $l \in Q$ we put $c=\max \left\{\left|f\left(t^{\prime}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 \lambda_{2}^{\mathrm{L}}(1)}{l\left(t_{0}\right)}\right\} /\left|f\left(t_{0}\right)\right|$.
Then for each $\varepsilon \in \mathbb{C},|\varepsilon| \leq \frac{1-\alpha}{2 c}$, the function $h(z)=g(z)+\varepsilon f(z)$ is of bounded l-index and $N(h, l) \leq N$.

Corollary 1 is a generalization of Pugh's result [9] for l-index.
If $L \in Q_{\mathrm{b}}^{n}$ then Condition 2) in Theorem 3 always holds. The following theorem is true.
Theorem 4. Let $L \in Q_{\mathbf{b}}^{n}, \alpha \in(0,1)$ and F, G be entire in \mathbb{C}^{n} functions satisfying the conditions:

1) $G(z)$ has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{0\}$.
2) for every $z=z^{0}+t \mathbf{b} \in \mathbb{C}^{n}$, where $z^{0} \in A, z^{0}+t_{0} \mathbf{b} \in B$ and $r=\left|t-t_{0}\right| L\left(z^{0}+t \mathbf{b}\right)$ the following inequality is valid

$$
\begin{gathered}
\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{L\left(z^{0}+t \mathbf{b}\right)}\right\} \leq \\
\leq \max \left\{\frac{1}{k!L^{k}\left(z^{0}+t \mathbf{b}\right)}\left|\frac{\partial^{k} G\left(z^{0}+t \mathbf{b}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)\right\} . \\
\text { 3) } c:=\sup _{z^{0}+t_{0} \mathbf{b} \in B} \frac{\max \left\{\left|F\left(z^{0}+t^{\prime} \mathbf{b}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 \lambda_{0}^{\mathbf{b}}(1)}{L\left(z^{0}+t_{0} \mathbf{b}\right)}\right\}}{\left|F\left(z^{0}+t_{0} \mathbf{b}\right)\right|}<\infty .
\end{gathered}
$$

If $|\varepsilon| \leq \frac{1-\alpha}{2 c}$ then the function

$$
H(z)=G(z)+\varepsilon F(z)
$$

is of bounded L-index in the direction \mathbf{b} with $N_{\mathbf{b}}(H, L) \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)$, where $G_{\alpha}(z)=$ $G(z / \alpha), L_{\alpha}(z)=L(z / \alpha)$.

Proof. Condition 2) in Theorem 3 always holds for $N=N_{b}\left(G_{\alpha}, L_{\alpha}\right)$ instead of $N=N_{\mathbf{b}}(G, L)$, where $G_{\alpha}(z)=G(z / \alpha), L_{\alpha}(z)=L(z / \alpha), \alpha \in(0,1)$. Indeed, by Theorem 1 inequality (3) holds for the function G. Substituting $\frac{z^{0}}{\alpha}, \frac{t}{\alpha}$ and $\frac{t_{0}}{\alpha}$ instead of z^{0}, t and t_{0} in (3) we obtain

$$
\begin{align*}
& \max \left\{\left|G\left(\left(z^{0}+t \mathbf{b}\right) / \alpha\right)\right|:\left|t-t_{0}\right|=\frac{r_{2} \alpha}{L\left(\left(z^{0}+t_{0} \mathbf{b}\right) / \alpha\right)}\right\} \leq \\
\leq & P_{1} \max \left\{\left|G\left(\left(z^{0}+t \mathbf{b}\right) / \alpha\right)\right|:\left|t-t_{0}\right|=\frac{r_{1} \alpha}{L\left(\left(z_{0}+t_{0} \mathbf{b}\right) / \alpha\right)}\right\} \tag{22}
\end{align*}
$$

By Theorem 1 inequality (22) implies that $G_{\alpha}=G(z / \alpha)$ has bounded L_{α}-index in the direction \mathbf{b} and vice versa. Hence, for $p \geq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)+1$ and $\alpha \in(0,1)$

$$
\begin{aligned}
& \frac{1}{p!L_{\alpha}^{p}(z)}\left|\frac{\partial^{p} G_{\alpha}(z)}{\partial \mathbf{b}^{p}}\right|=\frac{1}{p!\alpha^{p} L^{p}(z / \alpha)}\left|\frac{\partial^{p} G(z / \alpha)}{\partial \mathbf{b}^{p}}\right| \leq \\
& \leq \max \left\{\frac{1}{s!L_{\alpha}^{s}(z)}\left|\frac{\partial^{s} G_{\alpha}(z)}{\partial \mathbf{b}^{s}}\right|: 0 \leq s \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)\right\}= \\
&=\max \left\{\frac{1}{s!\alpha^{s} L^{s}(z / \alpha)}\left|\frac{\partial^{s} G(z / \alpha)}{\partial \mathbf{b}^{s}}\right|: 0 \leq s \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)\right\} .
\end{aligned}
$$

Multiplying by α^{p} we deduce

$$
\begin{align*}
\left.\frac{1}{p!L^{p}(z / \alpha)} \right\rvert\, & \left|\frac{\partial^{p} G(z / \alpha)}{\partial \mathbf{b}^{p}}\right| \leq \max \left\{\frac{\alpha^{p-s}}{s!L^{s}(z / \alpha)}\left|\frac{\partial^{s} G(z / \alpha)}{\partial \mathbf{b}^{s}}\right|: 0 \leq s \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)\right\} \leq \\
& \leq \alpha \max \left\{\frac{1}{s!L^{s}(z / \alpha)}\left|\frac{\partial^{s} G(z / \alpha)}{\partial \mathbf{b}^{s}}\right|: 0 \leq s \leq N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)\right\} . \tag{23}
\end{align*}
$$

In view of arbitrariness of z inequality (23) imply (7).
Remark 3. It is easy to prove that $N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right) \leq N_{\mathbf{b}}(G, L)$ for $\alpha \in(0,1)$. Therefore $N_{\mathbf{b}}\left(G_{\alpha}, L_{\alpha}\right)$ in Theorem 4 can be replaced by $N_{\mathbf{b}}(G, L)$.

Unfortunately, Theorem 4 does not allow to remove a constraint $(\forall z \in \bar{D}): F(z+t \mathbf{b}) \not \equiv 0$ in Theorem 2.
Corollary 2. Let $l \in Q, \alpha \in(0,1)$ and f, g be entire in \mathbb{C} functions satisfying the conditions:

1) $g(z)$ has bounded l-index;
2) for every $t \in \mathbb{C}$, and $r=\left|t-t_{0}\right| l(t)$:

$$
\max \left\{\left|f\left(t^{\prime}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 r}{l(t)}\right\} \leq \max \left\{\frac{\left|g^{(k)}(t)\right|}{k!l^{k}(t)}: 0 \leq k \leq N\left(g_{\alpha}, l_{\alpha}\right)\right\} .
$$

If $|\varepsilon| \leq \frac{1-\alpha}{2 c}$ then the function $h(z)=g(z)+\varepsilon f(z)$ is of bounded l-index with $N(h, l) \leq$ $N\left(g_{\alpha}, l_{\alpha}\right)$, where $g_{\alpha}(z)=g(z / \alpha), l_{\alpha}(z)=l(z / \alpha), c=\max \left\{\left|f\left(t^{\prime}\right)\right|:\left|t^{\prime}-t_{0}\right|=\frac{2 \lambda^{\mathbf{b}}(1)}{l\left(t_{0}\right)}\right\} /\left|f\left(t_{0}\right)\right|$.

Corollary 2 is new even in the case $n=1$ and $l \equiv 1$, i.e. for entire functions of bounded index.
5. An example of function of unbounded index in direction in a bounded domain.

In our investigations of boundedness of L-index in direction we often consider the slices $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$. Then we fix $z^{0} \in \mathbb{C}^{n}$ and apply arguments from the one-dimensional case. Afterwards we deduce uniform estimations in z^{0}. This is a short description of the method.

Prof. S. Yu. Favorov (2015) posed the following problem in conversation with Prof. O. B. Skaskiv.

Problem 1. Let $\mathbf{b} \in \mathbb{C}^{n} \backslash\{0\}$ be a given direction, $L: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$be a continuous function. Is it possible to replace the assumption that F is holomorphic in \mathbb{C}^{n} by the assumption that F is holomorphic on all slices of the form $z^{0}+t \mathbf{b}$ and deduce known properties of entire functions of bounded L-index in direction?

Our answer to Favorov's question is negative. This relaxation of restriction on the function F does not imply certain theorems.
Theorem 5. For every direction $\mathbf{b} \in \mathbb{C}^{n} \backslash\{0\}$ there exist a function $F(z)$ and a bounded domain $D \subset \mathbb{C}^{n}$ with following properties:

1) F is holomorphic in every slice $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$ for all $z^{0} \in \mathbb{C}^{n}$;
2) F is not entire in \mathbb{C}^{n};
3) F does not satisfy (1) in \bar{D}, i.e. for any $p \in \mathbb{Z}_{+}$there exist $m \in \mathbb{Z}_{+}$and $z_{p} \in \bar{D}$

$$
\frac{1}{m!}\left|\frac{\partial^{m} F\left(z_{p}\right)}{\partial \mathbf{b}^{m}}\right|>\max \left\{\frac{1}{k!}\left|\frac{\partial^{k} F\left(z_{p}\right)}{\partial \mathbf{b}^{k}}\right|: 0 \leq k \leq p\right\}
$$

Proof. Without loss of generality we assume that $n=2$ and $\mathbf{b}=(0,1)$. Let

$$
F\left(z_{1}, z_{2}\right)= \begin{cases}-1+z_{1} \sin \frac{z_{2}}{z_{1}}, & z_{1} \neq 0, \\ -1, & z_{1}=0 .\end{cases}
$$

For every fixed $z_{1}^{0} \in \mathbb{C}$ the function $F\left(z_{1}, z_{2}\right)$ is holomorphic in variable z_{2}, i. e. F is holomorphic on every slice $z=z^{0}+t \mathbf{b}$, where $z^{0}=\left(z_{1}^{0}, 0\right), t \in \mathbb{C}$. On the other hand, F is not entire in \mathbb{C}^{2}.

If $z_{1}=0$ then $\frac{\partial^{k} F}{\partial \mathbf{b}^{k}}=0$ and if $z_{1} \neq 0$ then

$$
\begin{equation*}
\frac{\partial^{k} F}{\partial \mathbf{b}^{k}}=z_{1}^{1-k} \sin \left(\frac{z_{2}}{z_{1}}+\frac{\pi k}{2}\right)(k \in \mathbb{N}) \tag{24}
\end{equation*}
$$

Hence, for every fixed $z_{1}^{0} \in \mathbb{C}$ the function $F\left(z_{1}^{0}, z_{2}\right)$ has bounded index in variable z_{2}, because $\frac{\left(z_{1}^{0}\right)^{1-k}}{k!} \rightarrow 0$ as $k \rightarrow \infty$.

Nevertheless, the function $F\left(z_{1}, z_{2}\right)$ is of unbounded index in the direction b. Moreover, F has unbounded index in any closed bounded domain G, that contains a part of plane $z_{1}=0$ with some neighborhood: $D \supset\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right| \leq R,\left|z_{2}\right| \leq R\right\}$.

Denote $g_{0}\left(z_{2}\right)=F\left(z_{1}^{0}, z_{2}\right)$. The function $\sin t(t \in \mathbb{C})$ has index 2 . Therefore, in view of (24), index of the function $g_{0}\left(z_{2}\right)$ can be established from the following inequalities:

$$
\begin{gathered}
\frac{\left|z_{1}^{0}\right|^{1-k}}{k!} \geq \frac{\left|z_{1}^{0}\right|^{1-(k+2)}}{(k+2)!} \Longleftrightarrow\left|z_{1}^{0}\right|^{2} \geq \frac{1}{(k+1)(k+2)} \Longleftrightarrow \\
(k+1)(k+2) \geq \frac{1}{\left|z_{1}^{0}\right|^{2}} \Longrightarrow(k+2)^{2}>\frac{1}{\left|z_{1}^{0}\right|^{2}} \Longrightarrow k>\frac{1}{\left|z_{1}^{0}\right|}-2 .
\end{gathered}
$$

Thus, index of the function g_{0} is greater than $\frac{1}{\left|z_{1}^{0}\right|}-2$, i. e. $N\left(g_{0}\right)>\frac{1}{\left|z_{1}^{0}\right|}-2$. If $z_{1}^{0} \rightarrow 0$ then $N\left(g_{0}\right) \rightarrow+\infty$. Hence, the function F has unbounded index in the direction b: $N_{\mathbf{b}}(F)=$ $\sup N\left(g_{0}\right)=+\infty$, i.e. F does not satisfy (1) in \mathbb{C}^{2}.
$z_{1}^{0} \in \mathbb{C}$
Similarly, it can be proved that (1) does not hold for the function F in the domain D. It is easy to see that the function F is not continuous in joint variables. It is discontinuous for $z_{1}=0$.

Remark 4. If we replace holomorphy in \mathbb{C}^{n} by holomorphy on the slices $\left\{z^{0}+t \mathbf{b}: t \in \mathbb{C}\right\}$ then the conclusion of Theorem 2 is not valid. Thus, Theorem 5 gives the negative answer to Problem 1. But careful analysis of the proof of Theorem 2 reveals that we implicitly use continuity in joint variables in (6).

REFERENCES

1. A.I. Bandura, O.B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27 (2007), №1, 30-52. (in Ukrainian)
2. A.I. Bandura, O.B. Skaskiv, Sufficient sets for boundedness L-index in direction for entire functions, Mat. Stud., 30 (2008), №2, 177-182.
3. A.I. Bandura, O.B. Skaskiv, Open problems for entire functions of bounded index in direction, Mat. Stud., 43 (2015), №1, 103-109.
4. A.I. Bandura, M.T. Bordulyak, O.B. Skaskiv, Sufficient conditions of boundedness of L-index in joint variables, Mat. Stud., 45 (2016), №1, 12-26.
5. A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Lviv: Publisher I.E. Chyzhykov, 2016, 128 p.
6. A.D. Kuzyk, M.N. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39 (1986), №1, 3-8.
7. B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 2 (1968), 298-307.
8. A.I. Bandura, Product of two entire functions of bounded L-index in direction is a function with the same class, Bukovyn. Mat. Zh. (in Ukrainian, accepted)
9. W.J. Pugh, Sums of functions of bounded index, Proc. Amer. Math. Soc., 22 (1969), 319-323.
10. M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.

Ivano-Frankivs'k National Technical University of Oil and Gas andriykopanytsia@gmail.com

[^0]: 2010 Mathematics Subject Classification: 30D20, 32A15, 32A60.
 Keywords: entire function; bounded L-index in direction; strongly bounded L-index in direction; sum of entire function; holomorphy in slice; bounded domain.
 doi:10.15330/ms.45.2.149-158

