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It is proved that an entire function F has bounded L-index in a direction b in arbitrary
bounded domain G under the assumption that F does not equal identically zero on the slice
{z0 + tb : t ∈ C} for all z0 ∈ G. Also it is obtained sufficient conditions of boundedness
of L-index in direction for the sum of entire functions. They are new for entire functions of
bounded l-index of one complex variable too. As a corollary, a class of entire functions of
strongly bounded L-index in a direction matches with a class of entire functions of bounded
L-index in the same direction. Moreover, we gave a negative answer to the question of Prof.
S. Yu. Favorov: whether it is possible in theory of bounded L-index in direction to replace the
assumption that F is holomorphic in Cn by the assumption that F is holomorphic on every
slice {z0 + tb : t ∈ C} for all z0 ∈ Cn.

1. Introduction. To state the problems we need some notation and definitions.
An entire function F (z), z ∈ Cn, is called (see [1]–[5]) a function of bounded L-index in a

direction b ∈ Cn \{0}, if there exists m0 ∈ Z+ such that for every m ∈ Z+ and every z ∈ Cn

1

m!Lm(z)

∣∣∣∣∂mF (z)

∂bm

∣∣∣∣ ≤ max

{
1

k!Lk(z)

∣∣∣∣∂kF (z)

∂bk

∣∣∣∣ : 0 ≤ k ≤ m0

}
, (1)

where ∂0F (z)
∂b0 :=F (z), ∂F (z)

∂b
:=

n∑
j=1

∂F (z)
∂zj

bj = ⟨gradF,b⟩, ∂kF (z)
∂bk := ∂

∂b

(∂k−1F (z)
∂bk−1

)
, k ≥ 2.

The least such integer m0 = m0(b) is called the L-index in the direction b ∈ Cn \ {0}
of the entire function F (z) and is denoted by Nb(F,L) = m0. If such m0 does not exist
then F is called a function of unbounded L-index in the direction b and we suppose that
Nb(F,L) = ∞. If L(z) ≡ 1 then F (z) is called a function of bounded index in the direction
b and Nb(F ) = Nb(F, 1).

Let D be an arbitrary bounded domain in Cn. If inequality (1) holds for all z ∈ D instead
of Cn then F is called a function of bounded L-index in the direction b in the domain D.
The least such integer m0 is called the L-index in the direction b ∈ Cn \ {0} in the domain
D and is denoted by Nb(F,L,D) = m0.

In the case n = 1 and b = 1 we obtain the definition of entire function of one variable of
bounded l-index (see [6]). Then N(f, l) = N1(f, l). In the case n = 1, b = 1 and L(z) ≡ 1 it
is reduced to the definition of the function of bounded index, supposed by B. Lepson [7].
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Note that results from our paper [1] are included also in the monograph [5].
For η > 0, z ∈ Cn, b = (b1, . . . , bn) ∈ Cn \ {0} and a positive continuous function

L : Cn → R+ we define

λb
1 (z, t0, η) = inf

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
,

λb
1 (z, η) = inf{λb

1 (z, t0, η) : t0 ∈ C}, λb
1 (η) = inf{λb

1 (z, η) : z ∈ Cn},

λb
2 (z, t0, η) = sup

{
L(z + tb)

L(z + t0b)
: |t− t0| ≤

η

L(z + t0b)

}
,

λb
2 (z, η) = sup{λb

2 (z, t0, η) : t0 ∈ C}, λb
2 (η) = sup{λb

2 (z, η) : z ∈ Cn}.

By Qn
b we denote the class of functions L which satisfy the condition

(∀η ≥ 0) : 0 < λb
1 (η) ≤ λb

2 (η) < +∞. (2)

If n = 1 and b = 1 then we use the notation Q = Q1
1.

It is known that a product of two entire functions of bounded L-index in direction is
a function from the same class (see [5], [8]). But the class of entire functions of bounded
index is not closed under addition. The example was constructed by W. Pugh (see [9] and
[10]). Recently we generalized Pugh’s example for entire functions of bounded L-index in
direction ([8]).

Meanwhile, there are sufficient conditions for index boundedness for the sum of two entire
functions ([9]). But similar conditions for entire functions of bounded L-index in direction
or even of bounded l-index are not known. Therefore, in the present article the following
natural question is considered: what are sufficient conditions for L-index boundedness in
direction for the sum of two entire functions?

We need the following theorem.

Theorem 1 ([1, 5]). Let L ∈ Qn
b. An entire function F (z) in Cn is of bounded L-index in

the direction b if and only if for every r1 and r2 such that 0 < r1 < r2 < +∞, there exists a
number P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Cn and t0 ∈ C

max
{
|F (z0 + tb)| : |t− t0| =

r2
L(z0 + t0b)

}
≤

≤ P1max
{
|F (z0 + tb)| : |t− t0| =

r1
L(z0 + t0b)

}
. (3)

2. Boundedness of L-index in direction in a bounded domain. By D we denote the
closure of a domain D.

Theorem 2. Let D be an arbitrary bounded domain in Cn. If L : Cn → R+ is a conti-
nuous function and F (z) is an entire function such that (∀z0 ∈ D) : F (z0 + tb) ̸≡ 0 then
Nb(F,L,D) < ∞ for every b ∈ Cn \ {0}.

Proof. For every fixed z0 ∈ D we expand the entire function F (z0 + tb) in a power series by
powers of t

F (z0 + tb) =
∞∑

m=0

1

m!

∂pF (z0)

∂bm
tm (4)
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in the disk
{
t ∈ C : |t| ≤ 1

L(z0)

}
.

The quantity 1
m!Lm(z0)

∣∣∂mF (z0)
∂bm

∣∣ is the modulus of a coefficient of the power series (4) at a
point t ∈ C such that |t| = 1

L(z0)
. Since F (z) is entire, for every z0 ∈ D

1

m!Lm(z0)

∣∣∣∂mF (z0)

∂bm

∣∣∣ → 0 (m → ∞),

i.e. there exists m0 = m(z0,b) such that inequality (1) holds at z = z0 for all m ∈ Z+.
We prove that sup{m0 : z

0 ∈ D} < +∞. Assume on the contrary that the set of m0 is
unbounded in z0, i.e. sup{m0 : z

0 ∈ D} = +∞. Hence, for every m ∈ Z+ there exist z(m) ∈ D
and pm > m

1

pm!Lpm(z(m))

∣∣∣∣∂pmF (z(m))

∂bpm

∣∣∣∣ > max

{
1

k!Lk(z(m))

∣∣∣∣∂kF (z(m))

∂bk

∣∣∣∣ : 0 ≤ k ≤ m

}
. (5)

Since {z(m)} ⊂ D, there exists a subsequence z
′(m) → z′ ∈ G as m → +∞. By Cauchy’s

integral formula
1

p!

∂pF (z)

∂b
=

1

2πi

∫
|t|=r

F (z + tb)

tp+1
dt

for any p ∈ N, z ∈ D. We rewrite (5) in the form

max

{
1

k!Lk(z(m))

∣∣∣∣∂kF (z(m))

∂bk

∣∣∣∣ : 0 ≤ k ≤ m

}
<

<
1

Lpm(z(m))

∫
|t|=r/L(z(m))

|F (z(m) + tb)|
|t|pm+1

|dt| ≤ 1

rpm
max{|F (z)| : z ∈ Dr} (6)

where Dr =
∪

z∗∈D{z ∈ Cn : |z − z∗| ≤ |b|r
L(z∗)

}. We can choose r > 1 because F is entire.
Evaluating the limit for every fixed directional derivative in (6) as m → ∞ we obtain

(∀k ∈ Z+) :
1

k!Lk(z′)

∣∣∣∣∂kF (z′)

∂bk

∣∣∣∣ ≤ lim
m→∞

1

rpm
max{|F (z)| : z ∈ Dr} ≤ 0

as m → +∞. Thus, all derivatives in the direction b of the function F at the point z′ equals
0 and F (z′) = 0. In view of (4) F (z′ + tb) ≡ 0. It is a contradiction.

The proof of Theorem 2 is published also in [5, Th.3.2, p.62–64].

Remark 1. Perhaps, the assumption (∀z ∈ D) : F (z+ tb) ̸≡ 0 in Theorem 2 not necessary.
But nowadays we do not know a rigorous proof of the theorem without this assumption. There
was published proof of Theorem 2 in [2] with gaps. Let M = max{|F (z)| : z ∈ D} and ε > 0.
If F (z0 + tb) ≡ 0 for some z0 ∈ D then by Theorem 2 the function G(z) = F (z) +M + ε
has bounded L-index in domain D in any direction b ∈ Cn \ {0}.

3. Sufficient conditions of boundedness of L-index in direction for sum of entire
functions. We consider an arbitrary hyperplane A = {z ∈ Cn : ⟨z, c⟩ = 1}, where ⟨c,b⟩ ̸= 0.
Obviously that

∪
z0∈A{z0 + tb : t ∈ C} = Cn.

Let z0 ∈ A be a given point. If F (z0 + tb) ̸≡ 0 as a function of variable t ∈ C then
there exists t0 ∈ C such that F (z0 + t0b) ̸= 0. Thus, for every line {z0 + tb : t ∈ C}
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F (z0 + tb) ̸≡ 0 we fixe point t0. By B we denote the union of those points z0 + t0b i. e.
B =

∪
z0∈A

F (z0+tb) ̸≡0

{z0 + t0b}.

Clearly that for every z ∈ Cn there exist z0 ∈ A and t ∈ C with the property z = z0 + tb.
Indeed,

z0 = z +
1− ⟨z, c⟩
⟨b, c⟩

b, t =
⟨z, c⟩ − 1

⟨b, c⟩
.

Theorem 3. Let L be the positive continuous function, F, G be entire in Cn functions
satisfying the following conditions:

1) G(z) has bounded L-index in the direction b ∈ Cn \ {0} with Nb(G,L) = N < +∞;

2) there exists α ∈ (0, 1) such that for all z ∈ Cn and p ≥ N + 1 (p ∈ N)

1

p!Lp(z)

∣∣∣∣∂pG(z)

∂bp

∣∣∣∣ ≤ αmax

{
1

k!Lk(z)

∣∣∣∣∂kG(z)

∂bk

∣∣∣∣ : 0 ≤ k ≤ N

}
; (7)

3) for every z = z0 + tb ∈ Cn, where z0 ∈ A, z0 + t0b ∈ B and r = |t− t0|L(z0 + tb) the
inequality

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ max

{
1

k!Lk(z0 + tb)

∣∣∣∣∂kG(z0 + tb)

∂bk

∣∣∣∣ : 0 ≤ k ≤ N

}
(8)

is valid;

4) (∃c > 0)(∀z0 + t0b ∈ B)(∀t ∈ C, |t− t0|L(z0 + tb) ≤ 1) :

max
{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}/
|F (z0 + t0b)| ≤ c < +∞, (9)

or for L ∈ Qn
b (∃c > 0)(∀z0 + t0b ∈ B) :

max
{
|F (z0 + t′b)| : |t′ − t0| =

2λb
2 (1)

L(z0 + t0b)

}/
|F (z0 + t0b)| ≤ c < +∞. (10)

Then for each ε ∈ C, |ε| ≤ 1−α
2c

, the function

H(z) = G(z) + εF (z) (11)

is of bounded L-index in the direction b and Nb(H,L) ≤ N.

Proof. We write Cauchy’s formula for the entire function F (z0 + tb) as a function of one
complex variable t

1

p!

∂pF (z0 + tb)

∂bp
=

1

2πi

∫
|t′−t|= r

L(z0+tb)

F (z0 + t′b)

(t′ − t)p+1
dt′. (12)
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For the chosen r = |t− t0|L(z0 + tb) the following inequality holds

r

L(z0 + tb)
= |t′ − t| ≥ |t′ − t0| − |t− t0| = |t′ − t0| −

r

L(z0 + tb)
.

Hence,

|t′ − t0| ≤
2r

L(z0 + tb)
. (13)

Equality (12) yields

1

p!Lp(z0 + tb)

∣∣∣∣∂pF (z0 + tb)

∂bp

∣∣∣∣ ≤ 1

2πLp(z0 + tb)
· L

p+1(z0 + tb)

rp+1
×

× 2πr

L(z0 + tb)
·max

{
|F (z0 + t′b)| : |t′ − t| = r

L(z0 + tb)

}
≤

≤ 1

rp
max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
. (14)

If r = |t− t0|L(z0 + tb) > 1 then (14) implies

1

p!Lp(z0 + tb)

∣∣∣∣∂pF (z0 + tb)

∂bp

∣∣∣∣ ≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
. (15)

Let r = |t− t0|L(z0 + tb) ∈ (0; 1]. Setting r = 1 in (12) and (13) we similarly deduce

1

p!Lp(z0 + tb)

∣∣∣∣∂pF (z0 + tb)

∂bp

∣∣∣∣ ≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}
=

=
max

{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
max

{
|F (z0 + t′b)| : |t′ − t0| = 2r

L(z0+tb)

} max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤
max

{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (16)

where

c = sup
z0+t0b∈B

sup
t∈C,

|t−t0|L(z0+tb)≤1

max
{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

≥ 1.

If L ∈ Q then sup
{

L(z0+t0b)
L(z0+tb)

: |t− t0| ≤ 1
L(z0+tb)

}
≤ λb

2 (1). This means that L(z0 + tb) ≥
L(z0+t0b)

λb
2 (1)

. Using this inequality we choose

c := sup
z0+t0b∈B

max
{
|F (z0 + t′b)| : |t′ − t0| = 2λb

2 (1)

L(z0+t0b)

}
|F (z0 + t0b)|

≥ 1
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in (16). In view of (15) and (16) we have

1

p!Lp(z0 + tb)

∣∣∣∣∂pF (z0 + tb)

∂bp

∣∣∣∣ ≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
(17)

for all p ∈ N ∪ {0}, r ≥ 0, z0 ∈ A, t ∈ C.
We differentiate (11) p times, p ≥ N + 1, and then apply (7), (17) and (8)

1

p!Lp(z0 + tb)

∣∣∣∣∂pH(z0 + tb)

∂bp

∣∣∣∣ ≤
≤ 1

p!Lp(z0 + tb)

∣∣∣∣∂pG(z0 + tb)

∂bp

∣∣∣∣+ |ε|
p!Lp(z0 + tb)

∣∣∣∣∂pF (z0 + tb)

∂bp

∣∣∣∣ ≤
≤ αmax

{
1

k!Lk(z0 + tb)

∣∣∣∣∂kG(z0 + tb)

∂bk

∣∣∣∣ : 0 ≤ k ≤ N

}
+

+c|ε|max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ (α+ c|ε|)max

{
1

k!Lk(z0 + tb)

∣∣∣∣∂kG(z0 + tb)

∂bk

∣∣∣∣ : 0 ≤ k ≤ N

}
. (18)

If s ≤ N, then (17) is true with p = s, but (7) does not hold. Therefore, the differentiation
of (11) leads to the following estimate

1

s!Ls(z0 + tb)

∣∣∣∣∂sH(z0 + tb)

∂bs

∣∣∣∣ ≥
≥ 1

s!Ls(z0 + tb)

∣∣∣∣∂sG(z0 + tb)

∂bs

∣∣∣∣− |ε|
s!Ls(z0 + tb)

∣∣∣∣∂sF (z0 + tb)

∂bs

∣∣∣∣ ≥
≥ 1

s!Ls(z0 + tb)

∣∣∣∣∂sG(z0 + tb)

∂bs

∣∣∣∣− c|ε|max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (19)

where 0 ≤ s ≤ N. Hence, (8) and (19) imply that

max
0≤s≤N

{
1

s!Ls(z0 + tb)

∣∣∣∣∂sH(z0 + tb)

∂bs

∣∣∣∣} ≥ (1− c|ε|) max
0≤s≤N

{
1

s!Ls(z0 + tb)

∣∣∣∣∂sG(z0 + tb)

∂bs

∣∣∣∣} .

(20)
If c|ε| < 1, then (18) and (20) yield

1

p!Lp(z0 + tb)

∣∣∣∣∂pH(z0 + tb)

∂bp

∣∣∣∣ ≤ α+ c|ε|
1− c|ε|

max
0≤s≤N

{
1

s!Ls(z0 + tb)

∣∣∣∣∂sH(z0 + tb)

∂bs

∣∣∣∣} (21)

for p ≥ N + 1. We assume that α+c|ε|
1−c|ε| ≤ 1. Hence, |ε| ≤ 1−α

2c
.

Let Nb(z
0+tb, L, F ) be the L-index in direction of the function F at the point z0+tb, i. e.

Nb(z
0+ tb, L, F ) is the smallest number m0 for which inequality (1) holds with z = z0+ tb.

For |ε| ≤ 1−α
2c

validity of inequality (21) means that for any z0 ∈ A and any t ∈ C such
that F (z0 + tb) ̸= 0 the L-index in direction at the point z0 + tb is not greater than N i. e.
Nb(z

0 + tb, F, L) ≤ N.
If for some z0 ∈ A F (z0+ tb) ≡ 0 then H(z0+ tb) ≡ G(z0+ tb) and Nb(z

0+ tb, F, L) =
Nb(z

0 + tb, G, L) ≤ N. Therefore, H(z) is of bounded L-index in the direction b with
Nb(H,L) ≤ N. This completes the proof of Theorem 3.
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Remark 2. Every entire function F with Nb(F,L) = 0 satisfies inequality (10) (see the
proof of necessity of Theorem 2.1 in [5, p. 20–24]).

If n = 1, b = 1, L = l, F = f then we obtain the following corollary.

Corollary 1. Let l be positive continuous function, f, g be entire in C functions, t0 be some
point such that f(t0) ̸= 0, satisfying the following conditions:

1) g(z) has bounded l-index with N(g, l) = N < +∞;

2) there exists α ∈ (0, 1) such that for all z ∈ C and p ≥ N + 1 (p ∈ N)

|g(p)(z)|
p!lp(z)

≤ αmax

{
|g(k)(z)|
k!lk(z)

: 0 ≤ k ≤ N

}
;

3) for every t ∈ C, and r = |t− t0|l(t) :

max

{
|f(t′)| : |t′ − t0| =

2r

l(t)

}
≤ max

{
|g(k)(t)|
k!lk(t)

: 0 ≤ k ≤ N

}
;

4) (∃c > 0)(∀t ∈ C, |t − t0|l(t) ≤ 1) : max
{
|f(t′)| : |t′ − t0| = 2

l(t)

}/
|f(t0)| ≤ c < +∞,

or for l ∈ Q we put c = max
{
|f(t′)| : |t′ − t0| = 2λb

2 (1)

l(t0)

}/
|f(t0)|.

Then for each ε ∈ C, |ε| ≤ 1−α
2c

, the function h(z) = g(z) + εf(z) is of bounded l-index and
N(h, l) ≤ N.

Corollary 1 is a generalization of Pugh’s result [9] for l-index.
If L ∈ Qn

b then Condition 2) in Theorem 3 always holds. The following theorem is true.

Theorem 4. Let L ∈ Qn
b, α ∈ (0, 1) and F, G be entire in Cn functions satisfying the

conditions:

1) G(z) has bounded L-index in the direction b ∈ Cn \ {0}.
2) for every z = z0 + tb ∈ Cn, where z0 ∈ A, z0 + t0b ∈ B and r = |t− t0|L(z0 + tb) the

following inequality is valid

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ max

{
1

k!Lk(z0 + tb)

∣∣∣∣∂kG(z0 + tb)

∂bk

∣∣∣∣ : 0 ≤ k ≤ Nb(Gα, Lα)

}
.

3) c := sup
z0+t0b∈B

max
{
|F (z0 + t′b)| : |t′ − t0| = 2λb

2 (1)

L(z0+t0b)

}
|F (z0 + t0b)|

< ∞.

If |ε| ≤ 1−α
2c

then the function
H(z) = G(z) + εF (z)

is of bounded L-index in the direction b with Nb(H,L) ≤ Nb(Gα, Lα), where Gα(z) =
G(z/α), Lα(z) = L(z/α).
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Proof. Condition 2) in Theorem 3 always holds for N = Nb(Gα, Lα) instead of N = Nb(G,L),
where Gα(z) = G(z/α), Lα(z) = L(z/α), α ∈ (0, 1). Indeed, by Theorem 1 inequality (3)
holds for the function G. Substituting z0

α
, t

α
and t0

α
instead of z0, t and t0 in (3) we obtain

max

{
|G((z0 + tb)/α)| : |t− t0| =

r2α

L((z0 + t0b)/α)

}
≤

≤ P1max

{
|G((z0 + tb)/α)| : |t− t0| =

r1α

L((z0 + t0b)/α)

}
. (22)

By Theorem 1 inequality (22) implies that Gα = G(z/α) has bounded Lα-index in the
direction b and vice versa. Hence, for p ≥ Nb(Gα, Lα) + 1 and α ∈ (0, 1)

1

p!Lp
α(z)

∣∣∣∣∂pGα(z)

∂bp

∣∣∣∣ = 1

p!αpLp(z/α)

∣∣∣∣∂pG(z/α)

∂bp

∣∣∣∣ ≤
≤ max

{
1

s!Ls
α(z)

∣∣∣∣∂sGα(z)

∂bs

∣∣∣∣ : 0 ≤ s ≤ Nb(Gα, Lα)

}
=

= max

{
1

s!αsLs(z/α)

∣∣∣∣∂sG(z/α)

∂bs

∣∣∣∣ : 0 ≤ s ≤ Nb(Gα, Lα)

}
.

Multiplying by αp we deduce

1

p!Lp(z/α)

∣∣∣∣∂pG(z/α)

∂bp

∣∣∣∣ ≤ max

{
αp−s

s!Ls(z/α)

∣∣∣∣∂sG(z/α)

∂bs

∣∣∣∣ : 0 ≤ s ≤ Nb(Gα, Lα)

}
≤

≤ αmax

{
1

s!Ls(z/α)

∣∣∣∣∂sG(z/α)

∂bs

∣∣∣∣ : 0 ≤ s ≤ Nb(Gα, Lα)

}
. (23)

In view of arbitrariness of z inequality (23) imply (7).

Remark 3. It is easy to prove that Nb(Gα, Lα) ≤ Nb(G,L) for α ∈ (0, 1). Therefore
Nb(Gα, Lα) in Theorem 4 can be replaced by Nb(G,L).

Unfortunately, Theorem 4 does not allow to remove a constraint (∀z ∈ D) : F (z+tb) ̸≡ 0
in Theorem 2.

Corollary 2. Let l ∈ Q, α ∈ (0, 1) and f, g be entire in C functions satisfying the conditions:
1) g(z) has bounded l-index;
2) for every t ∈ C, and r = |t− t0|l(t) :

max

{
|f(t′)| : |t′ − t0| =

2r

l(t)

}
≤ max

{
|g(k)(t)|
k!lk(t)

: 0 ≤ k ≤ N(gα, lα)

}
.

If |ε| ≤ 1−α
2c

then the function h(z) = g(z) + εf(z) is of bounded l-index with N(h, l) ≤
N(gα, lα), where gα(z) = g(z/α), lα(z) = l(z/α), c=max

{
|f(t′)| : |t′ − t0|= 2λb

2 (1)

l(t0)

}/
|f(t0)|.

Corollary 2 is new even in the case n = 1 and l ≡ 1, i.e. for entire functions of bounded
index.

5. An example of function of unbounded index in direction in a bounded domain.
In our investigations of boundedness of L-index in direction we often consider the slices

{z0 + tb : t ∈ C}. Then we fix z0 ∈ Cn and apply arguments from the one-dimensional case.
Afterwards we deduce uniform estimations in z0. This is a short description of the method.

Prof. S. Yu. Favorov (2015) posed the following problem in conversation with Prof. O.
B. Skaskiv.
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Problem 1. Let b ∈ Cn \ {0} be a given direction, L : Cn → R+ be a continuous function.
Is it possible to replace the assumption that F is holomorphic in Cn by the assumption that
F is holomorphic on all slices of the form z0 + tb and deduce known properties of entire
functions of bounded L-index in direction?

Our answer to Favorov’s question is negative. This relaxation of restriction on the function
F does not imply certain theorems.

Theorem 5. For every direction b ∈ Cn \ {0} there exist a function F (z) and a bounded
domain D ⊂ Cn with following properties:

1) F is holomorphic in every slice {z0 + tb : t ∈ C} for all z0 ∈ Cn;

2) F is not entire in Cn;

3) F does not satisfy (1) in D, i.e. for any p ∈ Z+ there exist m ∈ Z+ and zp ∈ D

1

m!

∣∣∣∣∂mF (zp)

∂bm

∣∣∣∣ > max

{
1

k!

∣∣∣∣∂kF (zp)

∂bk

∣∣∣∣ : 0 ≤ k ≤ p

}
.

Proof. Without loss of generality we assume that n = 2 and b = (0, 1). Let

F (z1, z2) =

{
−1 + z1 sin

z2
z1
, z1 ̸= 0,

−1, z1 = 0.
.

For every fixed z01 ∈ C the function F (z1, z2) is holomorphic in variable z2, i. e. F is
holomorphic on every slice z = z0 + tb, where z0 = (z01 , 0), t ∈ C. On the other hand,
F is not entire in C2.

If z1 = 0 then ∂kF
∂bk = 0 and if z1 ̸= 0 then

∂kF

∂bk
= z1−k

1 sin(
z2
z1

+
πk

2
) (k ∈ N). (24)

Hence, for every fixed z01 ∈ C the function F (z01 , z2) has bounded index in variable z2, because
(z01)

1−k

k!
→ 0 as k → ∞.

Nevertheless, the function F (z1, z2) is of unbounded index in the direction b. Moreover,
F has unbounded index in any closed bounded domain G, that contains a part of plane
z1 = 0 with some neighborhood: D ⊃ {(z1, z2) : |z1| ≤ R, |z2| ≤ R}.

Denote g0(z2) = F (z01 , z2). The function sin t (t ∈ C) has index 2. Therefore, in view of
(24), index of the function g0(z2) can be established from the following inequalities:

|z01 |1−k

k!
≥ |z01 |1−(k+2)

(k + 2)!
⇐⇒ |z01 |2 ≥

1

(k + 1)(k + 2)
⇐⇒

(k + 1)(k + 2) ≥ 1

|z01 |2
=⇒ (k + 2)2 >

1

|z01 |2
=⇒ k >

1

|z01 |
− 2.

Thus, index of the function g0 is greater than 1
|z01 |

− 2, i. e. N(g0) >
1

|z01 |
− 2. If z01 → 0 then

N(g0) → +∞. Hence, the function F has unbounded index in the direction b : Nb(F ) =
sup
z01∈C

N(g0) = +∞, i.e. F does not satisfy (1) in C2.

Similarly, it can be proved that (1) does not hold for the function F in the domain D. It
is easy to see that the function F is not continuous in joint variables. It is discontinuous for
z1 = 0.
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Remark 4. If we replace holomorphy in Cn by holomorphy on the slices {z0 + tb : t ∈ C}
then the conclusion of Theorem 2 is not valid. Thus, Theorem 5 gives the negative answer
to Problem 1. But careful analysis of the proof of Theorem 2 reveals that we implicitly use
continuity in joint variables in (6).
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