УДК 517.555

A. I. BANDURA

SUM OF ENTIRE FUNCTIONS OF BOUNDED L-INDEX IN DIRECTION

A. I. Bandura. Sum of entire functions of bounded L-index in direction, Mat. Stud. 45 (2016), 149–158.

It is proved that an entire function F has bounded L-index in a direction \mathbf{b} in arbitrary bounded domain G under the assumption that F does not equal identically zero on the slice $\{z^0 + t\mathbf{b} : t \in \mathbb{C}\}$ for all $z^0 \in G$. Also it is obtained sufficient conditions of boundedness of L-index in direction for the sum of entire functions. They are new for entire functions of bounded l-index of one complex variable too. As a corollary, a class of entire functions of strongly bounded L-index in a direction matches with a class of entire functions of bounded L-index in the same direction. Moreover, we gave a negative answer to the question of Prof. S. Yu. Favorov: whether it is possible in theory of bounded L-index in direction to replace the assumption that F is holomorphic in \mathbb{C}^n by the assumption that F is holomorphic on every slice $\{z^0 + t\mathbf{b} : t \in \mathbb{C}\}$ for all $z^0 \in \mathbb{C}^n$.

1. Introduction. To state the problems we need some notation and definitions.

An entire function F(z), $z \in \mathbb{C}^n$, is called (see [1]–[5]) a function of bounded L-index in a direction $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$, if there exists $m_0 \in \mathbb{Z}_+$ such that for every $m \in \mathbb{Z}_+$ and every $z \in \mathbb{C}^n$

$$\frac{1}{m!L^m(z)} \left| \frac{\partial^m F(z)}{\partial \mathbf{b}^m} \right| \le \max\left\{ \frac{1}{k!L^k(z)} \left| \frac{\partial^k F(z)}{\partial \mathbf{b}^k} \right| : 0 \le k \le m_0 \right\},\tag{1}$$

where $\frac{\partial^0 F(z)}{\partial \mathbf{b}^0} := F(z), \ \frac{\partial F(z)}{\partial \mathbf{b}} := \sum_{j=1}^n \frac{\partial F(z)}{\partial z_j} b_j = \langle \mathbf{grad} F, \overline{\mathbf{b}} \rangle, \ \frac{\partial^k F(z)}{\partial \mathbf{b}^k} := \frac{\partial}{\partial \mathbf{b}} \left(\frac{\partial^{k-1} F(z)}{\partial \mathbf{b}^{k-1}} \right), \ k \ge 2.$

The least such integer $m_0 = m_0(\mathbf{b})$ is called the *L*-index in the direction $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ of the entire function F(z) and is denoted by $N_{\mathbf{b}}(F, L) = m_0$. If such m_0 does not exist then *F* is called a *function of unbounded L-index in the direction* \mathbf{b} and we suppose that $N_{\mathbf{b}}(F, L) = \infty$. If $L(z) \equiv 1$ then F(z) is called a *function of bounded index in the direction* \mathbf{b} and $N_{\mathbf{b}}(F) = N_{\mathbf{b}}(F, 1)$.

Let D be an arbitrary bounded domain in \mathbb{C}^n . If inequality (1) holds for all $z \in D$ instead of \mathbb{C}^n then F is called a function of bounded L-index in the direction \mathbf{b} in the domain D. The least such integer m_0 is called the L-index in the direction $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ in the domain D and is denoted by $N_{\mathbf{b}}(F, L, D) = m_0$.

In the case n = 1 and $\mathbf{b} = 1$ we obtain the definition of entire function of one variable of bounded *l*-index (see [6]). Then $N(f, l) = N_1(f, l)$. In the case n = 1, $\mathbf{b} = 1$ and $L(z) \equiv 1$ it is reduced to the definition of the function of bounded index, supposed by B. Lepson [7].

Keywords: entire function; bounded **L**-index in direction; strongly bounded *L*-index in direction; sum of entire function; holomorphy in slice; bounded domain.

doi:10.15330/ms.45.2.149-158

²⁰¹⁰ Mathematics Subject Classification: 30D20, 32A15, 32A60.

A. I. BANDURA

Note that results from our paper [1] are included also in the monograph [5].

For $\eta > 0, z \in \mathbb{C}^n$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ and a positive continuous function $L: \mathbb{C}^n \to \mathbb{R}_+$ we define

$$\lambda_1^{\mathbf{b}}(z, t_0, \eta) = \inf \left\{ \frac{L(z + t\mathbf{b})}{L(z + t_0\mathbf{b})} : |t - t_0| \leq \frac{\eta}{L(z + t_0\mathbf{b})} \right\},$$
$$\lambda_1^{\mathbf{b}}(z, \eta) = \inf \left\{ \lambda_1^{\mathbf{b}}(z, t_0, \eta) : t_0 \in \mathbb{C} \right\}, \quad \lambda_1^{\mathbf{b}}(\eta) = \inf \left\{ \lambda_1^{\mathbf{b}}(z, \eta) : z \in \mathbb{C}^n \right\},$$
$$\lambda_2^{\mathbf{b}}(z, t_0, \eta) = \sup \left\{ \frac{L(z + t\mathbf{b})}{L(z + t_0\mathbf{b})} : |t - t_0| \leq \frac{\eta}{L(z + t_0\mathbf{b})} \right\},$$
$$\lambda_2^{\mathbf{b}}(z, \eta) = \sup \left\{ \lambda_2^{\mathbf{b}}(z, t_0, \eta) : t_0 \in \mathbb{C} \right\}, \quad \lambda_2^{\mathbf{b}}(\eta) = \sup \left\{ \lambda_2^{\mathbf{b}}(z, \eta) : z \in \mathbb{C}^n \right\}.$$

By $Q_{\mathbf{b}}^{n}$ we denote the class of functions L which satisfy the condition

$$(\forall \eta \ge 0): \ 0 < \lambda_1^{\mathbf{b}}(\eta) \le \lambda_2^{\mathbf{b}}(\eta) < +\infty.$$
(2)

If n = 1 and $\mathbf{b} = 1$ then we use the notation $Q = Q_1^1$.

It is known that a product of two entire functions of bounded L-index in direction is a function from the same class (see [5], [8]). But the class of entire functions of bounded index is not closed under addition. The example was constructed by W. Pugh (see [9] and [10]). Recently we generalized Pugh's example for entire functions of bounded L-index in direction ([8]).

Meanwhile, there are sufficient conditions for index boundedness for the sum of two entire functions ([9]). But similar conditions for entire functions of bounded *L*-index in direction or even of bounded *l*-index are not known. Therefore, in the present article the following natural **question** is considered: what are sufficient conditions for *L*-index boundedness in direction for the sum of two entire functions?

We need the following theorem.

Theorem 1 ([1, 5]). Let $L \in Q_{\mathbf{b}}^n$. An entire function F(z) in \mathbb{C}^n is of bounded L-index in the direction **b** if and only if for every r_1 and r_2 such that $0 < r_1 < r_2 < +\infty$, there exists a number $P_1 = P_1(r_1, r_2) \ge 1$ such that for each $z^0 \in \mathbb{C}^n$ and $t_0 \in \mathbb{C}$

$$\max\left\{ |F(z^{0} + t\mathbf{b})| : |t - t_{0}| = \frac{r_{2}}{L(z^{0} + t_{0}\mathbf{b})} \right\} \leq \leq P_{1} \max\left\{ |F(z^{0} + t\mathbf{b})| : |t - t_{0}| = \frac{r_{1}}{L(z_{0} + t_{0}\mathbf{b})} \right\}.$$
(3)

2. Boundedness of *L*-index in direction in a bounded domain. By \overline{D} we denote the closure of a domain *D*.

Theorem 2. Let D be an arbitrary bounded domain in \mathbb{C}^n . If $L: \mathbb{C}^n \to \mathbb{R}_+$ is a continuous function and F(z) is an entire function such that $(\forall z^0 \in \overline{D}): F(z^0 + t\mathbf{b}) \not\equiv 0$ then $N_{\mathbf{b}}(F, L, D) < \infty$ for every $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}.$

Proof. For every fixed $z^0 \in \overline{D}$ we expand the entire function $F(z^0 + t\mathbf{b})$ in a power series by powers of t

$$F(z^{0} + t\mathbf{b}) = \sum_{m=0}^{\infty} \frac{1}{m!} \frac{\partial^{p} F(z^{0})}{\partial \mathbf{b}^{m}} t^{m}$$
(4)

in the disk $\left\{ t \in \mathbb{C} : |t| \leq \frac{1}{L(z^0)} \right\}$.

The quantity $\frac{1}{m!L^m(z^0)} \left| \frac{\partial^m F(z^0)}{\partial \mathbf{b}^m} \right|$ is the modulus of a coefficient of the power series (4) at a point $t \in \mathbb{C}$ such that $|t| = \frac{1}{L(z^0)}$. Since F(z) is entire, for every $z_0 \in \overline{D}$

$$\frac{1}{m!L^m(z^0)} \left| \frac{\partial^m F(z^0)}{\partial \mathbf{b}^m} \right| \to 0 \quad (m \to \infty),$$

i.e. there exists $m_0 = m(z^0, \mathbf{b})$ such that inequality (1) holds at $z = z^0$ for all $m \in \mathbb{Z}_+$.

We prove that $\sup\{m_0: z^0 \in \overline{D}\} < +\infty$. Assume on the contrary that the set of m_0 is unbounded in z^0 , i.e. $\sup\{m_0: z^0 \in \overline{D}\} = +\infty$. Hence, for every $m \in \mathbb{Z}_+$ there exist $z^{(m)} \in \overline{D}$ and $p_m > m$

$$\frac{1}{p_m!L^{p_m}(z^{(m)})} \left| \frac{\partial^{p_m} F(z^{(m)})}{\partial \mathbf{b}^{p_m}} \right| > \max\left\{ \frac{1}{k!L^k(z^{(m)})} \left| \frac{\partial^k F(z^{(m)})}{\partial \mathbf{b}^k} \right| : \ 0 \le k \le m \right\}.$$
(5)

Since $\{z^{(m)}\} \subset \overline{D}$, there exists a subsequence $z'^{(m)} \to z' \in \overline{G}$ as $m \to +\infty$. By Cauchy's integral formula

$$\frac{1}{p!}\frac{\partial^p F(z)}{\partial \mathbf{b}} = \frac{1}{2\pi i} \int_{|t|=r} \frac{F(z+t\mathbf{b})}{t^{p+1}} dt$$

for any $p \in \mathbb{N}$, $z \in D$. We rewrite (5) in the form

$$\max\left\{\frac{1}{k!L^{k}(z^{(m)})} \left|\frac{\partial^{k}F(z^{(m)})}{\partial \mathbf{b}^{k}}\right|: \ 0 \le k \le m\right\} < <\frac{1}{L^{p_{m}}(z^{(m)})} \int_{|t|=r/L(z^{(m)})} \frac{|F(z^{(m)}+t\mathbf{b})|}{|t|^{p_{m}+1}} |dt| \le \frac{1}{r^{p_{m}}} \max\{|F(z)|: z \in D_{r}\}$$
(6)

where $D_r = \bigcup_{z^* \in \overline{D}} \{z \in \mathbb{C}^n : |z - z^*| \leq \frac{|b|r}{L(z^*)} \}$. We can choose r > 1 because F is entire. Evaluating the limit for every fixed directional derivative in (6) as $m \to \infty$ we obtain

$$(\forall k \in \mathbb{Z}_+): \quad \frac{1}{k!L^k(z')} \left| \frac{\partial^k F(z')}{\partial \mathbf{b}^k} \right| \le \lim_{m \to \infty} \frac{1}{r^{p_m}} \max\{|F(z)| : z \in D_r\} \le 0$$

as $m \to +\infty$. Thus, all derivatives in the direction **b** of the function F at the point z' equals 0 and F(z') = 0. In view of (4) $F(z' + t\mathbf{b}) \equiv 0$. It is a contradiction.

The proof of Theorem 2 is published also in [5, Th.3.2, p.62–64].

Remark 1. Perhaps, the assumption $(\forall z \in \overline{D})$: $F(z+t\mathbf{b}) \neq 0$ in Theorem 2 not necessary. But nowadays we do not know a rigorous proof of the theorem without this assumption. There was published proof of Theorem 2 in [2] with gaps. Let $M = \max\{|F(z)|: z \in D\}$ and $\varepsilon > 0$. If $F(z^0 + t\mathbf{b}) \equiv 0$ for some $z^0 \in \overline{D}$ then by Theorem 2 the function $G(z) = F(z) + M + \varepsilon$ has bounded *L*-index in domain *D* in any direction $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$.

3. Sufficient conditions of boundedness of *L*-index in direction for sum of entire functions. We consider an arbitrary hyperplane $A = \{z \in \mathbb{C}^n : \langle z, c \rangle = 1\}$, where $\langle c, \mathbf{b} \rangle \neq 0$. Obviously that $\bigcup_{z^0 \in A} \{z^0 + t\mathbf{b} : t \in \mathbb{C}\} = \mathbb{C}^n$.

Let $z^0 \in A$ be a given point. If $F(z^0 + t\mathbf{b}) \neq 0$ as a function of variable $t \in \mathbb{C}$ then there exists $t_0 \in \mathbb{C}$ such that $F(z^0 + t_0\mathbf{b}) \neq 0$. Thus, for every line $\{z^0 + t\mathbf{b}: t \in \mathbb{C}\}$

 $F(z^0 + t\mathbf{b}) \neq 0$ we fixe point t_0 . By B we denote the union of those points $z^0 + t_0\mathbf{b}$ i. e. $B = \bigcup_{\substack{z^0 \in A \\ F(z^0 + t\mathbf{b}) \neq 0}} \{z^0 + t_0\mathbf{b}\}.$

Clearly that for every $z \in \mathbb{C}^n$ there exist $z^0 \in A$ and $t \in \mathbb{C}$ with the property $z = z^0 + t\mathbf{b}$. Indeed,

$$z^{0} = z + \frac{1 - \langle z, c \rangle}{\langle \mathbf{b}, c \rangle} \mathbf{b}, \ t = \frac{\langle z, c \rangle - 1}{\langle \mathbf{b}, c \rangle}.$$

Theorem 3. Let L be the positive continuous function, F, G be entire in \mathbb{C}^n functions satisfying the following conditions:

- 1) G(z) has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$ with $N_b(G, L) = N < +\infty$;
- 2) there exists $\alpha \in (0,1)$ such that for all $z \in \mathbb{C}^n$ and $p \ge N+1$ $(p \in \mathbb{N})$

$$\frac{1}{p!L^p(z)} \left| \frac{\partial^p G(z)}{\partial \mathbf{b}^p} \right| \le \alpha \max\left\{ \frac{1}{k!L^k(z)} \left| \frac{\partial^k G(z)}{\partial \mathbf{b}^k} \right| : 0 \le k \le N \right\};\tag{7}$$

3) for every $z = z^0 + t\mathbf{b} \in \mathbb{C}^n$, where $z^0 \in A$, $z^0 + t_0\mathbf{b} \in B$ and $r = |t - t_0|L(z^0 + t\mathbf{b})$ the inequality

$$\max\left\{ |F(z^{0} + t'\mathbf{b})| \colon |t' - t_{0}| = \frac{2r}{L(z^{0} + t\mathbf{b})} \right\} \leq \\ \leq \max\left\{ \frac{1}{k!L^{k}(z^{0} + t\mathbf{b})} \left| \frac{\partial^{k}G(z^{0} + t\mathbf{b})}{\partial \mathbf{b}^{k}} \right| \colon 0 \leq k \leq N \right\}$$
(8)

is valid;

4)
$$(\exists c > 0)(\forall z^0 + t_0 \mathbf{b} \in B)(\forall t \in \mathbb{C}, |t - t_0| L(z^0 + t\mathbf{b}) \le 1):$$

$$\max\left\{ |F(z^{0} + t'\mathbf{b})| \colon |t' - t_{0}| = \frac{2}{L(z^{0} + t\mathbf{b})} \right\} / |F(z^{0} + t_{0}\mathbf{b})| \le c < +\infty,$$
(9)

or for $L \in Q_{\mathbf{b}}^n$ $(\exists c > 0)(\forall z^0 + t_0 \mathbf{b} \in B)$:

$$\max\left\{ |F(z^{0} + t'\mathbf{b})| \colon |t' - t_{0}| = \frac{2\lambda_{2}^{\mathbf{b}}(1)}{L(z^{0} + t_{0}\mathbf{b})} \right\} / |F(z^{0} + t_{0}\mathbf{b})| \le c < +\infty.$$
(10)

Then for each $\varepsilon \in \mathbb{C}$, $|\varepsilon| \leq \frac{1-\alpha}{2c}$, the function

$$H(z) = G(z) + \varepsilon F(z) \tag{11}$$

is of bounded L-index in the direction **b** and $N_{\mathbf{b}}(H, L) \leq N$.

Proof. We write Cauchy's formula for the entire function $F(z^0 + t\mathbf{b})$ as a function of one complex variable t

$$\frac{1}{p!} \frac{\partial^p F(z^0 + t\mathbf{b})}{\partial \mathbf{b}^p} = \frac{1}{2\pi i} \int_{|t'-t| = \frac{r}{L(z^0 + t\mathbf{b})}} \frac{F(z^0 + t'\mathbf{b})}{(t'-t)^{p+1}} dt'.$$
(12)

For the chosen $r = |t - t_0|L(z^0 + t\mathbf{b})$ the following inequality holds

$$\frac{r}{L(z^0 + t\mathbf{b})} = |t' - t| \ge |t' - t_0| - |t - t_0| = |t' - t_0| - \frac{r}{L(z^0 + t\mathbf{b})}.$$

Hence,

$$|t' - t_0| \le \frac{2r}{L(z^0 + t\mathbf{b})}.$$
(13)

Equality (12) yields

$$\frac{1}{p!L^{p}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{p}F(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{p}} \right| \leq \frac{1}{2\pi L^{p}(z^{0}+t\mathbf{b})} \cdot \frac{L^{p+1}(z^{0}+t\mathbf{b})}{r^{p+1}} \times \\
\times \frac{2\pi r}{L(z^{0}+t\mathbf{b})} \cdot \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t| = \frac{r}{L(z^{0}+t\mathbf{b})} \right\} \leq \\
\leq \frac{1}{r^{p}} \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\}.$$
(14)

If $r = |t - t_0|L(z^0 + t\mathbf{b}) > 1$ then (14) implies

$$\frac{1}{p!L^p(z^0+t\mathbf{b})} \left| \frac{\partial^p F(z^0+t\mathbf{b})}{\partial \mathbf{b}^p} \right| \le \max\left\{ |F(z^0+t'\mathbf{b})| \colon |t'-t_0| = \frac{2r}{L(z^0+t\mathbf{b})} \right\}.$$
 (15)

Let $r = |t - t_0| L(z^0 + t\mathbf{b}) \in (0, 1]$. Setting r = 1 in (12) and (13) we similarly deduce

$$\frac{1}{p!L^{p}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{p}F(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{p}} \right| \leq \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2}{L(z^{0}+t\mathbf{b})} \right\} = \\
= \frac{\max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2}{L(z^{0}+t\mathbf{b})} \right\}}{\max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\}} \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\} \leq \\
\leq \frac{\max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2}{L(z^{0}+t\mathbf{b})} \right\}}{|F(z^{0}+t_{0}\mathbf{b})|} \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\} \leq \\
\leq c \max\left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2}{L(z^{0}+t\mathbf{b})} \right\}, \quad (16)$$

where

$$c = \sup_{z^0 + t_0 \mathbf{b} \in B} \sup_{\substack{t \in \mathbb{C}, \\ |t - t_0| L(z^0 + t\mathbf{b}) \le 1}} \frac{\max\left\{ |F(z^0 + t'\mathbf{b})| \colon |t' - t_0| = \frac{2}{L(z^0 + t\mathbf{b})} \right\}}{|F(z^0 + t_0 \mathbf{b})|} \ge 1.$$

If $L \in Q$ then $\sup \left\{ \frac{L(z^0+t_0\mathbf{b})}{L(z^0+t\mathbf{b})}: |t-t_0| \leq \frac{1}{L(z^0+t\mathbf{b})} \right\} \leq \lambda_2^{\mathbf{b}}(1)$. This means that $L(z^0+t\mathbf{b}) \geq \frac{L(z^0+t_0\mathbf{b})}{\lambda_2^{\mathbf{b}}(1)}$. Using this inequality we choose

$$c := \sup_{z^0 + t_0 \mathbf{b} \in B} \frac{\max\left\{ |F(z^0 + t'\mathbf{b})| : |t' - t_0| = \frac{2\lambda_2^{\mathbf{b}}(1)}{L(z^0 + t_0 \mathbf{b})} \right\}}{|F(z^0 + t_0 \mathbf{b})|} \ge 1$$

in (16). In view of (15) and (16) we have

$$\frac{1}{p!L^p(z^0+t\mathbf{b})} \left| \frac{\partial^p F(z^0+t\mathbf{b})}{\partial \mathbf{b}^p} \right| \le c \max\left\{ |F(z^0+t'\mathbf{b})| \colon |t'-t_0| = \frac{2r}{L(z^0+t\mathbf{b})} \right\}$$
(17)

for all $p \in \mathbb{N} \cup \{0\}, r \ge 0, z^0 \in A, t \in \mathbb{C}$.

We differentiate (11) p times, $p \ge N + 1$, and then apply (7), (17) and (8)

$$\frac{1}{p!L^{p}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{p}H(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{p}} \right| \leq \\
\leq \frac{1}{p!L^{p}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{p}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{p}} \right| + \frac{|\varepsilon|}{p!L^{p}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{p}F(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{p}} \right| \leq \\
\leq \alpha \max \left\{ \frac{1}{k!L^{k}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{k}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq N \right\} + \\
+ c|\varepsilon| \max \left\{ |F(z^{0}+t'\mathbf{b})| : |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\} \leq \\
\leq (\alpha + c|\varepsilon|) \max \left\{ \frac{1}{k!L^{k}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{k}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq N \right\}.$$
(18)

If $s \leq N$, then (17) is true with p = s, but (7) does not hold. Therefore, the differentiation of (11) leads to the following estimate

$$\frac{1}{s!L^{s}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{s}H(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{s}} \right| \geq \\ \geq \frac{1}{s!L^{s}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{s}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{s}} \right| - \frac{|\varepsilon|}{s!L^{s}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{s}F(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{s}} \right| \geq \\ \geq \frac{1}{s!L^{s}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{s}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{s}} \right| - c|\varepsilon| \max \left\{ |F(z^{0}+t'\mathbf{b})| \colon |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\}, \quad (19)$$

where $0 \le s \le N$. Hence, (8) and (19) imply that

$$\max_{0 \le s \le N} \left\{ \frac{1}{s! L^s(z^0 + t\mathbf{b})} \left| \frac{\partial^s H(z^0 + t\mathbf{b})}{\partial \mathbf{b}^s} \right| \right\} \ge (1 - c|\varepsilon|) \max_{0 \le s \le N} \left\{ \frac{1}{s! L^s(z^0 + t\mathbf{b})} \left| \frac{\partial^s G(z^0 + t\mathbf{b})}{\partial \mathbf{b}^s} \right| \right\}.$$
(20)

If $c|\varepsilon| < 1$, then (18) and (20) yield

$$\frac{1}{p!L^p(z^0+t\mathbf{b})} \left| \frac{\partial^p H(z^0+t\mathbf{b})}{\partial \mathbf{b}^p} \right| \le \frac{\alpha+c|\varepsilon|}{1-c|\varepsilon|} \max_{0\le s\le N} \left\{ \frac{1}{s!L^s(z^0+t\mathbf{b})} \left| \frac{\partial^s H(z^0+t\mathbf{b})}{\partial \mathbf{b}^s} \right| \right\}$$
(21)

for $p \ge N+1$. We assume that $\frac{\alpha + c|\varepsilon|}{1-c|\varepsilon|} \le 1$. Hence, $|\varepsilon| \le \frac{1-\alpha}{2c}$. Let $N_{\mathbf{b}}(z^0 + t\mathbf{b}, L, F)$ be the L-index in direction of the function F at the point $z^0 + t\mathbf{b}$, i. e.

 $N_{\mathbf{b}}(z^0 + t\mathbf{b}, L, F)$ is the smallest number m_0 for which inequality (1) holds with $z = z^0 + t\mathbf{b}$. For $|\varepsilon| \leq \frac{1-\alpha}{2c}$ validity of inequality (21) means that for any $z^0 \in A$ and any $t \in \mathbb{C}$ such that $F(z^0 + t\mathbf{b}) \neq 0$ the *L*-index in direction at the point $z^0 + t\mathbf{b}$ is not greater than N i. e. $N_{\mathbf{b}}(z^0 + t\mathbf{b}, F, L) \le N.$

If for some $z^0 \in A$ $F(z^0 + t\mathbf{b}) \equiv 0$ then $H(z^0 + t\mathbf{b}) \equiv G(z^0 + t\mathbf{b})$ and $N_{\mathbf{b}}(z^0 + t\mathbf{b}, F, L) =$ $N_{\mathbf{b}}(z^0 + t\mathbf{b}, G, L) \leq N$. Therefore, H(z) is of bounded L-index in the direction **b** with $N_{\mathbf{b}}(H,L) \leq N$. This completes the proof of Theorem 3. **Remark 2.** Every entire function F with $N_{\mathbf{b}}(F, L) = 0$ satisfies inequality (10) (see the proof of necessity of Theorem 2.1 in [5, p. 20–24]).

If n = 1, $\mathbf{b} = 1$, L = l, F = f then we obtain the following corollary.

Corollary 1. Let *l* be positive continuous function, *f*, *g* be entire in \mathbb{C} functions, t_0 be some point such that $f(t_0) \neq 0$, satisfying the following conditions:

- 1) g(z) has bounded *l*-index with $N(g, l) = N < +\infty$;
- 2) there exists $\alpha \in (0, 1)$ such that for all $z \in \mathbb{C}$ and $p \ge N + 1$ $(p \in \mathbb{N})$

$$\frac{|g^{(p)}(z)|}{p!l^{p}(z)} \le \alpha \max\left\{\frac{|g^{(k)}(z)|}{k!l^{k}(z)} : 0 \le k \le N\right\};$$

3) for every $t \in \mathbb{C}$, and $r = |t - t_0|l(t)$:

$$\max\left\{ |f(t')|: |t'-t_0| = \frac{2r}{l(t)} \right\} \le \max\left\{ \frac{|g^{(k)}(t)|}{k! l^k(t)}: 0 \le k \le N \right\};$$

4) $(\exists c > 0)(\forall t \in \mathbb{C}, |t - t_0| l(t) \le 1): \max\left\{ |f(t')|: |t' - t_0| = \frac{2}{l(t)} \right\} / |f(t_0)| \le c < +\infty,$ or for $l \in Q$ we put $c = \max\left\{ |f(t')|: |t' - t_0| = \frac{2\lambda_2^{\mathbf{b}}(1)}{l(t_0)} \right\} / |f(t_0)|.$

Then for each $\varepsilon \in \mathbb{C}$, $|\varepsilon| \leq \frac{1-\alpha}{2c}$, the function $h(z) = g(z) + \varepsilon f(z)$ is of bounded *l*-index and $N(h, l) \leq N$.

Corollary 1 is a generalization of Pugh's result [9] for *l*-index.

If $L \in Q_{\mathbf{b}}^{n}$ then Condition 2) in Theorem 3 always holds. The following theorem is true.

Theorem 4. Let $L \in Q^n_{\mathbf{b}}$, $\alpha \in (0,1)$ and F, G be entire in \mathbb{C}^n functions satisfying the conditions:

- 1) G(z) has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$.
- 2) for every $z = z^0 + t\mathbf{b} \in \mathbb{C}^n$, where $z^0 \in A$, $z^0 + t_0\mathbf{b} \in B$ and $r = |t t_0|L(z^0 + t\mathbf{b})$ the following inequality is valid

$$\max\left\{ |F(z^{0}+t'\mathbf{b})|: |t'-t_{0}| = \frac{2r}{L(z^{0}+t\mathbf{b})} \right\} \leq \\ \leq \max\left\{ \frac{1}{k!L^{k}(z^{0}+t\mathbf{b})} \left| \frac{\partial^{k}G(z^{0}+t\mathbf{b})}{\partial \mathbf{b}^{k}} \right|: 0 \leq k \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\}.$$

$$3) \ c := \sup_{z^{0}+t_{0}\mathbf{b}\in B} \frac{\max\left\{ |F(z^{0}+t'\mathbf{b})|: |t'-t_{0}| = \frac{2\lambda_{2}^{b}(1)}{L(z^{0}+t_{0}\mathbf{b})} \right\}}{|F(z^{0}+t_{0}\mathbf{b})|} < \infty.$$

$$If |\varepsilon| \leq \frac{1-\alpha}{2c} \text{ then the function}$$

$$H(z) = G(z) + \varepsilon F(z)$$

is of bounded L-index in the direction **b** with $N_{\mathbf{b}}(H, L) \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha})$, where $G_{\alpha}(z) = G(z/\alpha)$, $L_{\alpha}(z) = L(z/\alpha)$.

A. I. BANDURA

Proof. Condition 2) in Theorem 3 always holds for $N = N_b(G_\alpha, L_\alpha)$ instead of $N = N_b(G, L)$, where $G_\alpha(z) = G(z/\alpha)$, $L_\alpha(z) = L(z/\alpha)$, $\alpha \in (0, 1)$. Indeed, by Theorem 1 inequality (3) holds for the function G. Substituting $\frac{z^0}{\alpha}$, $\frac{t}{\alpha}$ and $\frac{t_0}{\alpha}$ instead of z^0 , t and t_0 in (3) we obtain

$$\max\left\{ |G((z^{0} + t\mathbf{b})/\alpha)| \colon |t - t_{0}| = \frac{r_{2}\alpha}{L((z^{0} + t_{0}\mathbf{b})/\alpha)} \right\} \leq \\ \leq P_{1} \max\left\{ |G((z^{0} + t\mathbf{b})/\alpha)| \colon |t - t_{0}| = \frac{r_{1}\alpha}{L((z_{0} + t_{0}\mathbf{b})/\alpha)} \right\}.$$
(22)

By Theorem 1 inequality (22) implies that $G_{\alpha} = G(z/\alpha)$ has bounded L_{α} -index in the direction **b** and vice versa. Hence, for $p \ge N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) + 1$ and $\alpha \in (0, 1)$

$$\frac{1}{p!L_{\alpha}^{p}(z)} \left| \frac{\partial^{p}G_{\alpha}(z)}{\partial \mathbf{b}^{p}} \right| = \frac{1}{p!\alpha^{p}L^{p}(z/\alpha)} \left| \frac{\partial^{p}G(z/\alpha)}{\partial \mathbf{b}^{p}} \right| \leq \\ \leq \max\left\{ \frac{1}{s!L_{\alpha}^{s}(z)} \left| \frac{\partial^{s}G_{\alpha}(z)}{\partial \mathbf{b}^{s}} \right| : 0 \leq s \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\} = \\ = \max\left\{ \frac{1}{s!\alpha^{s}L^{s}(z/\alpha)} \left| \frac{\partial^{s}G(z/\alpha)}{\partial \mathbf{b}^{s}} \right| : 0 \leq s \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\}$$

Multiplying by α^p we deduce

=

$$\frac{1}{p!L^{p}(z/\alpha)} \left| \frac{\partial^{p}G(z/\alpha)}{\partial \mathbf{b}^{p}} \right| \leq \max \left\{ \frac{\alpha^{p-s}}{s!L^{s}(z/\alpha)} \left| \frac{\partial^{s}G(z/\alpha)}{\partial \mathbf{b}^{s}} \right| : 0 \leq s \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\} \leq \\ \leq \alpha \max \left\{ \frac{1}{s!L^{s}(z/\alpha)} \left| \frac{\partial^{s}G(z/\alpha)}{\partial \mathbf{b}^{s}} \right| : 0 \leq s \leq N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\}.$$
(23)

In view of arbitrariness of z inequality (23) imply (7).

Remark 3. It is easy to prove that $N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \leq N_{\mathbf{b}}(G, L)$ for $\alpha \in (0, 1)$. Therefore $N_{\mathbf{b}}(G_{\alpha}, L_{\alpha})$ in Theorem 4 can be replaced by $N_{\mathbf{b}}(G, L)$.

Unfortunately, Theorem 4 does not allow to remove a constraint $(\forall z \in \overline{D})$: $F(z+t\mathbf{b}) \neq 0$ in Theorem 2.

Corollary 2. Let $l \in Q$, $\alpha \in (0, 1)$ and f, g be entire in \mathbb{C} functions satisfying the conditions:

- 1) g(z) has bounded *l*-index;
- 2) for every $t \in \mathbb{C}$, and $r = |t t_0|l(t)$:

$$\max\left\{ |f(t')|: |t' - t_0| = \frac{2r}{l(t)} \right\} \le \max\left\{ \frac{|g^{(k)}(t)|}{k! l^k(t)}: 0 \le k \le N(g_\alpha, l_\alpha) \right\}.$$

If $|\varepsilon| \leq \frac{1-\alpha}{2c}$ then the function $h(z) = g(z) + \varepsilon f(z)$ is of bounded *l*-index with $N(h, l) \leq N(g_{\alpha}, l_{\alpha})$, where $g_{\alpha}(z) = g(z/\alpha)$, $l_{\alpha}(z) = l(z/\alpha)$, $c = \max\left\{|f(t')| : |t' - t_0| = \frac{2\lambda_2^{b}(1)}{l(t_0)}\right\} / |f(t_0)|$.

Corollary 2 is new even in the case n = 1 and $l \equiv 1$, i.e. for entire functions of bounded index.

5. An example of function of unbounded index in direction in a bounded domain.

In our investigations of boundedness of *L*-index in direction we often consider the slices $\{z^0 + t\mathbf{b} \colon t \in \mathbb{C}\}$. Then we fix $z^0 \in \mathbb{C}^n$ and apply arguments from the one-dimensional case. Afterwards we deduce uniform estimations in z^0 . This is a short description of the method.

Prof. S. Yu. Favorov (2015) posed the following **problem** in conversation with Prof. O. B. Skaskiv.

Problem 1. Let $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$ be a given direction, $L \colon \mathbb{C}^n \to \mathbb{R}_+$ be a continuous function. Is it possible to replace the assumption that F is holomorphic in \mathbb{C}^n by the assumption that F is holomorphic on all slices of the form $z^0 + t\mathbf{b}$ and deduce known properties of entire functions of bounded *L*-index in direction?

Our answer to Favorov's question is negative. This relaxation of restriction on the function F does not imply certain theorems.

Theorem 5. For every direction $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$ there exist a function F(z) and a bounded domain $D \subset \mathbb{C}^n$ with following properties:

- 1) F is holomorphic in every slice $\{z^0 + t\mathbf{b} \colon t \in \mathbb{C}\}$ for all $z^0 \in \mathbb{C}^n$;
- 2) F is not entire in \mathbb{C}^n ;
- 3) F does not satisfy (1) in \overline{D} , i.e. for any $p \in \mathbb{Z}_+$ there exist $m \in \mathbb{Z}_+$ and $z_p \in \overline{D}$

$$\frac{1}{m!} \left| \frac{\partial^m F(z_p)}{\partial \mathbf{b}^m} \right| > \max \left\{ \frac{1}{k!} \left| \frac{\partial^k F(z_p)}{\partial \mathbf{b}^k} \right| : 0 \le k \le p \right\}.$$

Proof. Without loss of generality we assume that n = 2 and $\mathbf{b} = (0, 1)$. Let

$$F(z_1, z_2) = \begin{cases} -1 + z_1 \sin \frac{z_2}{z_1}, & z_1 \neq 0, \\ -1, & z_1 = 0. \end{cases}$$

For every fixed $z_1^0 \in \mathbb{C}$ the function $F(z_1, z_2)$ is holomorphic in variable z_2 , i. e. F is holomorphic on every slice $z = z^0 + t\mathbf{b}$, where $z^0 = (z_1^0, 0), t \in \mathbb{C}$. On the other hand, F is not entire in \mathbb{C}^2 .

If $z_1 = 0$ then $\frac{\partial^k F}{\partial \mathbf{b}^k} = 0$ and if $z_1 \neq 0$ then

$$\frac{\partial^k F}{\partial \mathbf{b}^k} = z_1^{1-k} \sin(\frac{z_2}{z_1} + \frac{\pi k}{2}) \ (k \in \mathbb{N}).$$
(24)

Hence, for every fixed $z_1^0 \in \mathbb{C}$ the function $F(z_1^0, z_2)$ has bounded index in variable z_2 , because $\frac{(z_1^0)^{1-k}}{k!} \to 0$ as $k \to \infty$.

Nevertheless, the function $F(z_1, z_2)$ is of unbounded index in the direction **b**. Moreover, F has unbounded index in any closed bounded domain G, that contains a part of plane $z_1 = 0$ with some neighborhood: $D \supset \{(z_1, z_2) : |z_1| \leq R, |z_2| \leq R\}$.

Denote $g_0(z_2) = F(z_1^0, z_2)$. The function $\sin t$ $(t \in \mathbb{C})$ has index 2. Therefore, in view of (24), index of the function $g_0(z_2)$ can be established from the following inequalities:

$$\frac{|z_1^0|^{1-k}}{k!} \ge \frac{|z_1^0|^{1-(k+2)}}{(k+2)!} \iff |z_1^0|^2 \ge \frac{1}{(k+1)(k+2)} \iff (k+1)(k+2) \ge \frac{1}{|z_1^0|^2} \Longrightarrow (k+2)^2 > \frac{1}{|z_1^0|^2} \Longrightarrow k > \frac{1}{|z_1^0|} - 2.$$

Thus, index of the function g_0 is greater than $\frac{1}{|z_1^0|} - 2$, i. e. $N(g_0) > \frac{1}{|z_1^0|} - 2$. If $z_1^0 \to 0$ then $N(g_0) \to +\infty$. Hence, the function F has unbounded index in the direction $\mathbf{b} : N_{\mathbf{b}}(F) = \sup_{z_1^0 \in \mathbb{C}} N(g_0) = +\infty$, i.e. F does not satisfy (1) in \mathbb{C}^2 .

Similarly, it can be proved that (1) does not hold for the function F in the domain D. It is easy to see that the function F is not continuous in joint variables. It is discontinuous for $z_1 = 0$.

Remark 4. If we replace holomorphy in \mathbb{C}^n by holomorphy on the slices $\{z^0 + t\mathbf{b} : t \in \mathbb{C}\}$ then the conclusion of Theorem 2 is not valid. Thus, Theorem 5 gives the negative answer to Problem 1. But careful analysis of the proof of Theorem 2 reveals that we implicitly use continuity in joint variables in (6).

REFERENCES

- A.I. Bandura, O.B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27 (2007), №1, 30-52. (in Ukrainian)
- A.I. Bandura, O.B. Skaskiv, Sufficient sets for boundedness L-index in direction for entire functions, Mat. Stud., 30 (2008), №2, 177–182.
- A.I. Bandura, O.B. Skaskiv, Open problems for entire functions of bounded index in direction, Mat. Stud., 43 (2015), №1, 103–109.
- A.I. Bandura, M.T. Bordulyak, O.B. Skaskiv, Sufficient conditions of boundedness of L-index in joint variables, Mat. Stud., 45 (2016), №1, 12–26.
- A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Lviv: Publisher I.E. Chyzhykov, 2016, 128 p.
- A.D. Kuzyk, M.N. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39 (1986), №1, 3–8.
- B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 2 (1968), 298–307.
- 8. A.I. Bandura, Product of two entire functions of bounded L-index in direction is a function with the same class, Bukovyn. Mat. Zh. (in Ukrainian, accepted)
- 9. W.J. Pugh, Sums of functions of bounded index, Proc. Amer. Math. Soc., 22 (1969), 319–323.
- 10. M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.

Ivano-Frankivs'k National Technical University of Oil and Gas andriykopanytsia@gmail.com

Received 3.01.2016