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This paper gives a simple construction of the pathwise Itô integral
∫ t

0
ϕ dω for an integrand

ϕ and an integrator ω satisfying various topological and analytical conditions. The definition
is purely pathwise in that neither ϕ nor ω are assumed to be paths of processes, and the Itô
integral exists almost surely in a non-probabilistic finance-theoretic sense. For example, one of
the results shows the existence of

∫ t

0
ϕdω for a càdlàg integrand ϕ and a càdlàg integrator ω

with jumps bounded in a predictable manner.

1. Introduction. The structure of this paper is as follows. To set the scene, Section 2
briefly describes papers and results that I am aware of related to the area of probability-
free pathwise Itô integration. Section 3 defines the meaning of the phrase “a property holds
almost surely” in a probability-free manner; however, to make our results stronger we will
use a stronger condition that the property hold “quasi-always”, which is also defined in that
section. The main result of Section 3 is the existence of the pathwise Itô integral

∫ t

0
ϕ dω

quasi-always. This result assumes the possibility of trading in ω (interpreted as the price path
of a financial security) and the continuity of ϕ and ω (Theorem 1); it is “purely pathwise”
in that neither ω nor ϕ are assumed to be paths of processes, and they can be chosen
separately. Theorem 1 is proved in the following section, Section 4; the proof relies on a
primitive “self-normalized game-theoretic supermartingale” introduced in Appendix A and
a game-theoretic version of a classical martingale introduced in Appendix B. The proof can
also be extracted from [17] (which, however, does not state Theorem 1 explicitly). Section 5
shows that continuous price paths possess quadratic variation quasi-always; in principle, this
is a known result ([22], Theorem 5.1(a)), but we prove it in a slightly different setting (the
one required for our Theorem 1). Once we have the quadratic variation, we can state a
simple version of Itô’s formula (Theorem 2) and show the coincidence of our integral with
Föllmer’s [9] in Section 6. Section 7 gives a definition of the Itô integral

∫ t

0
ϕ dω in the case

of càdlàg ϕ and ω. Theorem 3, asserting the existence of Itô integral in this case, is proved
similarly to Theorem 1. The reader will notice that the setting of the former theorem is more
complicated, and so we cannot say that it contains the latter as a special case. We do not
compare the definition of Section 7 with Föllmer’s since the latter assumes càglàd, rather
than càdlàg, integrands.

2. Related literature. The first paper to give a probability-free definition of Itô integral was
Föllmer’s ([9]), who defined the integral

∫ t

0
ϕ dω in the case where ϕ is obtained by composing
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a regular function f (namely, f = F ′ for a C2 function F ) with ω (for simplicity, let us assume
that ω is continuous in this introductory section). Föllmer’s definition is pathwise in ω but
not purely pathwise, as ϕ is a function of ω. Cont and Fournié ([4]) extend Föllmer’s results
by replacing the composition of f and ω by applying a non-anticipative functional f (also of
the form F ′ where F is a non-anticipative functional of a class denoted C1,2 and the prime
stands for “vertical derivative”). Cont and Fournié’s definition is not quite pathwise in ω, but
this is repaired by Ananova and Cont in [1] (for the price of additional restrictions on the
non-anticipative functional F ). Other papers (such as Perkowski and Prömel [16] and Davis
et al. [6]) extend Föllmer’s results by relaxing the regularity assumptions about f , which
requires inclusion of local time. All these papers assume that ω possesses quadratic variation
(defined in a pathwise manner), and this assumption is satisfied when ω is a typical price
path (see, e.g., [19]; the existence of quadratic variation for such ω was established in, e.g.,
[22] and [23]; precise definitions will be given below). The existence of local times for typical
continuous price paths follows from the main result of [22] (as explained in [16], p. 13) and
was explicitly demonstrated, together with its several nice properties, in [16] (Theorem 3.5).

Another definition of pathwise Itô integral is given in the paper [15], but it is not
completely probability-free. Besides, it depends on additional axioms of set theory (addi-
ng the continuum hypothesis is sufficient), and as the author points out, his “ ‘construction’
of the stochastic integral is not ‘constructive’ in the proper sense; it merely yields an existence
result”. This paper’s construction is explicit.

Another paper on this topic is [23], but the construction used in it is Föllmer’s, and the
only novelty in [23] is that it shows the existence of quadratic variation for typical càdlàg
price paths (under a condition bounding jumps).

To clarify the relation between the usual notion of “pathwise” and what we call “purely
pathwise”, let us consider two examples in which pathwise definitions are in fact purely
pathwise but very restrictive.

Example 1 (G. Shafer). Consider the Föllmer-type definition of the Itô integral∫ t

0
f(ω(s), s) dω(s) for a time-dependent function f ([21], Corollary 2.3.6; this definition

is implicit in [9]). If f does not depend on its first argument, f(·, s) = ϕ(s), we obtain
a purely pathwise definition of

∫ t

0
ϕ dω. The problem is that the function f has to be very

regular (of class C2,1), and so this construction works only for very regular ϕ (such as C1).

Example 2. The second example is provided by Föllmer’s definition of the Itô integral∫ t

0
∇F (X(s)) dX(s) for a function X : [0,∞) → Rd having pathwise quadratic variation (as

defined by Föllmer); this definition is given in, e.g., [9], pp. 147–148, and [21], Theorem 2.3.4.
Let us take d = 2 and denote the components of X as ϕ and ω: X(t) = (ϕ(t), ω(t)) for all
t ∈ [0,∞). For the existence of pathwise quadratic variation, it suffices to assume that ϕ and
ω are the price paths of different securities in an idealized financial market (see, e.g., [23],
Section 5). Taking F (ϕ, ω) := ϕω, we obtain the definition of the sum of purely pathwise
Itô integrals

∫ t

0
ϕ dω and

∫ t

0
ω dϕ. In this special case the integrand is no longer a function of

the integrator, but even if we ignore the fact that
∫ t

0
ϕ dω and

∫ t

0
ω dϕ are still not defined

separately, the fact that ϕ and ω are co-traded in the same market introduces a lot of logical
dependence between them; e.g., in the case where ϕ(t) = ω(t − ϵ) for some ϵ > 0 and for
all t ≥ ϵ we would expect the integral

∫ t

0
ϕ dω to be well-defined but a market in which

such ϕ and ω are traded becomes a money machine (unless ϕ and ω are degenerate, such as
constant). Even if ϕ is not a price path of a traded security, the existence of its quadratic



98 V. VOVK

variation is a strong and unnecessary assumption. This paper completely decouples ϕ and ω
(at least in the càdlàg case), and ϕ is never assumed to be a price path.

This paper is inspired by Rafa l  Lochowski’s recent paper [13], which introduces the Itô
integral

∫ t

0
ϕ dω for a wide class of trading strategies ϕ as integrands in a probability-free

setting similar to that [22] and [17]; the main advance of [13] as compared with [17] is
its treatment of càdlàg price processes. The main observation leading to this paper is that∫ t

0
ϕ dω can be defined without assuming that ϕ is the realized path of a given strategy.
Papers that give purely pathwise definitions of Itô integral include [3] (Theorem 7.14)

and [10], but the existence results in those papers are not probability-free.
Finally, on the face of it, the paper [17] by Perkowski and Prömel does not give a purely

pathwise definition (namely, they assume the integrand to be a process rather than a path).
Perkowski and Prömel consider two approaches to defining Itô integral. A disadvantage of
their second approach is that it “restricts the set of integrands to those ‘locally looking like’ ”
ω ([17], the beginning of Section 4). Their first approach (culminating in their Theorem 3.5)
constructs

∫ t

0
ϕ dω in the case where ϕ is a path of a process on the sample space of continuous

paths in Rd, making ϕ a non-anticipative function of ω. It can, however, be applied to ω
consisting of two components that can be used as the integrand and the integrator (as in
Example 2 above) and, crucially, the proof of their Theorem 3.5 (see also Corollary 3.6) shows
[18] that trading in the integrand is not needed; therefore, it also proves our Theorem 1.

After this paper had been submitted for publication, the technical report [14] extended
some results of [17] to càdlàg price paths. The integrands in [14] are processes, but it might
still be possible to extract from it purely pathwise results. An important topic of [17] and
[14] is the continuity of Itô integration.

3. Definition of Itô integral in the continuous case. In our terminology and definitions
we will follow mainly Section 2 of the technical report [22]. We consider a game between
Reality (a financial market) and Sceptic (a trader) in continuous time: the time interval
is [0,∞). First Sceptic chooses his trading strategy (to be defined momentarily) and then
Reality chooses continuous functions ω and ϕ mapping [0,∞) to R; ω is interpreted as
the price path of a financial security (not required to be nonnegative), and ϕ is simply the
function that we wish to integrate by ω. To formalize this picture we will be using Galmarino-
style definitions, which are more intuitive than the standard ones (used in the journal version
of [22]); see, e.g., [5].

Let
Ω := C[0,∞)2 (1)

be the set of all possible pairs (ω, ϕ); it is our sample space. We equip Ω with the σ-algebra
F generated by the functions Ω ∋ (ω, ϕ) 7→ (ω(t), ϕ(t)), t ∈ [0,∞) (i.e., the smallest
σ-algebra making them measurable). We often consider subsets of Ω and functions on Ω
that are measurable with respect to F . As shown in [24], the requirement of measurability
is essential: without it, the theory degenerates.

As usual, an event is an F -measurable set in Ω, a random variable is an F -measurable
function of the type Ω → R, and an extended random variable is an F -measurable function of
the type Ω → [−∞,∞]. Each o = (ω, ϕ) ∈ Ω is identified with the function o : [0,∞) → R2

defined by o(t) := (ω(t), ϕ(t)), t ∈ [0,∞). A stopping time is an extended random variable
τ : Ω → [0,∞] such that, for all o and o′ in Ω,(

o|[0,τ(o)] = o′|[0,τ(o)]
)

=⇒ τ(o) = τ(o′), (2)



PATHWISE ITÔ INTEGRAL 99

where f |A stands for the restriction of f to the intersection of A and f ’s domain. A random
variable X is said to be determined by time τ , where τ is a stopping time, if, for all o and
o′ in Ω,

(
o|[0,τ(o)] = o′|[0,τ(o)]

)
=⇒ X(o) = X(o′). As customary in probability theory, we will

often omit explicit mention of o ∈ Ω when it is clear from the context.
A simple trading strategy G is defined to be a pair ((τ1, τ2, . . .), (h1, h2, . . .)), where:

• τ1 ≤ τ2 ≤ · · · is a nondecreasing sequence of stopping times such that, for each o ∈ Ω,
limn→∞ τn(o) = ∞;

• for each n = 1, 2, . . ., hn is a bounded random variable determined by time τn.

The simple capital process corresponding to a simple trading strategy G and an initial capital
c ∈ R is defined, for o = (ω, ϕ), by

KG,c
t (o) := c +

∞∑
n=1

hn(o)
(
ω(τn+1 ∧ t) − ω(τn ∧ t)

)
, t ∈ [0,∞),

where the zero terms in the sum are ignored (which makes the sum finite for each t). The
value hn(o) is Sceptic’s bet at time τn = τn(o), and KG,c

t (o) is Sceptic’s capital at time t. The
intuition behind this definition is that Sceptic is allowed to bet only on ω, but the current
and past values of both ω and ϕ can be used for choosing the bets.

A nonnegative capital process is any function S that can be represented in the form

St :=
∞∑
n=1

KGn,cn
t , (3)

where the simple capital processes KGn,cn are required to be nonnegative (i.e., KGn,cn
t (o) ≥ 0

for all t and o ∈ Ω), and the nonnegative series
∑∞

n=1 cn is required to converge. The sum
(3) can take value ∞. Since KGn,cn

0 (o) = cn does not depend on o, S0(o) does not depend on
o either and will sometimes be abbreviated to S0.

The outer measure of a set E ⊆ Ω (not necessarily E ∈ F) is defined as

P(E) := inf
{
S0

∣∣ ∀o ∈ Ω: lim inf
t→∞

St(o) ≥ 1E(o)
}
, (4)

where S ranges over the nonnegative capital processes and 1E stands for the indicator
function of E. The set E is null if P(E) = 0. This condition is equivalent to the existence
of a nonnegative capital process S such that S0 = 1 and, on the event E, limt→∞St = ∞
(see, e.g., [22], Section 2). A property of o ∈ Ω will be said to hold almost surely if the set
of o where it fails is null.

Remark 1. The definition (4) is less popular than its modification proposed in [17] (the
latter has been also used in, e.g., [16], [2], [12], and [13]). Our rationale for the choice of
the original definition (4) is that it is more conservative and, therefore, makes our results
stronger. Its financial interpretation is that E is null if Sceptic can become infinitely rich
splitting an initial capital of only one monetary unit into a countable number of accounts
and running a simple trading strategy on each account making sure that no account ever
goes into debt.

The intuition behind an event E ⊆ Ω holding almost surely is supposed to be that we do
not expect it to happen in a market that is efficient to the weakest possible degree: indeed,
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there is a trading strategy that makes Sceptic starting with one monetary unit infinitely
rich whenever the event fails to happen. However, the weakness of this interpretation is that
becoming infinitely rich at the infinite time (cf. the lim inf in (4)) is not so surprising. Let us
say that a property E ⊆ [0,∞) × Ω of time t ∈ [0,∞) and o ∈ Ω holds quasi-always (q.a.)
if there exists a nonnegative capital process S such that S0 = 1 and, for all t ∈ [0,∞) and
o ∈ Ω, (∃s ∈ [0, t) : (s, o) /∈ E) =⇒ St(o) = ∞. Intuitively, we require that Sceptic become
infinitely rich immediately after the property becomes violated.

A process is a real-valued function X on the Cartesian product [0,∞) × Ω; we will use
Xt(o) as the notation for the value of X at (t, o). A sequence of processes Xn converges to
a process X uniformly on compacts quasi-always (ucqa) if the property

lim
n→∞

sup
s∈[0,t]

|Xn
s (o) −Xs(o)| = 0

of t and o holds quasi-always. A process X is continuous if its every path t ∈ [0,∞) 7→ Xt(o).
Notice that an ucqa limit of continuous processes has continuous paths almost surely.

Now we have all we need to define the Itô integral
∫ t

0
ϕ dω. First we define a sequence of

stopping times T n
k , k = 0, 1, 2, . . ., inductively by T n

0 (o) := 0, where o = (ω, ϕ), and

T n
k (o) := inf

{
t > T n

k−1(o) |
∣∣ω(t) − ω(T n

k−1)
∣∣ ∨ ∣∣ϕ(t) − ϕ(T n

k−1)
∣∣ = 2−n

}
(5)

for k = 1, 2, . . . (as usual, inf ∅ := ∞); we do this for each n = 1, 2, . . . . We let T n(o) stand
for the nth partition, i.e., the set T n(o) := {T n

k (o) | k = 0, 1, . . .} . Notice that the nestedness
of the partitions, T 1 ⊆ T 2 ⊆ · · · , is neither required nor implied by our definition.

Remark 2. The definition of the sequence (5) is different from the one in [22], Section 5,
in that it uses not only the values of ω but also those of ϕ. In this respect it is reminiscent
of the definitions in [3] (Theorem 7.14) and [10], where similar sequences of stopping times
depend only on the values of ϕ.

For all t ∈ [0,∞), ϕ ∈ C[0,∞), and ω ∈ C[0,∞), define

(ϕ · ω)nt :=
∞∑
k=1

ϕ(T n
k−1 ∧ t)

(
ω(T n

k ∧ t) − ω(T n
k−1 ∧ t)

)
, n = 1, 2, . . . . (6)

Theorem 1. The processes (ϕ · ω)n converge ucqa as n → ∞.

The limit whose existence is asserted in Theorem 1 will be denoted ϕ ·ω and called the Itô
integral of ϕ by ω. Its value at time t will be denoted (ϕ·ω)t or

∫ t

0
ϕ dω. Since the convergence

is uniform over s ∈ [0, t] for each t, (ϕ ·ω)s is a continuous function of s ∈ [0, t] quasi-always
(and a continuous function of s ∈ [0,∞) almost sure).

4. Proof of Theorem 1. Let us first check the following basic property of the stopping
times T n

k (which will allow us to use these stopping times as components of simple trading
strategies).

Lemma 1. For each n, T n
k → ∞ as k → ∞.

Proof. Let us fix n and t and show that T n
k > t for some k. Each s ∈ [0, t] has a neighbourhood

in which ω and ϕ change by less than 2−n. By the compactness of the interval [0, t] we
can choose a finite cover of this interval consisting of such neighbourhoods, and each such
neighbourhood contains at most one T n

k .
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We will often use the following technical lemma.

Lemma 2. For any sequence Kn, n = 1, 2, . . ., of continuous nonnegative capital processes
satisfying Kn

0 ≤ 1, we have sups∈[0,t] Kn
s = O(n2) as n → ∞ q.a.

Proof. Fix such a sequence of nonnegative capital processes Kn. It suffices to show that
sups∈[0,t] Kn

s ≤ n2 from some n on q.a. Let K̃n be the nonnegative capital process Kn stopped
at the moment when it reaches level n2: K̃n

t := Kn
t∧τ , where τ := inf{t | Kn

t = n2} (it is here
that we use the continuity of Kn). Set K̃ :=

∑
n n

−2K̃n. It remains to notice that K̃0 < ∞
and K̃t = ∞ whenever sups∈[0,t]Kn

s > n2 for infinitely many n.

The value of t will be fixed throughout the rest of this section. It suffices to prove that
the sequence of functions (ϕ ·ω)ns on the interval s ∈ [0, t] is Cauchy (in the uniform metric)
quasi-always.

Let us arrange the stopping times T n
0 , T

n
1 , T

n
2 , . . . and T n−1

0 , T n−1
1 , T n−1

2 , . . . into one stri-
ctly increasing sequence (removing duplicates if needed) ak, k = 0, 1, . . .: 0 = a0 < a1 <
a2 < · · · , each ak is equal to one of the T n

k or one of the T n−1
k , each T n

k is among the ak, and
each T n−1

k is among the ak. Let us apply the strategy leading to the supermartingale (19)
(eventually we will be interested in (20)) to

xk := bn

((
(ϕ · ω)nak − (ϕ · ω)nak−1

)
−
(

(ϕ · ω)n−1
ak

− (ϕ · ω)n−1
ak−1

))
=

= bn

(
ϕ(a′k−1) (ω(ak) − ω(ak−1)) − ϕ(a′′k−1) (ω(ak) − ω(ak−1))

)
=

= bn
(
ϕ(a′k−1) − ϕ(a′′k−1)

)
(ω(ak) − ω(ak−1)) , (7)

where bn := n2 (the rationale for this choice will become clear later), a′k−1 := T n
k′ with k′

being the largest integer such that T n
k′ ≤ ak−1, and a′′k−1 := T n−1

k′′ with k′′ being the largest
integer such that T n−1

k′′ ≤ ak−1. (Notice that either a′k−1 = ak−1 or a′′k−1 = ak−1.) Informally,
we consider the simple capital process Kn with starting capital 1 corresponding to betting
Kn

ak−1
on xk at each time ak−1, k = 1, 2, . . . . Formally, the bet (on ω) at time ak−1 is

Kn
ak−1

bn
(
ϕ(a′k−1) − ϕ(a′′k−1)

)
.

We often do not reflect n in our notation (such as ak and xk), but this should not lead
to ambiguities.

The condition of Lemma 6 is satisfied as

|xk| ≤ bn2−n+12−n ≤ 0.5, (8)

where the last inequality (ensuring that (19) and (20) are really supermartingales) is true
for all n ≥ 1. By Lemma 6, we will have

Kn
aK

≥
K∏
k=1

exp(xk − x2
k), K = 0, 1, . . . .

Lemma 6 also shows that, in addition, Kn
s ≥ Kn

ak−1
exp(xk,s − x2

k,s), k = 1, 2, . . . , s ∈
[ak−1, ak], where

xk,s := bn

((
(ϕ · ω)ns − (ϕ · ω)nak−1

)
−
(

(ϕ · ω)n−1
s − (ϕ · ω)n−1

ak−1

))
=

= bn
(
ϕ(a′k−1) − ϕ(a′′k−1)

)
(ω(s) − ω(ak−1)) (9)
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(cf. (7); notice that (8) remains true for xk,s in place of xk). This simple capital process Kn

is obviously nonnegative.
To cover both (7) and (9), we modify (9) to

xk,s := bn
(
ϕ(a′k−1) − ϕ(a′′k−1)

)
(ω(ak ∧ s) − ω(ak−1 ∧ s)) . (10)

We have a nonnegative capital process Kn that starts from 1 and whose value at time s is
at least

exp

(
bn
(
(ϕ · ω)ns − (ϕ · ω)n−1

s

)
−

∞∑
k=1

x2
k,s

)
. (11)

Let us show that

sup
s∈[0,t]

∞∑
k=1

x2
k,s = o(1) (12)

as n → ∞ quasi-always. It suffices to show that

sup
s∈[0,t]

∞∑
k=1

(
n22−n+1 (ω(ak ∧ s) − ω(ak−1 ∧ s))

)2
= o(1) q.a. (13)

Using the trading strategy leading to the K29 martingale (21), we obtain the simple capital
process

K̃n
s = n−3 +

∞∑
k=1

(
n22−n+1 (ω(ak ∧ s) − ω(ak−1 ∧ s))

)2−
−

(
∞∑
k=1

n22−n+1 (ω(ak ∧ s) − ω(ak−1 ∧ s))

)2

=

= n−3 +
∞∑
k=1

n42−2n+2 (ω(ak ∧ s) − ω(ak−1 ∧ s))2 − n42−2n+2 (ω(s) − ω(0))2 . (14)

Formally, this simple capital process corresponds to the initial capital K̃n
0 = n−3 and betting

−2n42−2n+2(ω(ak−1) − ω(0)) at time ak−1, k = 1, 2, . . . (cf. (22) on p. 108). Let us make
this simple capital process nonnegative by stopping trading at the first moment s when
n42−2n+2 (ω(s) − ω(0))2 reaches n−3 (which will not happen before time t for sufficiently large
n); notice that this will make K̃n nonnegative even if the addend

∑∞
k=1 · · · (· · · )2 in (14) is

ignored. Since K̃n is a continuous nonnegative capital process with initial value n−3, applying
Lemma 2 to n3K̃n gives sups≤t K̃n

s = O(n−1) = o(1) q.a. Therefore, the sum
∑∞

k=1 · · · (· · · )2
in (14) is o(1) uniformly over s ∈ [0, t] q.a., which completes the proof of (12).

In combination with (12), (11) implies Kn
s ≥ exp(bn ((ϕ · ω)ns − (ϕ · ω)n−1

s )−1) for all s ≤ t
from some n on quasi-always. Applying the strategy leading to the supermartingale (19) to
−xk,s in place of xk,s and averaging the resulting simple capital processes (as in (20)), we
obtain a simple capital process K̄n satisfying K̄n

0 = 1 and

K̄n
s ≥ 1

2
exp
(
bn
∣∣(ϕ · ω)ns − (ϕ · ω)n−1

s

∣∣− 1
)

(15)

for all s ≤ t from some n on quasi-always.
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By the definition of K̄n and Lemma 2, we obtain that

sup
s∈[0,t]

1

2
exp

(
n2
∣∣(ϕ · ω)ns − (ϕ · ω)n−1

s

∣∣− 1
)

= O(n2) q.a.

The last equality implies

sup
s∈[0,t]

∣∣(ϕ · ω)ns − (ϕ · ω)n−1
s

∣∣ = O

(
log n

n2

)
q.a.

Since the series
∑

n(log n)n−2 converges, we have the ucqa convergence of (ϕ ·ω)n as n → ∞.

5. Quadratic variation. In this section we will show that the quadratic variation of ω
along T n

k exists quasi-always. This was shown in, e.g., [22] and [23], but with “a.s.” in place
of “q.a.” and for a different sequence of partitions (in fact, these are minor differences).

Define (essentially following [22], Section 5)

An
t (o) :=

∞∑
k=1

(
ω(T n

k ∧ t) − ω(T n
k−1 ∧ t)

)2
, n = 1, 2, . . . ,

for o = (ω, ϕ).

Lemma 3. The sequence of processes An : (t, o) 7→ An
t (o) converges ucqa as n → ∞.

We will use the notation At(o) for the limit (when it exists) of An
t (o) and will call it the

quadratic variation of ω at t. We will also use the notation A(o) for the quadratic variation
t ≥ 0 7→ At(o) of the price path ω.

Proof of Lemma 3. The proof will be modelled on that of Theorem 1 in Section 4 (but will
be simpler); we start from fixing the value of t. Let us check that the sequence An|[0,t] is
Cauchy in the uniform metric quasi-always.

Let us apply the supermartingale (19) to

xk := bn

((
An

ak
(o) − An

ak−1
(o)
)
−
(
An−1

ak
(o) − An−1

ak−1
(o)
))

=

= bn

((
ω(ak) − ω(a′k−1)

)2 − (ω(ak−1) − ω(a′k−1)
)2 −

−
(
ω(ak) − ω(a′′k−1)

)2
+
(
ω(ak−1) − ω(a′′k−1)

)2)
= bn

(
−2ω(ak)ω(a′k−1) + 2ω(ak−1)ω(a′k−1)+

+2ω(ak)ω(a′′k−1) − 2ω(ak−1)ω(a′′k−1)
)

= 2bn
(
ω(a′′k−1) − ω(a′k−1)

)
(ω(ak) − ω(ak−1))

and to −xk, where a′k−1, a′′k−1, and bn are defined as before and we are interested only in
n ≥ 4. Instead of the bound (8) we now have |xk| ≤ 2bn2−n+12−n = bn2−2n+2 ≤ 0.5 (the last
inequality depending on our assumption n ≥ 4). The analogue of (15) is

K̄n
s ≥ 1

2
exp
(
bn
∣∣An

s (o) − An−1
s (o)

∣∣− 1
)
,

and so we have
sup
s∈[0,t]

1

2
exp

(
n2
∣∣An

s − An−1
s

∣∣− 1
)

= O(n2) q.a.
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This implies

sup
s∈[0,t]

∣∣An
s − An−1

s

∣∣ = O

(
log n

n2

)
q.a.

and thus the uniform convergence of An
s over s ∈ [0, t] quasi-always as n → ∞.

6. Itô’s formula. In this section we state a version of Itô’s formula which shows that our
definition of Itô integral agrees with that of Föllmer [9] (when the latter is specialized to the
continuous case and our sequence of partitions).

Theorem 2. Let F : R → R be a function of class C2. Then

F (ω(t)) = F (ω(0)) +

∫ t

0

F ′(ω) dω +
1

2

∫ t

0

F ′′(ω) dA(ω, F ′(ω)) q.a. (16)

The notation F ′(ω) and F ′′(ω) in (16) stands for compositions: e.g., F ′(ω)(s) := F ′(ω(s))
for s ≥ 0. The integral

∫ t

0
F ′′(ω) dA(ω, F ′(ω)) can be understood in the Stieltjes sense (either

Riemann–Stieltjes or Lebesgue–Stieltjes, since the integrand is continuous), and A is the
quadratic variation of ω. The arguments “(ω, F ′(ω))” of A refer to the sequence of partitions
((5) with ϕ := F ′(ω)) used when defining A.

Proof. By Taylor’s formula,

F (ω(T n
k )) − F (ω(T n

k−1)) = F ′(ω(T n
k−1))

(
ω(T n

k ) − ω(T n
k−1)

)
+

1

2
F ′′(ξk)

(
ω(T n

k ) − ω(T n
k−1)

)2
,

where ξk is between ω(T n
k−1) and ω(T n

k ). It remains to sum this equality over k = 1, . . . , K,
where K is the largest k such that T n

k ≤ t, and to pass to the limit as n → ∞.

Since Itô’s formula (16) holds for Föllmer’s [9] integral
∫ t

0
F ′(ω) dω as well (see the

theorem in [9]), Föllmer’s integral (defined only in the context of
∫
F ′(ω) dω) coincides with

ours quasi-always. This is true for the sequence of partitions (5) with ϕ := F ′(ω), provided
it is dense (as required in Föllmer’s definitions, which in this case are equivalent to ours: cf.
[23], Proposition 4).

7. The case of càdlàg integrand and integrator. In this section we allow ω and ϕ to
be càdlàg functions, and this requires adding further components to Reality’s move, càdlàg
functions ω∗ and ω∗ that control the jumps of ω in a predictable manner. The sample space
Ω (the set of all possible moves by Reality) now becomes

Ω :=
{

(ω, ω∗, ω
∗, ϕ) ∈ D[0,∞)4 | ∀t ∈ (0,∞) : ω∗(t−) ≤ ω(t) ≤ ω∗(t−)

}
, (17)

where D[0,∞) is the Skorokhod space of all càdlàg real-valued functions on [0,∞), and
f(t−) stands for the left limit lims↑t f(s) of f at t > 0.

The Ω of the previous section, (1), embeds into the Ω of this section, (17), by setting
ω∗ := ω and ω∗ := ω.

Remark 3. The condition on the jumps of ω given in (17) is similar to the condition given in
[23], which assumes that ω∗ and ω∗ are functions of ω (i.e., that there are functions f∗ and f∗

such that ω∗(t) = f∗(ω(t)) and ω∗(t) = f∗(ω(t)) for all t ∈ [0,∞)) and that ω = (ω∗ +ω∗)/2.
It covers two important special cases:
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• the jumps ∆ω(t) := ω(t) − ω(t−) of ω, where ∆ω(0) := 0, are bounded by a known
constant C in absolute value; this corresponds to ω∗ := ω − C and ω∗ := ω + C;

• ω is known to be nonnegative (as price paths in real-world markets often are) and the
relative jumps ∆ω(t)/ω(t−) (with 0/0 := 0) are bounded above by a known constant
C; this corresponds to ω∗ := 0 and ω∗ := (1 + C)ω.

Each o = (ω, ω∗, ω
∗, ϕ) ∈ Ω is identified with the function o : [0,∞) → R4 defined by

o(t) := (ω(t), ω∗(t), ω
∗(t), ϕ(t)), t ∈ [0,∞).

The sample space Ω is equipped with the universal completion F of the σ-algebra generated
by the functions Ω ∋ o 7→ o(t), t ∈ [0,∞). After this change, the definitions of events,
random variables, stopping times τ , and random variables determined by time τ remain as
before (but with the new sample space Ω and new σ-algebra F).

We need universal completion in the definition of F to have the following lemma.

Lemma 4. If A ⊆ R is a closed set, its entry time by ω, τ(o) := min{t ∈ [0,∞) : ω(t) ∈ A},
o standing for (ω, ω∗, ω

∗, ϕ), is a stopping time.

Proof. See, e.g., the third example in [7] (combined with the universal measurability of
analytic sets, Theorem III.33 in [8]). For completeness, however, we will spell out the simple
argument. The condition (2) is obvious (as ω(τ) ∈ A), so we only need to check that τ is
universally measurable. Fix t ∈ [0,∞); we will see that {τ ≤ t} is universally measurable and
even analytic. Let Bt be for the Borel σ-algebra on [0, t] and Ft be the σ-algebra generated by
the functions o ∈ Ω 7→ o(s), s ∈ [0, t]. Since A is closed, {τ ≤ t} is the projection onto Ω of
the set {(s, o) ∈ [0, t] × Ω | ω(s) ∈ A}. In combination with the progressive measurability of
càdlàg processes (such as Ss(o) := ω(s)) this implies that, since {(s, o) ∈ [0, t]×Ω | ω(s) ∈ A}
is in the product σ-algebra Bt ×Ft, the set {τ ≤ t} is analytic.

Remark 4. The analogues of Lemma 4 also hold for ϕ, ω∗, and ω∗ in place of ω (as the
same argument shows).

The definitions of a simple trading strategy, a simple capital process, a nonnegative
capital process, and the outer measure stay the same as in Section apart from replacing
the argument “o = (ω, ϕ)” by “o = (ω, ω∗, ω

∗, ϕ)”; “almost sure” and “quasi-always” are also
defined as before.

The definition (5) of T n
k is modified by replacing the equality with an inequality: T n

0 (o) :=
0 and

T n
k (o) := inf

{
t > T n

k−1(o) |
∣∣ω(t) − ω(T n

k−1)
∣∣ ∨ ∣∣ϕ(t) − ϕ(T n

k−1)
∣∣ ≥ 2−n

}
, k = 1, 2, . . . .

After this change is made, the definition of (ϕ · ω)n stays as before, (6). The analogue of
Lemma 1 still holds:

Lemma 5. For each n, T n
k → ∞ as k → ∞.

Proof. The proof is analogous to the proof of Lemma 1, except that now we choose a nei-
ghbourhood of each s ∈ [0, t] in which ω changes by less than |∆ω(s)| + 2−n and ϕ changes
by less than |∆ϕ(s)|+ 2−n. In each such neighbourhood there are fewer than 10 values of T n

k

(for a fixed n).
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The following theorem asserts the existence of Itô integral quasi-always in our current
context.

Theorem 3. The processes (ϕ · ω)n converge ucqa as n → ∞.

Proof. Fix t > 0 and let E be the event that (ϕ · ω)ns fails to converge uniformly over
s ∈ [0, t] as n → ∞. It suffices to prove that E is t-null, by which we mean the existence of
a nonnegative capital process S such that S0 = 1 and, on the event E, St = ∞; we will say
that such S witnesses that E is t-null.

Assume, without loss of generality, that ω(0) = 0 (this can be done as (6) is invariant
with respect to adding a constant to ω).

First we notice (as in the proof of Theorem 1 of [23]) that it suffices to consider the
modified game in which Reality does not output ω∗ and ω∗ but instead is constrained to
producing ω ∈ D[0,∞) satisfying sups∈[0,∞) |ω(s)| ≤ c for a given constant c > 0. Indeed,
suppose that the statement in the first paragraph of the proof (for the given t) holds in the
modified game for any c, and let Sc be a nonnegative capital process witnessing that the
analogue of the event E in the modified game is t-null. A nonnegative capital process S
witnessing that E is t-null in the original game can be defined as

Ss :=
∞∑

L=1

2−LS2L

s∧σL
(18)

where σL is the stopping time σL := inf
{
s | ω∗(s) ∨ (−ω∗(s)) ≥ 2L

}
(intuitively σL is the

first moment when we can no longer guarantee that ω will not jump to or above 2L in
absolute value straight away; this is a stopping time by Lemma 4 and Remark 4). Let us
check that each addend in (18) is nonnegative not only in the modified but also in the original
game. Indeed, if S2L

s < 0 for some s ≤ σL, the nonnegativity of S2L in the modified game
(with c = 2L) implies that, for some s′ ∈ [0, s], |ω(s′)| > 2L. By (17), the last inequality
implies ω∗(s′−) > 2L or ω∗(s

′−) < −2L. Therefore, ω∗(s′′) > 2L or ω∗(s
′′) < −2L for

some s′′ < s′ ≤ s ≤ σL, which contradicts the definition of σL. Let us now check that S
(which we already know to be nonnegative in the original game) witnesses that E is t-null.
If (ω, ω∗, ω

∗, ϕ) ∈ E, there is a constant c bounding −ω∗|[0,t] and ω∗|[0,t] from above. Any
addend in (18) for which 2L > c will be infinite at time t.

In the rest of this proof Reality is constrained to sups |ω(s)| ≤ c. Without loss of generali-
ty, set c := 0.5. We follow the same scheme as for Theorem 1, again defining xk by (7) and xk,s

by (10), with the same bn. Notice that, for n ≥ 2, we always have
∣∣ϕ(a′k−1) − ϕ(a′′k−1)

∣∣ ≤ 2−n+1

in (7) and (10); therefore, we can replace (8) by |xk| ≤ bn2−n+1 ≤ 0.5 (with the analogous
inequality for xk,s), where the last inequality is true n ≥ 8, which we assume from now on
in this proof.

Essentially the same argument as in Section 4 shows that (12) still holds quasi-always.
Indeed, it suffices to check (13). The nonnegativity of the process K̃n follows, for sufficiently
large n, from

∣∣ω|[0,t]∣∣ ≤ 0.5; namely, when n42−2n+20.25 ≤ n−3, K̃n will be nonnegative even
when the addend

∑∞
k=1 · · · (· · · )2 in (14) is ignored. Applying Lemma 2 now again gives (12).

The proof is now completed in the same way as the proof of Theorem 1.
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Appendix A: Useful discrete-time supermartingales. Our proofs of Theorems 1 and 3
are based on a simple large-deviation-type supermartingale, which will be defined in this
appendix, and on a classical martingale going back to [11], to be defined in Appendix B
below.

We consider the case of discrete time, namely, the following perfect-information protocol:

Betting on bounded below variables

Players: Sceptic and Reality
Protocol:

Sceptic announces K0 ∈ R.
FOR k = 1, 2, . . . :

Sceptic announces Mk ∈ R.
Reality announces xk ∈ [−0.5,∞).
Sceptic announces Kk ≤ Kk−1 + Mkxk.

We interpret Kk as Sceptic’s capital at the end of round k. Notice that Sceptic is allowed to
choose his initial capital K0 and to throw away part of his money at the end of each round.

A process is a real-valued function defined on all finite sequences (x1, . . . , xK), K =
0, 1, . . ., of Reality’s moves. If we fix a strategy for Sceptic, his capital KK , K = 0, 1, . . ., will
become a process. Such processes are called supermartingales.

Lemma 6. The process

KK :=
K∏
k=1

exp
(
xk − x2

k

)
(19)

is a supermartingale.

We do not require the measurability of supermartingales a priori, but (19) is, of course,
measurable. The corresponding strategy for Sceptic used in the proof will be Mk := Kk−1,
and so will also be measurable. The lemma will still be true if the interval [−0.5,∞) in the
protocol is replaced by [−0.683,∞) (but will no longer be true for [−0.684,∞)).

Proof. It suffices to prove that on round k Sceptic can turn a capital of K > 0 into a
capital of at least K exp (xk − x2

k) ; in other words, that he can obtain a payoff Mkxk of at
least exp (xk − x2

k) − 1. This will follow from the inequality exp (xk − x2
k) − 1 ≤ xk. Setting

x := xk, moving the 1 to the right-hand side, and taking logs of both sides, we rewrite this
inequality as x− x2 ≤ ln(1 + x), where x ∈ [−0.5,∞). Since we have an equality for x = 0,
it remains to notice that the derivative of the left-hand side of the last inequality never
exceeds the derivative of its right-hand side for x > 0, and that the opposite relation holds
for x < 0.

Another useful process is

1

2

(
K∏
k=1

exp
(
xk − x2

k

)
+

K∏
k=1

exp
(
−xk − x2

k

))
, (20)
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which is a supermartingale in the protocol of betting on bounded variables, where Reality is
required to announce xk ∈ [−0.5, 0.5]. (It suffices to apply Lemma 6 to xk and −xk and to
average the resulting supermartingales.)

Remark 5. In this appendix we used the method described in [20], Section 2; in fact, it is
shown (using slightly different terminology) in [20] that

K∏
k=1

exp

(
xk −

x2
k

2
− |xk|3

)
is a supermartingale in the protocol of betting on bounded variables, |xk| ≤ δ for a small
enough δ > 0 (it is sufficient to assume δ ≤ 0.8). This supermartingale can be regarded as a
discrete-time version of the Doléans exponential.

Appendix B: Another useful discrete-time supermartingale. In this appendix we
will define another process used in the proofs of the main results of this paper (in princi-
ple, we could have also used this process to replace in those proofs the process defined in
Appendix A).

We still consider the case of discrete time. The perfect-information protocol of this
appendix is:

Betting on arbitrary variables
Players: Sceptic and Reality
Protocol:

Sceptic announces K0 ∈ R.
FOR k = 1, 2, . . . :

Sceptic announces Mk ∈ R.
Reality announces xk ∈ R.
Kk := Kk−1 + Mkxk.

Sceptic’s capital KK as function of Reality’s moves x1, . . . , xK for a given strategy for Sceptic
is a process called a martingale (this term is natural as our new protocol does not allow
Sceptic to throw money away).

Lemma 7. The process

KK :=
K∑
k=1

x2
k −

(
K∑
k=1

xk

)2

(21)

is a martingale.

We will refer to (21) as the K29 martingale.

Proof. The increment of (21) on round K is

x2
K −

(
K∑
k=1

xk

)2

+

(
K−1∑
k=1

xk

)2

= −2

(
K−1∑
k=1

xk

)
xK (22)

and, therefore, is indeed of the form MKxK .



PATHWISE ITÔ INTEGRAL 109

REFERENCES

1. A. Ananova, R. Cont, Pathwise integration with respect to paths of finite quadratic variation,
arXiv:1603.03305, 2016.
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