УДК 512.536.7 + 512.568.2

O. Gutik, O. Sobol

ON FEEBLY COMPACT TOPOLOGIES ON THE SEMILATTICE $\text{EXP}_n\lambda$

O. Gutik, O. Sobol. On feebly compact topologies on the semilattice $\exp_n \lambda$, Mat. Stud. 46 (2016), 29–43.

We study feebly compact topologies τ on the semilattice $(\exp_n \lambda, \cap)$ such that $(\exp_n \lambda, \tau)$ is a semitopological semilattice. All compact semilattice T_1 -topologies on $\exp_n \lambda$ are described. Also we prove that for an arbitrary positive integer n and an arbitrary infinite cardinal λ for a T_1 -topology τ on $\exp_n \lambda$ the following conditions are equivalent: (i) $(\exp_n \lambda, \tau)$ is a compact topological semilattice; (ii) $(\exp_n \lambda, \tau)$ is a countably compact topological semilattice; (iii) $(\exp_n \lambda, \tau)$ is a feebly compact topological semilattice; (iv) $(\exp_n \lambda, \tau)$ is a countably compact semitopological semilattice. We construct a countably pracompact H-closed quasiregular non-semiregular topology $\tau_{\rm fc}^2$ such that $(\exp_2 \lambda, \tau_{\rm fc}^2)$ is a semitopological semilattice with discontinuous semilattice operation and prove that for an arbitrary positive integer n and an arbitrary infinite cardinal λ every T_1 -semiregular feebly compact semitopological semilattice $\exp_n \lambda$ is a compact topological semilattice.

We shall follow the terminology of [2, 3, 4, 5, 15]. If X is a topological space and $A \subseteq X$, then by $\operatorname{cl}_X(A)$ and $\operatorname{int}_X(A)$ we denote the topological closure and interior of A in X, respectively. By ω we denote the first infinite cardinal.

A semigroup S is called an *inverse semigroup* if every a in S possesses an unique inverse, i.e. if there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

A map which associates to any element of an inverse semigroup its inverse is called the *inversion*.

A topological (inverse) semigroup is a topological space together with a continuous semigroup operation (and an inversion, respectively). Obviously, the inversion defined on a topological inverse semigroup is a homeomorphism. If S is a semigroup (an inverse semigroup) and τ is a topology on S such that (S, τ) is a topological (inverse) semigroup, then we shall call τ a semigroup (inverse) topology on S. A semitopological semigroup is a topological space together with a separately continuous semigroup operation.

If S is a semigroup, then by E(S) we denote the subset of all idempotents of S. On the set of idempotents E(S) there exists a natural partial order: $e \leq f$ if and only if ef = fe = e. A semilattice is a commutative semigroup of idempotents. A topological (semitopological) semilattice is a topological space together with a continuous (separately continuous) semilattice

²⁰¹⁰ Mathematics Subject Classification: 22A26, 22A15, 54D10, 54D30, 54H12.

Keywords: topological semilattice; semitopological semilattice; compact; countably compact; feebly compact; H-closed; semiregular space; regular space.

doi:10.15330/ms.46.1.29-43

operation. If S is a semilattice and τ is a topology on S such that (S, τ) is a topological semilattice, then we shall call τ a semilattice topology on S.

Let λ be an arbitrary non-zero cardinal. A map α from a subset D of λ into λ is called a partial transformation of X. In this case the set D is called the domain of α and it is denoted by dom α . The image of an element $x \in \text{dom } \alpha$ under α we shall denote by $x\alpha$ Also, the set $\{x \in X : y\alpha = x \text{ for some } y \in Y\}$ is called the range of α and is denoted by ran α . The cardinality of ran α is called the rank of α and denoted by rank α . For convenience we denote by \emptyset the empty transformation, that is a partial mapping with dom $\emptyset = \text{ran } \emptyset = \emptyset$.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of λ together with the following semigroup operation:

$$x(\alpha\beta) = (x\alpha)\beta$$
 if $x \in \text{dom}(\alpha\beta) = \{y \in \text{dom } \alpha : y\alpha \in \text{dom } \beta\}$, for $\alpha, \beta \in \mathscr{I}_{\lambda}$.

The semigroup \mathscr{I}_{λ} is called the *symmetric inverse semigroup* over the cardinal λ (see [3]). The symmetric inverse semigroup was introduced by V. V. Wagner [17] and it plays a major role in the theory of semigroups.

Put $\mathscr{I}_{\lambda}^{n} = \{\alpha \in \mathscr{I}_{\lambda} : \operatorname{rank} \alpha \leqslant n\}$, for $n = 1, 2, 3, \ldots$ Obviously, $\mathscr{I}_{\lambda}^{n}$ $(n = 1, 2, 3, \ldots)$ are inverse semigroups, $\mathscr{I}_{\lambda}^{n}$ is an ideal of \mathscr{I}_{λ} , for each $n = 1, 2, 3, \ldots$. The semigroup $\mathscr{I}_{\lambda}^{n}$ is called the *symmetric inverse semigroup of finite transformations of the rank* $\leqslant n$ [7, 12]. The empty partial map $\varnothing : \lambda \rightharpoonup \lambda$ we denote by 0. It is obvious that 0 is zero of the semigroup $\mathscr{I}_{\lambda}^{n}$.

Let λ be a non-zero cardinal. On the set $B_{\lambda} = (\lambda \times \lambda) \cup \{0\}$, where $0 \notin \lambda \times \lambda$, we define the semigroup operation "·" as follows

$$(a,b)\cdot(c,d) = \begin{cases} (a,d), & \text{if } b=c; \\ 0, & \text{if } b\neq c, \end{cases}$$

and $(a,b)\cdot 0 = 0\cdot (a,b) = 0\cdot 0 = 0$ for $a,b,c,d\in\lambda$. The semigroup B_{λ} is called the semigroup of $\lambda\times\lambda$ -matrix units (see [3]). Obviously, for any cardinal $\lambda>0$, the semigroup of $\lambda\times\lambda$ -matrix units B_{λ} is isomorphic to $\mathscr{I}_{\lambda}^{1}$.

A subset A of a topological space X is called regular open if $\operatorname{int}_X(\operatorname{cl}_X(A)) = A$. We recall that a topological space X is said to be

- functionally Hausdorff if for every pair of distinct points $x_1, x_2 \in X$ there exists a continuous function $f: X \to [0, 1]$ such that $f(x_1) = 0$ and $f(x_2) = 1$;
- semiregular if X has a base consisting of regular open subsets;
- quasiregular if for any non-empty open set $U \subset X$ there exists a non-empty open set $V \subset U$ such that $\operatorname{cl}_X(V) \subseteq U$;
- compact if each open cover of X has a finite subcover;
- sequentially compact if each sequence $\{x_i\}_{i\in\mathbb{N}}$ of X has a convergent subsequence in X;
- countably compact if each open countable cover of X has a finite subcover;
- \bullet *H-closed* if *X* is a closed subspace of every Hausdorff topological space in which it contained;
- countably compact at a subset $A \subseteq X$ if every infinite subset $B \subseteq A$ has an accumulation point x in X;
- countably pracompact if there exists a dense subset A in X such that X is countably compact at A;

- feebly compact if each locally finite open cover of X is finite;
- pseudocompact if X is Tychonoff and each continuous real-valued function on X is bounded.

According to Theorem 3.10.22 of [4], a Tychonoff topological space X is feebly compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and only if every locally finite family of non-empty open subsets of X is finite. Every compact space and every sequentially compact space are countably compact, every countably compact space is countably pracompact, and every countably pracompact space is feebly compact (see [11]), and every H-closed space is feebly compact too (see [11]).

Topological properties of an infinite (semi)topological semigroup $\lambda \times \lambda$ -matrix units studied in [8, 9, 10]. In [9] it is shown that on the infinite semitopological semigroup $\lambda \times \lambda$ -matrix units B_{λ} there exists a unique Hausdorff topology τ_c such that (B_{λ}, τ_c) is a compact semitopological semigroup and there proved that every pseudocompact Hausdorff topology τ on B_{λ} such that (B_{λ}, τ_c) is a semitopological semigroup, is compact. Also, in [9] proved that every non-zero element of a Hausdorff semitopological semigroup $\lambda \times \lambda$ -matrix units B_{λ} is an isolated point in the topological space B_{λ} . In [8] proved that infinite semigroup $\lambda \times \lambda$ -matrix units B_{λ} does not embed into a compact Hausdorff topological semigroup, every Hausdorff topological inverse semigroup S such that contains B_{λ} as a subsemigroup, contains B_{λ} as a closed subsemigroup, i.e., B_{λ} is algebraically complete in the class of Hausdorff topological inverse semigroups. This result in [7] is extended onto so called inverse semigroups with tight ideal series and as a corollary onto the semigroup $\mathscr{I}_{\lambda}^{n}$. Also, in [12] there proved that for every positive integer n the semigroup \mathscr{I}^n_{λ} is algebraically h-complete in the class of Hausdorff topological inverse semigroups, i.e., every homomorphic image of $\mathscr{I}_{\lambda}^{n}$ is algebraically complete in the class of Hausdorff topological inverse semigroups. In the paper [13] this result is extended onto the class of Hausdorff semitopological inverse semigroups and there it is shown that for an infinite cardinal λ the semigroup $\mathscr{I}_{\lambda}^{n}$ admits a unique Hausdorff topology τ_c such that $(\mathscr{I}_{\lambda}^n, \tau_c)$ is a compact semitopological semigroup. Also there proved the every countably compact Hausdorff topology τ on B_{λ} such that $(\mathscr{I}_{\lambda}^{n}, \tau_{c})$ is a semitopological semigroup is compact. In [10] it is shown that a topological semigroup of finite partial bijections $\mathscr{I}_{\lambda}^{n}$ with a compact subsemigroup of idempotents is absolutely H-closed (i.e., every homomorphic image of \mathscr{I}^n_λ is algebraically complete in the class of Hausdorff topological semigroups) and any countably compact topological semigroup does not contain \mathscr{I}^n_{λ} as a subsemigroup for infinite λ . In [10] it was given sufficient conditions onto a topological semigroup \mathscr{I}^1_{λ} to be non-H-closed. Also in [6] it is proved that an infinite semitopological semigroup of $\lambda \times \lambda$ -matrix units B_{λ} is H-closed in the class of semitopological semigroups if and only if the space B_{λ} is compact.

For an arbitrary positive integer n and an arbitrary non-zero cardinal λ we put

$$\exp_n \lambda = \{ A \subseteq \lambda \colon |A| \leqslant n \}.$$

It is obvious that for any positive integer n and any non-zero cardinal λ the set $\exp_n \lambda$ with the binary operation \cap is a semilattice. Later in this paper by $\exp_n \lambda$ we shall denote the semilattice $(\exp_n \lambda, \cap)$. It is easy to see that $\exp_n \lambda$ is isomorphic to the subsemigroup of idempotents (the band) of the semigroup \mathscr{I}^n_{λ} for any positive integer n.

In this paper we study feebly compact topologies τ on the semilattice $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a semitopological semilattice. All compact semilattice topologies on $\exp_n \lambda$ are described. We prove that for an arbitrary positive integer n and λ every T_1 -semitopological

countably compact semilattice $(\exp_n \lambda, \tau)$ is a compact topological semilattice. Also, we construct a countably pracompact H-closed quasiregular non-semiregular topology τ_{fc}^2 such that $(\exp_2 \lambda, \tau_{\mathsf{fc}}^2)$ is a semitopological semilattice with the discontinuous semilattice operation and show that for an arbitrary positive integer n and an arbitrary infinite cardinal λ every T_1 -semiregular feebly compact semitopological semilattice $\exp_n \lambda$ is a compact topological semilattice.

We recall that a topological space X is said to be

- scattered if X does not contain a non-empty dense-in-itself subspace;
- hereditarily disconnected (or totally disconnected) if X does not contain any connected subsets of cardinality larger than one.

Proposition 1. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then for every T_1 -topology τ on $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a semitopological semilattice the following assertions hold:

- (i) $(\exp_n \lambda, \tau)$ is a closed subset of any T_1 -semitopological semilattice S which contains $\exp_n \lambda$ as a subsemilattice;
- (ii) for every $x \in \exp_n \lambda$ there exists an open neighbourhood U(x) of the point x in the space $(\exp_n \lambda, \tau)$ such that $U(x) \subseteq \uparrow x$;
- (iii) $\uparrow x$ is a closed-and-open subset of the space $(\exp_n \lambda, \tau)$ for every $x \in \exp_n \lambda$;
- (iv) the topological space ($\exp_n \lambda, \tau$) is functionally Hausdorff and quasiregular, and hence is Hausdorff;
- (v) $(\exp_n \lambda, \tau)$ is a scattered hereditarily disconnected space.

Proof. (i) We shall prove our assertion by induction.

Let n=1 and let S be an arbitrary T_1 -semitopological semilattice which contains $\exp_1 \lambda$ as a proper subsemilattice. We fix an arbitrary element $x \in S \setminus \exp_1 \lambda$. Suppose to the contrary that every open neighbourhood U(x) of the point x in the topological space S intersects the semilattice $\exp_1 \lambda$. First we shall show that ex = 0 for any $e \in \exp_1 \lambda$, where 0 is zero of the semilattice $\exp_1 \lambda$. Suppose to the contrary that there exists $e \in \exp_1 \lambda$ such that $ex = y \neq 0$. Since S is a T_1 -space there exists an open neighbourhood U(y) of the point y in S such that $0 \notin U(y)$. Then by the definition the semilattice operation of $\exp_1 \lambda$ and by separate continuity of the semilattice operation of S we have that $0 \in e \cdot V(x) \subseteq U(y)$ for every open neighbourhood V(x) of the point x in S, because the neighbourhood V(x)contains infinitely many points from the semilattice $\exp_1 \lambda$. This contradicts the choice of the neighbourhood U(y). The obtained contradiction implies that ex = 0 for any $e \in \exp_1 \lambda$. Fix an arbitrary open neighbourhood U(x) of x in S such that $0 \notin U(x)$. Then by the separate continuity of the semilattice operation of S we get that there exists an open neighbourhood V(x) of x in S such that $x \cdot V(x) \subseteq U(x)$. Since V(x) intersects the semilattice $\exp_1 \lambda$, the above arguments imply that $0 \in x \cdot V(x)$, a contradiction. Therefore, $\exp_1 \lambda$ is a closed subsemilattice of S.

Suppose that for every j < k the semilattice $\exp_j \lambda$ is a closed subsemilattice of any T_1 -semitopological semilattice which contains $\exp_j \lambda$ as a proper subsemilattice, where $k \leqslant n$. We proved that this implies that $\exp_k \lambda$ is a closed subsemilattice of any T_1 -semitopological semilattice which contains $\exp_k \lambda$ as a proper subsemilattice. Suppose to the contrary that there exists a T_1 -semitopological semilattice S which contains $\exp_k \lambda$ as a non-closed subsemilattice. Then there exists an element $x \in S \setminus \exp_k \lambda$ such that every open neighbourhood U(x)

of the point x in the topological space S intersects the semilattice $\exp_k \lambda$. The assumption of induction implies that there exists an open neighbourhood U(x) of the point x in S such that $U(x) \cap \exp_k \lambda \subseteq \exp_k \lambda \setminus \exp_{k-1} \lambda$. Now, as in the case of the semilattice $\exp_1 \lambda$ the separate continuity of the semilattice operation of S implies that $e \cdot x \in \exp_{k-1} \lambda$ for any $e \in \exp_k \lambda \setminus \exp_{k-1} \lambda$. Indeed, suppose to the contrary that there exists $e \in \exp_k \lambda \setminus \exp_{k-1} \lambda$ such that $e \cdot x = z \notin \exp_{k-1} \lambda$. Then the assumption of induction implies that $\exp_{k-1} \lambda$ is a closed subsemilattice of S and hence there exists an open neighbourhood U(y) of the point y in S such that $U(y) \cap \exp_{k-1} \lambda = \emptyset$. Now, by the separate continuity of the semilattice operation of S there exists an open neighbourhood U(x) of the point x in S such that $e \cdot U(x) \subseteq U(y)$. Then the semilattice operation of $\exp_k \lambda$ implies that $(e \cdot U(x)) \cap \exp_{k-1} \lambda \neq \emptyset$, which contradicts the choice of the neighbourhood U(y).

Fix an arbitrary open neighbourhood U(x) of x in S such that $U(x) \cap \exp_k \lambda \subseteq \exp_k \lambda \setminus \exp_{k-1} \lambda$. Then by the separate continuity of the semilattice operation of S we get that there exists an open neighbourhood $V(x) \subseteq U(x)$ of x in S such that $x \cdot V(x) \subseteq U(x)$. By our assumption we have that the set $V(x) \cap \exp_k \lambda \setminus \exp_{k-1} \lambda$ is infinite and hence the above part of our proof implies that $(x \cdot V(x)) \cap \exp_{k-1} \lambda \neq \emptyset$, which contradicts the choice of the neighbourhood U(x). The obtained contradiction implies that $\exp_k \lambda$ is a closed subset of S, which completes the proof of our assertion.

- (ii) In the case when x=0 the statement is trivial, and hence we assume that $x \neq 0$. Then the definition of the semilattice $\exp_n \lambda$ implies that there exists the minimum positive integer k such that $x \in \exp_k \lambda$ and $x \notin \exp_{k-1} \lambda$. By item (i) there exists an open neighbourhood U(x) of the point x in the space $(\exp_n \lambda, \tau)$ such that $U(x) \subseteq \exp_n \lambda \setminus \exp_{k-1} \lambda$. Then the separate continuity of the semilattice operation in $(\exp_n \lambda, \tau)$ implies that there exists an open neighbourhood $V(x) \subseteq U(x)$ such that $x \cdot V(x) \subseteq U(x)$. If $V(x) \not\subseteq \uparrow x$ then by the definition of the semilattice operation on $\exp_n \lambda$ we have that there exists $y \in V(x)$ such that $xy \in \exp_{k-1} \lambda$, a contradiction. Hence we get that $V(x) \subseteq \uparrow x$.
- (iii) Since a topological space is T_1 -space if and only if every its point is a closed subset of itself, the separate continuity of the semilattice operation implies that $\uparrow x$ is a closed subset of $(\exp_n \lambda, \tau)$ for any $x \in \exp_n \lambda$. Also, item (ii) implies that

$$\uparrow x = \bigcup \{V(y) : y \in \uparrow x \text{ and } V(y) \text{ is an open neighbourhood of } y \text{ such that } V(y) \subseteq \uparrow y\}$$

is an open subset of $(\exp_n \lambda, \tau)$ for any $x \in \exp_n \lambda$.

(iv) Fix arbitrary distinct elements x_1 and x_2 of the semitopological semilattice ($\exp_n \lambda, \tau$). Then we have either $x_1 \notin \uparrow x_2$ or $x_2 \notin \uparrow x_1$. In the case when $x_1 \notin \uparrow x_2$ we define the map $f: (\exp_n \lambda, \tau) \to [0, 1]$ by the formula

$$f(x) = \begin{cases} 1, & \text{if } x \in \uparrow x_2; \\ 0, & \text{if } x \notin \uparrow x_2. \end{cases}$$

Then we have that $f(x_1) = 0$ and $f(x_2) = 1$ and by item (iii) $\uparrow x_2$ is an open-and-closed subset of the space ($\exp_n \lambda, \tau$), and hence so defined map $f: (\exp_n \lambda, \tau) \to [0, 1]$ is continuous.

The definition of the semilattice $\exp_n \lambda$ implies that every non-empty open subset of $(\exp_n \lambda, \tau)$ has a maximal element x with the respect to the natural partial order on $\exp_n \lambda$. Then by item (iii), $\uparrow x$ is an open-and-closed subset of $(\exp_n \lambda, \tau)$, and hence x is an isolated point of $(\exp_n \lambda, \tau)$. Since τ is a T_1 -topology, $\operatorname{cl}_{\exp_n \lambda}(\{x\}) = \{x\} \subseteq U$, which implies that $(\exp_n \lambda, \tau)$ is a quasiregular space.

(v) We shall prove that every non-empty subset A of $(\exp_n \lambda, \tau)$ has an isolated point in itself. Fix an arbitrary non-empty subset A of $(\exp_n \lambda, \tau)$. If $A \cap \exp_n \lambda \setminus \exp_{n-1} \lambda \neq \emptyset$ then by item (ii) every point $x \in A \cap \exp_n \lambda \setminus \exp_{n-1} \lambda$ is isolated in $(\exp_n \lambda, \tau)$ and hence x is an isolated point of A. In the other case there exists a positive integer k < n such that $A \subseteq \exp_k \lambda$ and $A \nsubseteq \exp_{k-1} \lambda$. Then by item (ii) every point $x \in A \cap \exp_k \lambda \setminus \exp_{k-1} \lambda$ is isolated in A.

The hereditary disconnectedness of the space $(\exp_n \lambda, \tau)$ follows from item (iii). Indeed, if $x \not \leq y$ in $\exp_n \lambda$ then by item (iii), $\uparrow x$ is an open-and-closed neighbourhood of x in $(\exp_n \lambda, \tau)$ such that $y \not \in \uparrow x$. This implies that the space $(\exp_n \lambda, \tau)$ does not contain any connected subsets of cardinality larger than one.

Recall [6] an algebraic semilattice S is called algebraically complete in the class \mathfrak{STSL} of semitopological semilattices if S is a closed subsemilattice of every semitopological semilattice $L \in \mathfrak{STSL}$ which contains S as a subsemilattice.

Proposition 1(i) implies the following corollary.

Corollary 1. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then the semilattice $\exp_n \lambda$ is algebraically complete in the class of T_1 -semitopological semilattices.

The following example shows that the statement (iv) of Proposition 1 does not hold in the case when $(\exp_n \lambda, \tau)$ is a T_0 -space.

Example 1. For an arbitrary positive integer n and an arbitrary infinite cardinal λ we define a topology τ_0 on $\exp_n \lambda$ in the following way:

- (i) all non-zero elements of the semilattice $\exp_n \lambda$ are isolated points in $(\exp_n \lambda, \tau_0)$; and
- (ii) $\exp_n \lambda$ is the unique open neighbourhood of zero in $(\exp_n \lambda, \tau_0)$.

Simple verifications show that the semilattice operation on $(\exp_n \lambda, \tau_0)$ is continuous.

Example 2. For an arbitrary positive integer n and an arbitrary infinite cardinal λ we define a topology τ_{c}^n on $\exp_n \lambda$ in the following way: the family $\{\mathscr{B}_{\mathsf{c}}^n(x) \colon x \in \exp_n \lambda\}$, where

$$\mathscr{B}_{\mathsf{c}}^{n}(x) = \{U_{x}(x_{1}, \dots, x_{j}) = \uparrow x \setminus (\uparrow x_{1} \cup \dots \cup \uparrow x_{j}) : x_{1}, \dots, x_{j} \in \uparrow x \setminus \{x\}\},\$$

forms a neighbourhood system for the topological space $(\exp_n \lambda, \tau_c^n)$. Simple verifications show that the family $\{\mathscr{B}^n_{\mathsf{c}}(x) \colon x \in \exp_n \lambda\}$ satisfies the properties $(\mathbf{BP1})$ – $(\mathbf{BP3})$ of [4]. Also, it is obvious that the family $\{\mathscr{B}^n_{\mathsf{c}}(x) \colon x \in \exp_n \lambda\}$ satisfies the property $(\mathbf{BP4})$ of [4, Proposition 1.5.2], and hence the topological space $(\exp_n \lambda, \tau_c^n)$ is Hausdorff.

Recall [4] a topological space X is called 0-dimensional if X has a base which consists of open-and-closed subsets of X.

Proposition 2. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then $(\exp_n \lambda, \tau_{\mathsf{c}}^n)$ is a compact 0-dimensional topological semilattice.

Proof. The definition of the family $\{\mathscr{B}^n_{\mathsf{c}}(x) \colon x \in \exp_n \lambda\}$ implies that for arbitrary $x \in \exp_n \lambda$ the set $\uparrow x$ is open-and-closed in $(\exp_n \lambda, \tau^n_{\mathsf{c}})$, and hence $\{\mathscr{B}^n_{\mathsf{c}}(x) \colon x \in \exp_n \lambda\}$ is the base of the topological space $(\exp_n \lambda, \tau^n_{\mathsf{c}})$ which consists of open-and-closed subsets.

Now, by induction we shall show that the space $(\exp_n \lambda, \tau_c^n)$ is compact. In the case when n=1 the compactness of $(\exp_1 \lambda, \tau_c^1)$ follows from the definition of the family

 $\{\mathscr{B}_{\mathsf{c}}^{1}(x) \colon x \in \exp_{1} \lambda\}$. Next, we shall prove that the statement the space $(\exp_{i} \lambda, \tau_{\mathsf{c}}^{i})$ is compact for all positive integers $i < k \leqslant n$ implies that the space $(\exp_{k} \lambda, \tau_{\mathsf{c}}^{k})$ is compact too. Fix an arbitrary open cover \mathscr{U} of the topological space $(\exp_{k} \lambda, \tau_{\mathsf{c}}^{k})$. The definition of the topology τ_{c}^{k} implies that there exists an element $U_{0} \in \mathscr{U}$ such that $0 \in U_{0}$. Then there exists $U_{0}(x_{1}, \ldots, x_{j}) \in \mathscr{B}_{\mathsf{c}}^{k}(0)$ such that $U_{0}(x_{1}, \ldots, x_{j}) \subseteq U_{0}$. The definition of the semilattice $\exp_{n} \lambda$ implies that for any $x_{1}, \ldots, x_{j} \in \exp_{k} \lambda$ the subsemilattices $\uparrow x_{1}, \ldots, \uparrow x_{j}$ of $\exp_{k} \lambda$ are isomorphic to the semilattices $\exp_{i_{1}} \lambda, \ldots, \exp_{i_{j}} \lambda$, respectively, for some non-negative integers $i_{1}, \ldots, i_{j} < k$. This, the definition of the topology τ_{c}^{k} and the assumption of induction imply that $\uparrow x_{1}, \ldots, \uparrow x_{j}$ are compact subsets of $(\exp_{k} \lambda, \tau_{\mathsf{c}}^{k})$. Then there exist finitely many $U_{1}, \ldots, U_{m} \in \mathscr{U}$ such that $\uparrow x_{1} \cup \cdots \cup \uparrow x_{j} \subseteq U_{1} \cup \cdots \cup U_{m}$, and hence $\{U_{0}, U_{1}, \ldots, U_{m}\} \subseteq \mathscr{U}$ is a finite subcover of the topological space $(\exp_{k} \lambda, \tau_{\mathsf{c}}^{k})$.

Since in a Hausdorff compact semitopological semilattice the semilattice operation is continuous (see [5, Proposition VI-1.13] or [14, p. 242, Theorem 6.6]), it is sufficient to show that the semilattice operation in $(\exp_n \lambda, \tau_c^n)$ is separately continuous.

Let a and b are arbitrary elements of the semilattice $\exp_n \lambda$. We consider the following three cases:

(I)
$$a = b$$
; (II) $a < b$; and (III) a and b are incomparable.

In case (I) we have that $a \cdot U_a(x_1, \ldots, x_k) = \{a\} \subseteq U_a(x_1, \ldots, x_k)$ for any $U_a(x_1, \ldots, x_k) \in \mathscr{B}_c^n(a)$.

In case (II) we get that $a \cdot U_b(b_1, \ldots, b_l) = \{a\} \subseteq U_a(x_1, \ldots, x_k)$ and $U_a(x_1, \ldots, x_k) \cdot b \subseteq U_a(x_1, \ldots, x_k)$ for any $U_a(x_1, \ldots, x_k) \in \mathscr{B}^n_{\mathsf{c}}(a)$ and $U_b(b_1, \ldots, b_l) \in \mathscr{B}^n_{\mathsf{c}}(b)$, because if $a \subseteq x \subseteq y$ and $a \subseteq b$ in $\exp_n \lambda$, then $a \subseteq x \cap b \subseteq y$.

In case (III) we consider two possible subcases: $\uparrow a \cap \uparrow b = \emptyset$ and $\uparrow a \cap \uparrow b \neq \emptyset$. Put $d = ab = a \cap b$. If $\uparrow a \cap \uparrow b = \emptyset$ then $a \cdot U_b(b_1, \ldots, b_l) = \{d\} \subseteq U_d(z_1, \ldots, z_k)$ and $U_a(x_1, \ldots, x_k) \cdot b \subseteq U_d(z_1, \ldots, z_k)$ for any $U_a(x_1, \ldots, x_k) \in \mathscr{B}^n_{\mathsf{c}}(a)$, $U_b(b_1, \ldots, b_l) \in \mathscr{B}^n_{\mathsf{c}}(b)$ and $U_d(z_1, \ldots, z_k) \in \mathscr{B}^n_{\mathsf{c}}(d)$, because in this subcase we have that $\uparrow a \cdot \uparrow b = d$. If $\uparrow a \cap \uparrow b \neq \emptyset$ then similar arguments as in the above case imply that

$$a \cdot U_b(b_1, \dots, b_l, u) = \{d\} \subset U_d(z_1, \dots, z_k), \ U_a(x_1, \dots, x_k, u) \cdot b \subset U_d(z_1, \dots, z_k)$$

for any $U_a(x_1,\ldots,x_k,u) \in \mathscr{B}^n_{\mathsf{c}}(a)$, $U_b(b_1,\ldots,b_l,u) \in \mathscr{B}^n_{\mathsf{c}}(b)$ and $U_d(z_1,\ldots,z_k) \in \mathscr{B}^n_{\mathsf{c}}(d)$, where $u = a \cup b$ in $\exp_n \lambda$.

This completes the proof of our proposition.

Remark 1. By Proposition 1(v) the topological space $(\exp_n \lambda, \tau_c^n)$ is scattered. Since every countably compact scattered T_3 -space is sequentially compact (see [16, Theorem 5.7]), $(\exp_n \lambda, \tau_c^n)$ is a sequentially compact space.

Theorem 1. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then for any T_1 -topology τ on $\exp_n \lambda$ the following conditions are equivalent:

- (i) $(\exp_n \lambda, \tau)$ is a compact topological semilattice;
- (ii) $\tau = \tau_{c}^{n}$;
- (iii) $(\exp_n \lambda, \tau)$ is a countably compact topological semilattice;
- (iv) $(\exp_n \lambda, \tau)$ is a feebly compact topological semilattice;
- (v) $(\exp_n \lambda, \tau)$ is a compact semitopological semilattice;

(vi) $(\exp_n \lambda, \tau)$ is a countably compact semitopological semilattice.

Proof. By Proposition 1 without loss of generality we may assume that τ is a Hausdorff topology on $\exp_n \lambda$. It is obvious that the following implications $(i) \Rightarrow (iii)$, $(iii) \Rightarrow (iv)$, $(iii) \Rightarrow (vi)$, $(i) \Rightarrow (vi)$ and $(v) \Rightarrow (vi)$ are trivial, and implication $(ii) \Rightarrow (i)$ follows from Proposition 2.

 $(i) \Rightarrow (ii)$. Suppose that τ is a compact topology on $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a topological semilattice. Then by Proposition 1(iii) the identity map

$$\mathsf{id}_{\exp_n \lambda} \colon (\exp_n \lambda, \tau) \to (\exp_n \lambda, \tau_{\mathsf{c}}^n)$$

is a continuous, and hence by Theorem 2.1.13 of [4] is a homeomorphism. Thus, we get that $\tau = \tau_c^n$.

Implication $(v) \Rightarrow (i)$ follows from Proposition VI-1.13 of [5] (also from Theorem 6.6 of [14, p. 242]).

 $(vi) \Rightarrow (v)$. We shall prove this implication by induction.

Assume that n=1. Suppose to the contrary that there exists a non-compact topology τ on $\exp_1 \lambda$ such that $(\exp_1 \lambda, \tau)$ is a countably compact semitopological semilattice. Then there exists an open cover $\mathscr U$ of the space $(\exp_1 \lambda, \tau)$ which contans no a finite subcover. This implies that there exists $U \in \mathscr U$ such that $0 \in U$ and $\exp_1 \lambda \setminus U$ is infinite subset of $\exp_1 \lambda$. Then by Proposition 1(iii) the space $(\exp_1 \lambda, \tau)$ contains an open-and-closed discrete subspace, which contradicts Theorem 3.10.3 from [4]. Thus, $(\exp_1 \lambda, \tau)$ is a compact semitopological semilattice.

Next, we shall prove that the statement the countably compact semitopological semilattice $(\exp_i \lambda, \tau)$ is compact for all positive integers $i < k \le n$ implies that the countably compact semitopological semilattice $(\exp_k \lambda, \tau)$ is compact too. Then there exists an open cover \mathscr{U} of the topological space $(\exp_k \lambda, \tau)$ which contains no a finite subcover. Then by Proposition 1(i), $\exp_{k-1} \lambda$ is a closed subset of $(\exp_k \lambda, \tau)$, and hence by Theorem 3.10.4 of [4] $\exp_{k-1} \lambda$ is countably compact. The assumption of induction implies that $\exp_{k-1} \lambda$ is a compact subspace of $(\exp_k \lambda, \tau)$, and hence the open cover \mathscr{U} of the topological space $(\exp_k \lambda, \tau)$ contains a finite subcover \mathscr{U}_0 of $\exp_{k-1} \lambda$. If the open cover \mathscr{U} of the topological space $(\exp_k \lambda, \tau)$ contains no a finite subcover of $(\exp_k \lambda, \tau)$ then by Proposition 1(iii) we have that $\exp_k \lambda \setminus \bigcup \mathscr{U}_0$ is an open-and-closed discrete subspace, which contradicts Theorem 3.10.3 from [4]. Thus, $(\exp_k \lambda, \tau)$ is a compact semitopological semilattice. This completes the proof of our implication.

 $(iv) \Rightarrow (iii)$. We shall prove this implication by induction.

Assume that n=1. Suppose to the contrary that there exists a feebly compact topological semilattice τ on $\exp_1 \lambda$ such that $(\exp_1 \lambda, \tau)$ is not a countably compact space. Then there exists a countable open cover \mathscr{U} of the space $(\exp_1 \lambda, \tau)$ which contains no a finite subcover. This implies that there exists $U \in \mathscr{U}$ such that $0 \in U$ and $\exp_1 \lambda \setminus U$ is infinite subset of $\exp_1 \lambda$. Then by Proposition 1(iii) the space $(\exp_1 \lambda, \tau)$ contains an open-and-closed discrete subspace of $(\exp_k \lambda, \tau)$, which contradicts the feeble compactness of $(\exp_1 \lambda, \tau)$, a contradiction. Hence $(\exp_1 \lambda, \tau)$ is a countably compact space.

Next, we shall prove that the statement that every feebly compact topological semilattice $(\exp_i \lambda, \tau)$ is countably compact for all positive integers $i < k \le n$ implies that the feebly compact topological semilattice $(\exp_k \lambda, \tau)$ is countably compact too.

Suppose to the contrary that every feebly compact topological semilattice $(\exp_i \lambda, \tau)$ is countably compact for all positive integers $i < k \leq n$ but there exists a feebly compact

topological semilattice $(\exp_k \lambda, \tau)$ which is not countably compact. Then by Theorem 3.10.3 from [4] the topological semilattice $(\exp_k \lambda, \tau)$ contains an infinite closed discrete subspace A. Since by Proposition 1(ii), $\exp_k \lambda \setminus \exp_{k-1} \lambda$ is an open discrete subspace of $(\exp_k \lambda, \tau)$, the feeble compactness of $(\exp_k \lambda, \tau)$ implies that $A \subseteq \exp_{k-1} \lambda$. Also, by Proposition 1(iii) since $\uparrow x$ is an open-and-closed subset of the space $(\exp_k \lambda, \tau)$ for every $x \in \exp_k \lambda$ we have that $\uparrow x$ is a feebly compact subspace of $(\exp_k \lambda, \tau)$. It is obvious that for any non-zero element $x \in \exp_k \lambda$ the subsemilattice $\uparrow x$ of $\exp_k \lambda$ is isomorphic to semilattice $\exp_m \lambda$ for some nonnegative integer m < k. This and the assumption of induction imply that $\uparrow x$ is a countably compact subspace of $(\exp_k \lambda, \tau)$ for any non-zero element x of the semilattice $\exp_k \lambda$. Hence we get that the set $A \cap \uparrow x$ is finite for any non-zero element x of the semilattice $\exp_k \lambda$.

Next, by induction we shall show that if for some positive integer i with $2 \leqslant i < n$ in a feebly compact topological semilattice $(\exp_n \lambda, \tau)$ there exists an open neighbourhood U(0) of zero 0 in $(\exp_n \lambda, \tau)$ such that U(0) does not contain an infinite subset A of $\exp_i \lambda \setminus \exp_{i-1} \lambda$ such that $A \cap \uparrow x$ is finite for any non-zero element $x \in \exp_i \lambda$ and $\uparrow x$ is countably compact, then there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero 0 in $(\exp_n \lambda, \tau)$ such that V(0) does not contain an infinite subset A_+ of $\exp_{i+1} \lambda \setminus \exp_i \lambda$ such that $A_+ \cap \uparrow x$ is finite for any non-zero element $x \in \exp_i \lambda$.

Suppose that in a feebly compact topological semilattice $(\exp_n \lambda, \tau)$ there exists an open neighbourhood U(0) of zero 0 such that $U(0) \cap A = \emptyset$ for some infinite subset

$$A = \{x_i \colon i \in \mathbb{N}\} \subseteq \exp_1 \lambda \setminus \{0\}.$$

Then the continuity of the semilattice operation in $(\exp_n \lambda, \tau)$ implies that there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero in $(\exp_n \lambda, \tau)$ such that $V(0) \cdot V(0) \subseteq U(0)$. Suppose that there exist some distinct $x_{i_0}, x_{i_1} \in A$ such that $\{x_{i_0}, x_{i_1}\} \in V(0)$. Then by the inclusion $V(0) \cdot V(0) \subseteq U(0)$ we have that

$$\{\{x_{i_0}, x_i\} : i \in \mathbb{N} \setminus \{i_0, i_1\}\} \cap V(0) = \varnothing.$$

This implies that the subspace $\uparrow\{x_{i_0}\}$ of $(\exp_n \lambda, \tau)$ contains a closed discrete subspace, which contradicts the countable compactness of $\uparrow\{x_{i_0}\}$. Hence we get that $V(0) \cap A_+ = \emptyset$, where

$$A_{+} = \{\{x_k, x_l\} : x_k, x_l \text{ are distinct elements of } A\}.$$

Suppose that in a feebly compact topological semilattice $(\exp_n \lambda, \tau)$ there exist an open neighbourhood U(0) of zero 0 and infinite subset $A \subseteq \exp_n \lambda$ such that $U(0) \cap A = \emptyset$ and |x| = j > 1 for any $x \in A$. Since for any non-zero element $a \in \exp_n \lambda$ the subspace $\uparrow a$ is countably compact, without loss of generality we may assume that there exists a countable set $A_1 = \{x_i : i \in \mathbb{N}\}$ which consists of singletons from $\exp_n \lambda$ such that $A \cap \uparrow x_i$ is a singleton for any positive integer i. Then the continuity of the semilattice operation in $(\exp_n \lambda, \tau)$ implies that there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero in $(\exp_n \lambda, \tau)$ such that $V(0) \cdot V(0) \subseteq U(0)$. We claim that for any distinct elements $x_p, x_s \in A_1, s, p \in \mathbb{N}$ there exists no $x \in \uparrow x_p$ such that $y = \{\{x_s\} \cup x\} \notin V(0)$. Indeed, in the other case the neighbourhood V(0) does not contain the set $\{\{x_q\} \cup x : x_q \in A \setminus \{x_s\}\}$. This implies that the subspace $\uparrow x_p$ of $(\exp_n \lambda, \tau)$ contains an infinite closed discrete subspace, which contradicts the assumption that $\uparrow x_p$ is a countably compact subspace of $(\exp_n \lambda, \tau)$. Hence we get that $V(0) \cap A_+ = \emptyset$, where

$$A_{+} = \{\{x_i\} \cup x \colon x_i \in A_1 \text{ and } x \in A\}.$$

The above presented arguments imply that the topological semilattice $(\exp_n \lambda, \tau)$ contains an infinite open-and-closed discrete subspace, which contradicts the feeble compactness of the space $(\exp_n \lambda, \tau)$. The obtained contradiction implies the requested implication.

Proposition 1(iii) implies the following corollary.

Corollary 2. Let λ be an arbitrary infinite cardinal. Then every feebly compact T_1 -topology τ on the semilattice $\exp_1 \lambda$ such that $(\exp_1 \lambda, \tau)$ is a semitopological semilattice, is compact, and hence $(\exp_1 \lambda, \tau)$ is a topological semilattice.

But, the following example shows that for any infinite cardinal λ and any positive integer $n \geqslant 2$ there exists a Hausdorff feebly compact topology τ on the semilattice $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a non-countably compact semitopological semilattice.

Example 3. Let λ be any infinite cardinal and τ_c^2 be the topology on the semilattice $\exp_2 \lambda$ defined in Example 2. We construct more stronger topology τ_{fc}^2 on $\exp_2 \lambda$ them τ_c^2 in the following way. By $\pi \colon \lambda \to \exp_2 \lambda \colon a \mapsto \{a\}$ we denote the natural embedding of λ into $\exp_2 \lambda$. Fix an arbitrary infinite subset $A \subseteq \lambda$ of cardinality $\leq \lambda$. For every non-zero element $x \in \exp_2 \lambda$ we put the base $\mathscr{B}^2_{\mathsf{fc}}(x)$ of the topology τ_{fc}^2 at the point x coincides with the base of the topology τ_{c}^2 at x, and

$$\mathscr{B}^2_{\mathsf{fc}}(0) = \left\{ U_B(0) = U(0) \setminus \pi(B) \colon U(0) \in \mathscr{B}^2_{\mathsf{c}}(0), B \subseteq \lambda \text{ and the set } A \setminus B \cup B \setminus A \text{ is finite} \right\}$$

form a base of the topology τ_{fc}^2 at zero 0 of the semilattice $\exp_2 \lambda$. Simple verifications show that the family $\{\mathscr{B}_{\mathsf{fc}}^2(x) \colon x \in \exp_2 \lambda\}$ satisfies the conditions (**BP1**)–(**BP4**) of [4], and hence τ_{fc}^2 is a Hausdorff topology on $\exp_2 \lambda$.

Proposition 3. Let λ be an arbitrary infinite cardinal. Then $(\exp_2 \lambda, \tau_{\sf fc}^2)$ is a countably pracompact semitopological semilattice such that $(\exp_2 \lambda, \tau_{\sf fc}^2)$ is an H-closed non-semiregular space.

Proof. The definition of the topology τ_{fc}^2 implies that it is sufficient to show that the semilattice operation is separately continuous in the case $x \cdot 0$. Fix an arbitrary basic neighbourhood $U_B(0)$ of zero in $(\exp_2 \lambda, \tau_{fc}^2)$. If x is a singleton of λ , i.e., $x = \{x_0\}$ in $\exp_2 \lambda$, then we have that $x \cdot V_B(0) = \{0\} \subseteq U_B(0)$, where $V(0) = U(0) \setminus \uparrow x$. In the case when x is a two-elements subset of λ , where $x = \{x_1, x_2\}$ for some $x_1, x_2 \in \lambda$, the we get that $x \cdot W_B(0) = \{0\} \subseteq U_b(0)$, where $W(0) = U(0) \setminus (\uparrow \{x_1\} \cup \uparrow \{x_2\})$.

Also, the definition of the topology $\tau_{\sf fc}^2$ on $\exp_2 \lambda$ implies that the set $\exp_2 \lambda \setminus \exp_1 \lambda$ is dense in $(\exp_2 \lambda, \tau_{\sf fc}^2)$ and every infinite subset of $\exp_2 \lambda \setminus \exp_1 \lambda$ has an accumulation point in $(\exp_2 \lambda, \tau_{\sf fc}^2)$, and hence the space $(\exp_2 \lambda, \tau_{\sf fc}^2)$ is countably pracompact.

Suppose to the contrary that $(\exp_2 \lambda, \tau_{\text{fc}}^2)$ is not an H-closed topological space. Then there exists a Hausdorff topological space X which contains $(\exp_2 \lambda, \tau_{\text{fc}}^2)$ as a dense proper subspace. Fix an arbitrary $x \in X \setminus \exp_2 \lambda$. Since X is Hausdorff there exist disjunctive open neighbourhoods U(x) and U(0) of x and zero 0 of the semilattice $\exp_2 \lambda$ in X, respectively. Then there exists a basic neighbourhood $V_B(0)$ of zero in $(\exp_2 \lambda, \tau_{\text{fc}}^2)$ such that $V_B(0) \subseteq \exp_2 \lambda \cap U(0)$. Also, the definition of the base $\mathscr{B}_{\text{fc}}^2(0)$ of the topology τ_{fc}^2 at zero 0 of the semilattice $\exp_2 \lambda$ implies that there exist finitely many non-zero elements x_1, \ldots, x_m of the semilattice $\exp_2 \lambda$ such that

$$\exp_2 \lambda \setminus (\uparrow x_1 \cup \ldots \cup \uparrow x_m \cup V_B(0)) \subseteq B,$$

and since by Proposition 1(iii) the subsets $\uparrow x_1, \ldots, \uparrow x_m$ are open-and-closed in $(\exp_2 \lambda, \tau_{\sf fc}^2)$ without loss of generality we may assume that $U(x) \cap \exp_2 \lambda \subseteq B$. If the set $U(x) \cap \exp_2 \lambda \subseteq B$ is infinite then the space $(\exp_2 \lambda, \tau_{\sf fc}^2)$ contains a discrete infinite open-and-close subspace, which contradicts the feeble compactness of $(\exp_2 \lambda, \tau_{\sf fc}^2)$. The obtained contradiction implies that the space $(\exp_2 \lambda, \tau_{\sf fc}^2)$ is H-closed.

Remark 2. If n is an arbitrary positive integer ≥ 3 , λ is any infinite cardinal and τ_{c}^n is the topology on the semilattice $\exp_n \lambda$ defined in Example 2, then we construct more stronger topology τ_{fc}^n on $\exp_n \lambda$ them τ_{c}^2 in the following way. Fix an arbitrary element $x \in \exp_n \lambda$ such that |x| = n - 2. It is easy to see that the subsemilattice $\uparrow x$ of $\exp_n \lambda$ is isomorphic to $\exp_2 \lambda$, and by $h \colon \exp_2 \lambda \to \uparrow x$ we denote this isomorphism.

Fix an arbitrary subset $A \subseteq \lambda$ of cardinality $\leqslant \lambda$. For every zero element $y \in \exp_n \lambda \setminus \uparrow x$ we put the base $\mathscr{B}^n_{\mathsf{fc}}(y)$ of the topology τ^n_{fc} at the point y coincides with the base of the topology τ^n_{c} at y, and put $\uparrow x$ is an open-and-closed subset and the topology on $\uparrow x$ is generated by map $h \colon (\exp_2 \lambda, \tau^n_{\mathsf{fc}}) \to \uparrow x$. Simple verifications as in the proof of Proposition 3 show that $(\exp_n \lambda, \tau^n_{\mathsf{fc}})$ is a countably pracompact semitopological semilattice such that $(\exp_n \lambda, \tau^n_{\mathsf{fc}})$ is an H-closed quasiregular non-semiregular space.

Remark 3. Simple verifications show that $(\exp_2 \lambda, \tau_{fc}^2)$ is not a 0-dimensional space. This implies that the term "hereditarily disconnected" in item (v) of Proposition 1 can not be replaced by "0-dimensional".

A T_1 -space X is called *collectionwise normal* if for every discrete family $\{F_s\}_{s\in\mathscr{A}}$ of closed subsets of X there exists a discrete family $\{U_s\}_{s\in\mathscr{A}}$ of open subsets of X such that $F_s\subseteq U_s$ for every $s\in\mathscr{A}$ [4].

Proposition 4. Let λ be an arbitrary infinite cardinal and τ be a T_1 -topology on $\exp_1 \lambda$ such that $(\exp_1 \lambda, \tau)$ is a semitopological semilattice. Then the space $(\exp_1 \lambda, \tau)$ is collectionwise normal.

Proof. Suppose that $\{F_s\}_{s\in\mathscr{A}}$ is a discrete family of closed subsets of $(\exp_1\lambda, \tau)$. By Proposition 1(iii) all non-zero elements of the semilattice $\exp_1\lambda$ are isolated points in the space $(\exp_1\lambda,\tau)$. Hence, if there exists an open neighbourhood U(0) of zero in $(\exp_1\lambda,\tau)$ such that $U(0)\cap F_s=\varnothing$ for all $s\in\mathscr{A}$ then we put $U_s=F_s$ for all $s\in\mathscr{A}$. In other case there exists an open neighbourhood U(0) of zero in $(\exp_1\lambda,\tau)$ such that $U(0)\cap F_{s_0}\neq\varnothing$ for some $s_0\in\mathscr{A}$ and $U(0)\cap F_s=\varnothing$ for all $s\in\mathscr{A}\setminus\{s_0\}$. We put

$$U_s = \begin{cases} F_s, & \text{if } s \in \mathscr{A} \setminus \{s_0\}; \\ F_{s_0} \cup U(0), & \text{if } s = s_0. \end{cases}$$

Then Proposition 1(ii) implies that $\{U_s\}_{s\in\mathscr{A}}$ is a discrete family $\{U_s\}_{s\in\mathscr{A}}$ of open subsets of $(\exp_1 \lambda, \tau)$ such that $F_s \subseteq U_s$ for every $s \in \mathscr{A}$, and hence the space $(\exp_1 \lambda, \tau)$ is collectionwise normal.

Remark 4. A topological space X is called *perfectly normal* if X is normal and every closed subset of X is a G_{δ} -set. It is obvious that if λ is any uncountable cardinal then $(\exp_1 \lambda, \tau_c^1)$ is a compact space which is not perfectly normal (see: [4, Section 1.5]).

Theorem 2. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then every semilattice T_1 -topology on $\exp_n \lambda$ is regular.

Proof. Suppose that τ is a T_1 -topology on $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a topological semilattice. In the case when n = 1 the statement of the theorem follows from Proposition 4. Hence, later we assume that $n \ge 2$.

By Proposition 1(iii), $\uparrow x$ is an open-and-closed subsemilattice of $(\exp_n \lambda, \tau)$ for any $x \in \exp_n \lambda$, and hence it will be sufficient to show that for every open neighbourhood U(0) of zero in $(\exp_n \lambda, \tau)$ there exists an open neighbourhood V(0) of zero in $(\exp_n \lambda, \tau)$ such that $\operatorname{cl}_{\exp_n \lambda}(V(0)) \subseteq U(0)$.

Fix an arbitrary open neighbourhood U(0) of zero in $(\exp_n \lambda, \tau)$. Then the continuity of the semilattice operation in $(\exp_n \lambda, \tau)$ implies that there exists an open neighbourhood $V(0) \subseteq U(0)$ of zero in $(\exp_n \lambda, \tau)$ such that $V(0) \cdot V(0) \subseteq U(0)$. Suppose that there exists

$$x \in \operatorname{cl}_{\exp_n \lambda}(V(0)) \setminus V(0).$$

By Proposition 1(ii) we have that $x \in {\downarrow}V(0)$. We assume that $x = \{a_1, \ldots, a_i\}$ as a finite subset of the cardinal λ , where i < n, i.e., $x \in \exp_i \lambda \setminus \exp_{i-1} \lambda$. Then $V(x) \cap V(0) \neq \emptyset$ for every open neighbourhood V(x) of the point x in $(\exp_n \lambda, \tau)$. Proposition 1(iii) implies that without loss of generality we may assume that $V(x) \subseteq {\uparrow}x$. Fix an arbitrary $y \in (V(0) \cap V(x)) \setminus \{x\}$. Then we may assume that $y = \{a_1, \ldots, a_i, a_{i+1}, \ldots, a_j\}$ as a finite subset of the cardinal λ , where $i < j \leqslant n$. We put

$$x_1 = \{a_1, \dots, a_i, a_{i+1}\}, \dots, x_{j-i} = \{a_1, \dots, a_i, a_j\},\$$

as finite subsets of the cardinal λ . Then the semilattice operation of $\exp_n \lambda$ implies that

$$y \in \uparrow x_1 \cup \dots \cup \uparrow x_{j-i} \subseteq \uparrow x$$

and $y \cdot z = x$ for every

$$z \in \uparrow x \setminus (\uparrow x_1 \cup \cdots \cup \uparrow x_{j-i})$$
.

Since $x \in \operatorname{cl}_{\exp_n \lambda}(V(0)) \setminus V(0)$, Proposition 1(iii) implies that

$$W(x) = V(x) \setminus (\uparrow x_1 \cup \cdots \cup \uparrow x_{j-i})$$

is an open neighbourhood of the point x in $(\exp_n \lambda, \tau)$. Then the above arguments imply that $x = y \cdot W(x) \subseteq V(0) \cdot V(0) \subseteq U(0)$ and hence $\operatorname{cl}_{\exp_n \lambda}(V(0)) \subseteq U(0)$.

Since in any countable T_1 -space X every open subset of X is a F_{σ} -set, Theorem 1.5.17 from [4] and Theorem 2 imply the following corollary.

Corollary 3. Let n be an arbitrary positive integer. Then every semilattice T_1 -topology on $\exp_n \omega$ is perfectly normal.

Later we need the following lemma:

Lemma 1. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Let $(\exp_n \lambda, \tau)$ be a Hausdorff feebly compact semitopological semilattice. Then for every open neighbourhood U(0) of zero in $(\exp_n \lambda, \tau)$ there exist finitely many non-zero elements $x_1, \ldots, x_i \in \exp_n \lambda$ such that

$$\exp_n \lambda \setminus \exp_{n-1} \lambda \subseteq U(0) \cup \uparrow x_1 \cup \ldots \cup \uparrow x_i$$
.

Proof. By Proposition 1(ii) every point $x \in \exp_n \lambda \setminus \exp_{n-1} \lambda$ is isolated in $(\exp_n \lambda, \tau)$. Next, we apply the feeble compactness of $(\exp_n \lambda, \tau)$ and Proposition 1(iii).

Theorem 3. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then every semiregular feebly compact T_1 -topology τ on $\exp_n \lambda$ such that $(\exp_n \lambda, \tau)$ is a semitopological semilattice, is compact, and hence the semilattice operation in $(\exp_n \lambda, \tau)$ is continuous.

Proof. We shall prove the statement of the theorem by induction. In the case when n=1 the statement of the theorem follows from Corollary 2. First we consider the initial step: n=2. Suppose to the contrary that there exists a semiregular feebly compact non-compact T_1 -semitopological semilattice $(\exp_2 \lambda, \tau)$. By Theorem 1 the topological space $(\exp_2 \lambda, \tau)$ is not countably compact, and hence Theorem 3.10.3 of [4] implies that $(\exp_2 \lambda, \tau)$ contains an infinite closed discrete subspace X. Now, Proposition 1(iii) implies that $\exp_2 \lambda \setminus \exp_1 \lambda$ is an open discrete subspace of $(\exp_2 \lambda, \tau)$, and since $(\exp_2 \lambda, \tau)$ is feebly compact, without loss of generality we may assume that $X \subseteq \exp_1 \lambda \setminus \{0\}$. Fix an arbitrary regular open neighbourhood U(0) of zero in $(\exp_2 \lambda, \tau)$ such that $U(0) \cap X = \emptyset$.

For every $x \in \exp_1 \lambda \setminus \{0\}$ the subset $\uparrow x$ is open-and-closed in $(\exp_2 \lambda, \tau)$ and hence $\uparrow x$ is feebly compact. Since $\uparrow x$ is algebraically isomorphic to $\exp_1 \lambda$, Corollary 2 implies that $\uparrow x$ is compact. By Lemma 1 there exist finitely many non-zero elements $x_1, \ldots, x_i \in \exp_2 \lambda$ such that

$$\exp_2 \lambda \setminus \exp_1 \lambda \subseteq U(0) \cup \uparrow x_1 \cup \ldots \cup \uparrow x_i$$
.

The semilattice operation of $(\exp_2 \lambda, \tau)$ implies that without loss of generality we may assume that x_1, \ldots, x_i are singleton subsets of the cardinal λ . This and above presented arguments imply that $\operatorname{cl}_{\exp_2 \lambda}(U(0)) \cap X \neq \emptyset$. Moreover, we have that the narrow $\operatorname{cl}_{\exp_2 \lambda}(U(0)) \setminus U(0)$ consists of singleton subsets of the cardinal λ . Then for every $x \in \operatorname{cl}_{\exp_2 \lambda}(U(0)) \setminus U(0)$ by Corollary 2, $\uparrow x$ is a compact topological subsemilattice of $(\exp_2 \lambda, \tau)$. Now, Theorem 1 and Lemma 1 imply that

$$x \in \operatorname{int}_{\exp_2 \lambda} \left(\operatorname{cl}_{\exp_2 \lambda} (U(0)) \right) = U(0),$$

which contradicts the assumption $U(0) \cap X = \emptyset$. The obtained contradiction implies that $(\exp_2 \lambda, \tau)$ is a compact semitopological semilattice.

Next we shall show the step of induction, i.e., that the statement if for every positive integer l < n a semiregular feebly compact T_1 -semitopological semilattice $(\exp_l \lambda, \tau)$ is compact implies that a semiregular feebly compact T_1 -semitopological semilattice $(\exp_n \lambda, \tau)$ is compact too. Suppose to the contrary that there exists a semiregular feebly compact non-compact T_1 -semitopological semilattice $(\exp_n \lambda, \tau)$ which is not compact. By Theorem 1 the topological space $(\exp_n \lambda, \tau)$ is not countably compact, and hence Theorem 3.10.3 of [4] implies that $(\exp_n \lambda, \tau)$ contains an infinite closed discrete subspace X. Now, by Proposition 1(iii), $\exp_n \lambda \setminus \exp_{n-1} \lambda$ is an open discrete subspace of $(\exp_n \lambda, \tau)$, and since $(\exp_n \lambda, \tau)$ is feebly compact, without loss of generality we may assume that $X \subseteq \exp_{n-1} \lambda \setminus \{0\}$.

Put k < n is the maximum positive integer such that the set $\exp_k \lambda \setminus \exp_{k-1} \lambda \cap X$ is infinite. We observe that for any non-zero element $x \in \exp_n \lambda$ the subsemilattice $\uparrow x$ of $\exp_n \lambda$ is algebraically isomorphic to the semilattice $\exp_j \lambda$ for some positive integer j < n, and since by Proposition 1(iii), $\uparrow x$ is an open-and-closed subset of a feebly compact semitopological semilattice ($\exp_n \lambda, \tau$), the assumption of induction implies that $\uparrow x$ is a compact subsemilattice of ($\exp_n \lambda, \tau$). This implies that there do not exist finitely many non-zero

elements y_1, \ldots, y_s of the semitopological semilattice $(\exp_n \lambda, \tau)$ such that

$$X \subseteq \uparrow y_1 \cup \ldots \cup \uparrow y_s$$
.

Fix an arbitrary regular open neighbourhood U(0) of zero in $(\exp_n \lambda, \tau)$ such that $U(0) \cap X = \emptyset$. Then the above arguments imply that

$$\operatorname{cl}_{\exp_n \lambda}(V(0)) \cap (\exp_k \lambda \cap X) \neq \emptyset.$$

Moreover, we have that the narrow $\operatorname{cl}_{\exp_n\lambda}(U(0))\setminus U(0)$ contains infinitely many k-element subsets of the cardinal λ which belongs to the set X. Then for every such element $x\in \operatorname{cl}_{\exp_n\lambda}(U(0))\setminus U(0)$ the assumtion of induction implies that $\uparrow x$ is a compact topological subsemilattice of $(\exp_n\lambda,\tau)$. Now, Theorem 1 and Lemma 1 imply that every such element x belongs to the set

$$\operatorname{int}_{\exp_n \lambda} \left(\operatorname{cl}_{\exp_n \lambda} (U(0)) \right) = U(0),$$

which contradicts the assumption $U(0) \cap X = \emptyset$. The obtained contradiction implies that $(\exp_n \lambda, \tau)$ is a compact semitopological semilattice.

The last assertion of the theorem follows from Theorem 1.

Acknowledgements. We acknowledge Taras Banakh and the referee for they useful comments and suggestions.

REFERENCES

- 1. A. V. Arkhangel'skii, Topological Function Spaces, Kluwer Publ., Dordrecht, 1992.
- 2. J.H. Carruth, J.A. Hildebrant, R.J. Koch, The Theory of Topological Semigroups, V.I, Marcel Dekker, Inc., New York and Basel, 1983; V.II, Marcel Dekker, Inc., New York and Basel, 1986.
- 3. A.H. Clifford, G.B. Preston, *The Algebraic Theory of Semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- 4. R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
- 5. G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge, 2003.
- O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discr. Math. 18 (2014), №1, 59–85.
- 7. O. Gutik, J. Lawson, D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum, 78 (2009), №2, 326–336.
- 8. O.V. Gutik, K.P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum, 71 (2005), №3, 389–400.
- 9. O.V. Gutik, K.P. Pavlyk, *Topological semigroups of matrix units*, Algebra Discrete Math., №3 (2005), 1–17.
- 10. O. Gutik, K. Pavlyk, A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ^0 -extensions, Mat. Stud., **32** (2009), No. 2, 115–131.
- 11. O. Gutik, O. Ravsky, Pseudocompactness, products and topological Brandt λ^0 -extensions of semitopological monoids, Math. Methods and Phys.-Mech. Fields, **58** (2015), Nº2, 20–37.

- 12. O.V. Gutik, A.R. Reiter, Symmetric inverse topological semigroups of finite rank $\leq n$, Math. Methods and Phys.-Mech. Fields, **52** (2009), \mathbb{N}^2 3, 7–14; reprinted version: J. Math. Sc. **171** (2010), \mathbb{N}^2 4, 425–432.
- 13. O. Gutik, A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math., 72 (2010), 94–106. (in Ukrainian)
- 14. J.D. Lawson, *Intrinsic lattices and lattice topologies*, S. Fajtlowicz and K. Kaiser (eds.), Proceedings of the University of Houston Lattice Theory Conference, Houston, Texas, 1973. University of Houston, 206–230.
- 15. W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., V.1079, Springer, Berlin, 1984.
- 16. J.E. Vaughan, Countably compact and sequentially compact spaces, Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Amsterdam, North-Holland, 1984, 569–602.
- 17. V.V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR, 84 (1952), 1119-1122. (in Russian)

Department of Mechanics and Mathematics Ivan Franko National University of Lviv o_gutik@franko.lviv.ua ovgutik@yahoo.com

olesyasobol@mail.ru

Received 4.07.2016