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Let P: (0;+00) = +oo with p Z —oo. A connection between behavior of P and the growth
of the function Q(o) = sup{P(t) + ot: t > 0} is in the term of the two-member generalized
asymptotic.

1. Introduction. Let P be an arbitrary function different from +oo (it can achieve the
value —oo but P # —o0) and let Q(0) = sup{P(t) +to: t > 0}. The functions P and @ are
said to be Young conjugated functions. If we put A = sup{o: Q(0) < +oo} then

A= —tEEéOP(t)/t.
Indeed, if 0 < A then P(t) +t,0 < Q(o) and, thus, P(t)/t < —o + Q(o)/t for all t > 0,
whence o
lim P(t)/t < —o,

t—+00

that is in view of the arbitrariness of ¢ we have

tllgloo P(t)/t < —A.
On the other hand, if ¢ > A then Q(0) = +oo and, therefore, for every K € (0, +00) there
exists a sequence (tx) T +oo such that P(t;) + oty > K, that is P(t;)/ty > —0o + o(1) as
k — oo, whence t@m P(t)/t > —A.

Suppose that —oo < A < 400 and by (A) we denote the class of positive unbounded
on (—oo, A) functions ¢ such that the derivative @’ is positive continuously differentiable
and increasing to +00 on (—o0, A). From now on, we denote by ¢ the inverse function to @',
and let U(z) = x — ®(z)/P'(x) be the function associated with ® in the sense of Newton.
It is clear that the function ¢ is continuously differentiable and increasing to A on (0, +00).
The function W is |1, p. 30; 2-3] continuously differentiable and increasing to A on (—oo, A).
The following lemmas are proved in [3] and [1, p. 30-45].

Lemma 1. Let A € (—o0,4+00] and ® € Q(A). In order that Q(c) < ®(o) for allo € [og, A),
it is necessary and sufficient that In P(t) < —tW(p(t)) for all t > 1.
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Lemma 2. Let A € (—o0,400] and & € Q(A). If P(ty) > —t,V(p(tx)) for some sequence
(tr) of positive numbers increasing to +oo then for all k > ko and all o € [p(ty), p(tks1)]

Qo) > ©(0) + G1(tk, tit1, ®) — Galte, tit1, @),

where ([1, p. 34; 4])

G(a,b, ®) = bciba /ab q)(igqt)) dt < Go(a,b, &) =: @ <ﬁ /abgo(qt) dt) :

for 0 <a <b< +oo.

Lemma 3. Let A € (—o0,+00], &, € Q(A), ¢* € Q(A) and ®.(0) < Qo) < O*(0) for all
o € (09, A). Then P(t) < —tW*(p*(t)) for all t > t, and there exists an increasing to +o0o
sequence (ty) of positive numbers such that P(ty) > —tx V. (p.(tx)) and

1 to+1
Galte,tisn, ) 2 010a(@), (@)= [ a
+1 — tr

where by V., U* ¢, and ¢* we denote the functions which correspond to ®, and ®*.

Using the lemmas, in [5] it is found conditions on P under which for example, @) has
two-member exponential asymptotic

Qo) =Te”” + (1 +o(1))1e” (0 = 400), T>0,0<p <p<—+00,7€R,
() has two-member exponential asymptotics
Qo) =To" + (1 +o(1))To™ (0 — +o0), T>0,p>1,0<p <pT1€ER,

or
T 1 1
Qo) = +( +oll)r (c¢10), T>00<p <p<-+oo,7€R.
P ||

For A = 400 a general two-member asymptotic of ) is studied in [6-7].

Let L° be the class of positive continuously differentiable on (0, +00) functions [ such that
zl'(z) = O(l(x)) as & — +00. We remark that if [ € L° then I((1+ o(1))x) = (1 + o(1))(x)
as r — +00.

As in [6] we will say that a positive twice continuously differentiable increasing to +oo
on (—oo,400) function ®, is subordinated to ®; € Q(+o00) if PJ(0) = o(P}(0)), P)(0) =
o(c®(0)) as 0 — +oo and Py(p,) € L°.

Theorem A ([6]). Let ®; € Q(+00), ¢} € LY, &, be subordinated to ®; and T € R. In
order that

Qo) < Py(0) + (1 +0(1))7P1(0), o — +00, (1)

it is necessary and sufficient that

P(t) < —tUy(p1(t)) + (1 4+ o(1))7Po (1 (t)), t — +o0. (2)
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Theorem B ([6]). Let ®; € Q(+00), ¢} € L°, &5 be subordinated to ®;, 7 € R and
(0 + O(Ph(0)/®1(0))) = (1 +0(1))®}(0) (0= F00), j=1,2. (3)

If
P(tn) > =ty Wi (p1(tn)) + (1 + o(1))7Pa(p1(tn)), 1 — +00, (4)

for a some increasing to +oo sequence (t,,) such that

the1 = (L+o0(1))t,, n— oo, (5)

and
Gotn, tai1, 1) — Gi(tn, thi1, P1) = o(Pa(p1(tn))), n — oo, (6)

then
Qo) > P1(0) + (1 +0(1))7P1(0), o — +o0. (7)

Theorem C (|7]). Let ®; € Q(+00), ¢} € L°, ®, be subordinated to ®;, 7 € R, the
conditions (3) hold and (5) imply (6). Put

1 Pt P tni1)) — @ tn
/fn(q)l) _ —/ gol(t)dt, fn _ 2(901< +1)) 2(901( +1)) (8)
tn+1 - tn tn tn+1 - tn
and suppose that
&P (Fn(®)) + O(&n) = o(Ga(tn, trsr, 1)), n = o0, (9)
and
Dy (ki (®)) + O(6n)) = 0(Galtn, tni1, 1)), 1 — oo. (10)
In order that
Qo) = P1(0) + (14 0o(1))7Py(0), o — +00, (11)
it is necessary and sufficient that for every ¢ > 0:
1) for all t >ty = to(e)
P(t) < =tWy(e1(t)) + (7 + ) a1 (t)); (12)

2) there exists an increasing to +o0o sequence (t,,) such that
P(t,) 2 =t Wi(p1(tn)) + (1 = €))2(n(Ln)), 17— +00, (13)
and (6) holds.

In view of Theorem C the following problems arise ([7]).

1. For which function ®; € Q(+00) and subordinated to ®; function ®, do relations (9)
and (10) hold for every sequence (t,) 1 +oo?

2. For which functions ®; € Q(+o00) and ®, does relation (5) imply (6)?

Here we will discuss the set of forth problems and will generalize Theorems 1-3 in the
case of any A € (—o0, +00]. Obviously, the general case A € (—o0, +00) can be reduced to
the case A = 0 with ¢ — A replacing o.

2. Discussion of problems. The answer to the first problem is contained in the following
proposition.
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Proposition 1. Let either A = 0 or A = 400, ®; € Q(A) and ®, be a positive twice
continuously differentiable function on (—oo, A) increasing to +oc. Suppose that ®4(o) =
o(c®(0)), e ((1 + 0(1))o) = O(P1(0)) and Po((1 + o(1))o) = o(P1(0)) as o 1 A. Then
the relations (9) and (10) hold for every sequence (t,,) T +00.

Proof. The condition ®,(0) = o(c®](0)) as o 1 A implies the relation ®4(p;(t)) = o(p1(t) x
x®(p1(t))) as t — +oo. But ®/(pi(t)) = 1/¢(t). Therefore, ®,(p(t))¢'(t) = o(p(t)) as
t — +o0 and, thus, in view of (8)

¢ = Po(p1(tns1)) — Papn(tn)) 1 /tn+1 Dy (p1 (1) (t)dt = o(kn(P1), 1 — o0
tns1 — tn b1 = tn Ji

Since Go(tn, tni1, P1) = P1(kn(P1)) and o®|((1 + o(1))o) = O(P1(0)) as o T A hence
we obtain (9). From the condition ®5((1 + o(1))0) = o(P1(0)) as o T A the relation (10)
follows. O

The assumptions of Proposition 1 are satisfied if ®; and ®, are power functions, that is
Pi(0) = 0P (p > 1), Py(0) = 0 (0 < p1 <p) by A= +oo and ®y(c) = 1/|o|” (p > 0),
Py(c) = 1/|o|P* (0 < p1 < p) by A = 0. The exponential functions ®,(c) = exp{pc} (p > 0),
®y(0) = exp{p10} (0 < p1 < p) dissatisfy these condition. However, the following statement
holds.

Proposition 2. Let A = 400, ®; € Q(A) and &y be a positive continuously differentiable
function on (—o0, A) increasing to 4+o0c. Suppose that ®,(c) = o(P](0)), ®i(c + o(1)) =
O(®1(0)) and Po(0 + 0o(1)) = O(P1(0)) as o T A. Then the relations (9) and (10) hold for
every sequence (t,) T 400.

Proof. The condition ®,(c) = o(®{(c)) as ¢ T A implies the relation ®,(p;(t))e}(t) — 0 as
t — +o0 and, thus, &, — 0 asn — oo. Therefore, from the condition ®}(c+0(1)) = O(P41(0))
we obtain (9) and from the condition ®(c + 0(1)) = o(Py(0)) as o T A, we obtain (10). O

Now we consider the second problem. Suppose that ®5(0) = o(®1(0)) as ¢ 1 A. Since
Go(tn, tni1, 1) > P1(p1(tn)) we have Po(p1(t,)) = o(Ga(tn,thi1, 1)) as n — oo and,
therefore, from (6) it follows that

Gg(tn, tn+1, (I)l) = (1 + 0(1))G1<tn7tn+1, q)1)7 n — OoQ. (14)

By Q*(A) we denote the class of functions ® € Q(A) such that (14) implies (5). Then
the following proposition is true.

Proposition 3. Let either A =0 or A = 400, ®; € Q*(A), and ®, be a positive continuous
function on (—oo, A) increasing to +oo such that ®y(c) = o(P1(c)) as o T A. Then (6)
implies (5).

The following problem arises: for which functions ®; € (A) does relation (14) imp-
lies (5)7

We did not succeed to distinguish the general classes of functions for what (14) implies (5).
However the class Q*(A) is nonempty. For example the following functionals belongs to this
classes: an exponential function ®(0) = Te?” and a power function ® (o) = To? for o > oy
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if A = +o00 and a power function ®(¢) = T|o|~” if A =0, where "> 0, p > 0 and p > 1.
We will show it when T"'=p =1 and p = 2.
If &(0) = €7 then

totn tn
Gl (tny tn—‘rh (D) = = In +17 G2(tn7 tn+17 q)) = exXp {

tn—i—l In tn+1 — tn In tn 1
tn—‘rl - tn tn '

tn—i—l - tn
Therefore, if we put t,,1 = (1 + 6,)t, then

14+6,)In(1+46,
Gl(t'mtn-i-hq)) = tn( )0 ( )7 GQ(tn7tn+17q)) = ;exp{

and, thus,

. Gl(tn,tn+1,<p) . (1—{—9”) ln(1+9n)

G, =: — Cln _"In, n —-
GQ(tnatn+17<I>) €€ 7 ‘9n
If there exists a sequence (0,,),0,, — +oo then n,, — +oo and G, — 0 as j — oo. If
On; — 0 € (0,400) then 1, — n =: w > 0 and G,; — ene™ < 1 as j — oo.

Therefore, from (14) it follows that 6, — 0 as n — oo and, thus, (5) holds.
Now, let ®(c) = o2 for 0 > 09 and t,, 11 = (1 +60,)t,,. Then Gy (tn, tpi1, @) = tutni1/4 =
= t,(1+6,)/4, Gotp, tni1, @) = (tp + tn1)?/16 = t2(2 + 6,)%/16 and, thus, G, = 4(1 +
0,)/(2 + 6,)?, whence, as above, in view of (14) 6,, — 0 as n — oo and, thus, (5) holds.
Finally, let ®(0) = 1/|o]|. Then

o 2\/ tntn-‘rl _ 2\/5\/ I+ en
Vot Vi VIt 0,+10
GQ(tn7tn+17(I)) = (\/E—i_ V tn+1)/2 = \/E( V 1 + en + 1)/2

and G, = 4v/1+0,/(v/1+ 0, + 1)?, whence, as above, in view of (14) 6, — 0 as n — oo
and, thus, (5) holds.

3. Preliminary statements. Let A € (—o0,+o0] and &; € Q(A). We will say that a
positive twice continuously differentiable increasing to +o00 on (—oo, A) a function @, is
weakly subordinated to ®; € Q(+00) if ®4(c) = o(P{(c)) as 0 T A and P,(p;) € L°. We
remark that ®,(p;) € L2 iff ®5(0)/®,(0) = O(P](0)/®)(0)) as o T A.

Let 7 € R\ {0} and either A = 0 or A = +o00. Suppose that ®; € Q(A), ¢} € L° and
®, is weakly subordinated to ®4. Since ®5(0) = o(P/(0)) as 0 T A, there exists a function
¢ € Q(A) such that

Gl (tna tn+17 q))

O(0) = Py(0) + 7P2(0), o € [og(T), A). (15)
Lemma 4. For the function (15) the following asymptotic equalities are true
p(t) = @1(t) — (1+0(1))T @501 ()4 (t), ¢ — Fo00, (16)

and
tW(p(t) =101 (e1(t) — (1 +0(1))7Pa(p1(t)), ¢ — +oo. (17)

Proof. Clearly, the inverse function ¢ to ® satisfies the equation

P'(0) + 1+ Py(o) = t. (18)
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Since ®4(0) = o(P)(0)) as o 1 A, we look for a solution of (18) of the form
p(t) = it —aft), a(t) = oft) (t = +00). (19)
Substituting (19) in (18) and taking into account the condition ®%(¢p;) € L%, we obtain
a(t) = 7+ (et — () = 7@ (01 ((1+o(1))t)) = (1+0(1))7P5(pr (1), ¢ — Fo0. (20)
On the other hand, in view the condition ¢} € L° for some n = n(t) € [t — a(t),t] we have
p1(t) = it — a(t)) = ph(n)al(t) = (1 +o(1))py(H)alt), t— +oo.

Therefore, (19) and (20) imply (16).
Since (tW(¢(t))) = ¢(t) from (16) it follows that

W (ip(t)) —toW (p(to)) = tW1 (1 (t) —toW1(pr(to)) — (T +€) (1+0(1)) (P51 () — D5 ( 1 (t0)))

as t — +00. Since p1(t) T A ast — +oo and ®y(0) T +00 as 0 T A, one has $y(py(t)) T +o0
as t — +oo. Therefore, the last inequality implies (17). O

Lemma 5. Let ®; € Q(A), ¢] € L° and ®, be weakly subordinated to ®,. Suppose that
dL(0) = o(c®Y(0)) as o 1 A, the conditions (3) as o T A and (5) hold. Then for the function
(15) the following asymptotic equality is true

GQ(tna tn-i—l; ¢) - Gl(t’rh tn+1, ¢) == GZ(t’rn tn+1, ¢1) - Gl(tn7 tn-‘rh q)l) + 0((1)2(S01(tn>>) (2]—>
as n — oQ.

Proof. 1f we define x,(®1) and &, as in (8) then from (16) we obtain

o 1 tn+1 p 1 tnt1 J

ko (P) = ——— t)dt = ——— t)dt—

(®) bnr1 — tn /tn o) Int1 — tn /tn #1(0)
1+ o(1 tnt1

—% / (01 (6) P (1)t = Fin(®1) = (14 0(1)Tn, 1 — 0.
n+1 = n tn

The condition ®,(c) = o(c®{(0)) as o T A implies the relation &, = o(k,(P1)) as n — oc.
Therefore,

GQ(tn, tn+1, (I)) = (I)(:‘in(q))) = (I)l(lin<q))) + T@Q(/@n(q)) =
= Oy (kn(P1) — (14 0(1))7&,) + 7Po(Kn(P1) — (1 +0(1))7&n), n — o0.

Since ©1((1 +0(1))z) = (1 + o(1))p)(z) as x — +oo and P} (p1(z)) = 1/¢}(z), we have
O (p1((14+0(1))z)) = (140(1))P)(p1(x)) as & — +o00. The condition (5) implies the relation
kn(®1) = @1((1 4+ 0o(1))t,) as n — oo. Therefore, in view of the condition ®,(p;) € L we
have

Bira(®1) _ ea((LHo()0)) 1 Baloilt)
(@)~ B (1 + 0(1))1) 2} (1 (11)
= (14 0(1) By (e ()2 () = (1+ 0(1), 1 — oo,
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Hence it follows that for some n, € (0,1) by (3)

©1(hn(®1) = (14 0(1))7&n) = a(kin(P1)) = =@ (i (P1) = (1 4 0(1))9n7En) (1 + 0(1))76 =

= (1 0176 (@) = (14 o) A ) = (14 0(0)) 76,04 1, (21)

as n — 00, and by analogy

©y(hin(P1) = (L4 0(1))7&n) — Pa(kin(P1)) = =P5(kn(P1) = (1 4 o(1))9n7En) (1 + 0(1))76 =

= (1 0176} (@) = (14 o) AT ) = (14 0(0)) 76,0} (1)

as n — o0o. Thus,

GQ(tna thrla (I)) = GQ(tna tn+17 (I)l) + Tq)2(“n(q)1))_

(1 + 0(1)) 7@ (n (1)) — (1 + 0(1)) &P (1n(P1)), 1 — 0. (22)
On the other hand, in view of (17) and the equality p(z) = (2V(p(x)) we have
Gttt ®) = 22 [ @) (<7 = 2 (et~
Wloltn) =t (e ) BB E)) g >>)
= tnkin(®) = tn W (o(tn)) = tnrin(P1) — (14 0(1))7€
—tn W1 (pa(tn)) + (1 + 0(1))7P2(p1(tn)) =
= Gi(ln, tagr, @1) = (14 0o(1)78ntn + (1 + 0(1))7®o(p1(En)), 1 — o0, (23)
From the conditions ®,(p1) € L° and ¢} € L° it follows that
T ( (@)e() _
0< x1—>+00 Po(pr(z))
< 1 Pale(@)¢i (@) + 2 @5(p1 ()¢ (2)° + 2@y (1 (@) () _
a0 D5 (p1 (7)) i () N
1@ ()@ (x) | wei(r)
ST T el TR 2

i. e. Dy(p1) € LY. Therefore, taking into account (5) and ®y(k,) = (1 + o(1))Po(p(t,)) as
n — oo, from (22) and (23) we obtain
Ga(tn, tnr1, @) = Giltn, tns1, @) = Galln, tnsr, P1) — Giltn, tryr, P1)—
—(1 4 0(1)) 78 @1 (hn(P1)) = (1 + 0(1)) 7€ 5 (kn(P1)) + (1 + (1)) T&ntn+
+0(Pa(p1(tn))),  n — o0 (25)

Since &, = 4 (01(12))P1 (1) (tn < 1 < tng1)s Ly = (1 +0(1))t, as n — +00, ®y(¢y) € L°
and ¢} € LY we have

&n = (L+0(1))P5(p1(tn)) 1 (), 1 —> 00, (26)
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and in view of (24) we have

tnn = O(P2(p1(tn))), 1 — o0, (27)

whence

&n(tn — P1(En(P1))) = &a(tn — P1((1 + 0(1))tn))) = 0(Entn) = o(P2(pr(tn)))  (28)

as n — oo. Finally, (27) implies

En®h(kn(P1)) _ €nPh(n(1 +0( Nta) _ (ﬁn@i(%(l +o(1 ))tn)) _
D (kn(P1)) Do (1 (1 +0(1))tn) Do (1 (1 + o(1))tn)
= (@2 (ot ) ), n— oc. (29)
The asymptotic equality (21) follows from (25) and (27)—(29). O

Lemma 6. Let ®; € Q*(A), ¢} € LY and ®y be weakly subordinated to ®,. Suppose that
P (o) = o(0®(0)) as o 1 A, the conditions (3) as o T A hold and

En®1(kn(P1))) = 0(Galtn, tni1, @1)),  Pa(kn(P1)) = o(Ga(tn, tri1, 1)) (30)
as n — 00. Suppose also that
O, (0) =P1(0) 4+ (1 —e)Py(0), D*(0) = P1(0) + (T + €)Py(0),

where € € (0, |7]). Then the inequality Gi(t,,t,i1,P*) > P.(30,(P*)) for some sequence
(t,) T 400 implies the inequality

0 < Go(tn, tni1, P1) — Gi(tn, tng1, P1) = 26(1 + o(1)Da(p1(tn)), n — o0. (31)
Proof. The inequality G1(t,, tni1, P*) > $.(56,(P*)) is equivalent to the inequality
0 < Go(tn, tni1, @) — Gi(tn, tng1, P*) < 2ePy (56, (PY)). (32)
Using (22) with ®* and 7 + ¢ instead ® and 7 we have

Gg(tn,tn+1, (D*) = GQ(tn, tn+1, q)l) + (7’ + E)q)z(lﬁn(q)l))—
(14 o()(7 + €)&n ) (kn(P1)) = (1 + o(1))(7 + )6 P5 (i (P1)), 1 — oo

On the other hand, (23) implies
Grtns s, @) = Gty tugr, @1) = (1+0(1))(T+)Entn+(1+0(1)) (T+8) Ra(p1(L0)), n — 0.
Therefore, from (32) we obtain

0< GQ(tn,tn+]_, ) G1<tn,tn+1, o ) + (T + 8)@2(/€n<¢1))—
(14 o7 + )6 21 (K (P1)) — (1 + 0o(1)(7 + )& P (hn(P1))—
H(L+ o)) (T4 €)&ntn, — (L + 0o(1))(T 4+ €)Pa(p1(tn)) < 2ePo(5¢,(DY)). (33)
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Since t,, = ®'(¢(t,,)) < @' (32,(P1)), from (30) it follows that

Lo Pala(®)
Ga(tn, tns1, P1) " Goltn, tnr1, P1)

— 0, n—oo.

Therefore, (33) implies (14) and, thus, (5). Using (5) and the equality ®o(k,(P1)) = (1 +
0(1))®a(p1(ts)) as n — oo, as in the proof of Lemma 5, from (33) we have
Ga(tns tni1, @1) — Giltn, tnyr, @1) < (14 0(1)) (7 + )& P (K (P1))+
1+ 0(1))(7 + )@ (5n(®1)) — (1 0(1)(r + E)éntut
o(@ali(t) + 260a(56,(01), 11— .

whence, repeating the proof of Lemma 5, we obtain (31). O]

4. Main results. From Lemmas 1 and 4 the following generalization of Theorem A follows.

Theorem 1. Let 7 € R\ {0} and either A = 0 or A = 4o00. Suppose that ®; € Q(A),
¢, € L° and ®, is weakly subordinated to ®,. Then the asymptotic inequality (1) holds
with o T A instead 0 — 400 if and only if the asymptotic inequality (2) holds.

Indeed, for (o) = ®1(0) + (7 + €)Po(0) (0 € [oo(T + ¢€), A), where ¢ € (0, |7]) is an
arbitrary number, by Lemma 4 we have

FU((1)) = 10 (1 (1)) — (7 + 2)(1+ o(1)B(1 (1)), ¢ — +oo.
Then, Lemma 1 completes the proof of Theorem 1.

Theorem 2. Let 7 € R\ {0} and either A = 0 or A = 4o00. Suppose that ®; € Q(A),
@) € LY @y is weakly subordinated to ®,, ®,(c) = o(c®(c)) as 0 1 A and conditions (3)
as o 1 A hold. If the asymptotic equality (4) holds for some increasing to +o0o sequence (t,,),
satisfying (5) and (6), then the asymptotic equality (7) holds as o 1 A.

Proof. By the assumptions for an arbitrary ¢ € (0, |7|) the inequality

P(t,) > —t,¥1(p1(tn)) + (7 — ) Pa(p1(tn))

holds for a some increasing to +oo sequence (t,), satisfying (5) and (6). By Lemma 5 for
the function ®(0) = ®1(0) + (7 — €)P2(0) (0 € [00(T —€), A)) we have (21). But in view of
(16) and (3)
Dy(p(1)) 1 < P (¢1(t))
- Oy (p(t) — (14 o(1)) =22
Bl ()~ B\ T g, )
Therefore, (21) and (6) implies Go(tn, tni1, ®) — G1(tn, tns1, ®) = o(Pa(p(t,))), n — oo, and
by Lemma 2 for all n > ng and all o € [p(t,,), ©(tni1)]

Qo) 2 ®(0) + Gi(tn, tat1, @) = Galtn, tnir, @) = B(0) + o(Pa(p(tn))) =
=P(0) +0o(P2(0)) = Py(0) + (T —e+0(1))Py(0), o T A

>—>1, t — +o0.

In view of the arbitrariness of ¢ Theorem 2 is proved. O

Finally, we prove the following main theorem.
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Theorem 3. Let 7 € R\ {0} and either A = 0 or A = 400. Suppose that ®; € Q*(A),
¢ € L°, @, is weakly subordinated to ®1, ®4(c) = o(c®/(c)) as o T A and the conditions (3)
as o T A hold.
Suppose also that either o®(0) = O(®4(0)) as o 1+ A (when A =0 or A = +00), or
P, (o) = o(P](0)) and | (c) = O(P1(0)) as 0 T A when A = +o0.
In order that
Qo) = P1(0) + (1 4+ o(1))7P1(0), o1 A, (34)

it is necessary and sufficient that for every € > 0: 1) for all t > to = to(c)
P(t) < =tW (1) + (7 + ) Pa(pa(1)); (35)
2) there exists an increasing to +oo sequence (t,) such that
P(tn) 2 =t Ui(p1(tn)) + (T =€) Pa(p1(tn)), 1 — +o0, (36)

and

lim Ga(tn, tnr1, 1) — Gi(tn, thi1, P1)

as B (1) - (87)

Proof. 1f (34) holds then
®.(0) = 1(0) + (1 — £)Ba(0) < Qo) < ®*(0) = 1(0) + (7 + £)Po(0)
for arbitrary ¢ € (0, |7]) and all o € [o(c), A). Hence by Lemmas 1 and 4 we get
P(t) < —tWi(e1(t)) + (7 + ) (1 + o(1)) D2( 1 (1))

as t — 400, 1. e. (35) holds.

By Lemma 3 there exists an increasing to +o0o sequence (t,) of positive numbers such
that P(t,) > —t,V.(u(tn)) and Gy (L, tpi1, ) > @1 (56,(P*)). From the inequality P(t,) >
—t, V. (¢x(tn)) in view of Lemma 4 we have (36).

Further, since the condition o®(0) = O(®1(0)) as 0 T A (when A = 0 or A = +00),
implies (30) (see the proof of Proposition 1), by Lemma 6 the relation (31) holds, whence in
view of arbitrariness of € we obtain (37). If A = +oo then the condition ®(c) = o(P}(0))
and | (0) = O(®1(0)) as 0 — 400 imply (30) (see the proof of Proposition 2) and, therefore,
we obtain again (31) and, thus, (37). O

Now we will prove the sufficity. By Lemmas 1 and 4 in view of the arbitrariness of € the
condition (35) implies the inequality Q(o) < ®,(0) + (7 + €)P2(0). On the other hand, by
Lemmas 2 and 4 from (36) we have Q(0) > ®(0) + G1(tn, tni1, ®) — Galtn, tni1, @) for all
n > ngy and all o € [p(t,), o(t,11)], where (o) = ®1(0) + (7 — £)Py(0). Since P, € Q*(A),
from (37) we obtain (5). Therefore, by Lemma 5 for all o € [p(t,), ¢(t,r1)] as n — oo

Qo) > ®1(0) + (1 — &) D2(0) + Gi(tn, tnr1, P1) — Gatn, tus1, P1) + o(Pa2(w(tn))),

whence as in the proof of Theorem 2 we obtain the inequality Q(o) > ®1(0) + (7 — e +
0(1))®y(0) as 0 T A. In view of the arbitrariness of ¢ the proof of Theorem 3 is complete.
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