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We give some new conditions for the support of a discrete measure on Euclidean space to be
a finite union of translated lattices. In particular, we consider the case when values of masses
aλ of discrete measure satisfy the equality G(aλ, āλ) = 0 for each analytic function G(z, w).

Denote by S(Rd) the Schwartz space of test functions φ ∈ C∞(Rd) with finite norms

pm(φ) = sup
Rd

(1 + |x|)m max
|k1|+···+|kd|≤m

|Dk(φ(x))|, m = 0, 1, 2, . . . , (1)

k = (k1, . . . , kd) ∈ (N∪{0})d, Dk = ∂k1x1
. . . ∂kdxd

. These norms generate topology on S(Rd), and
elements of the space S ′(Rd) of continuous linear functionals on S(Rd) are called tempered
distributions. For each tempered distribution f there exist C > 0 and m ∈ N∪{0} such that
for all φ ∈ S(Rd)

|f(φ)| ≤ Cpm(φ). (2)

Moreover, this estimate is sufficient for distribution f to be in S ′(Rd) (see [16], Ch.3).
The Fourier transform of a tempered distribution f is defined by the equality

f̂(φ) = f(φ̂) for all φ ∈ S(Rd), (3)

where
φ̂(y) =

∫
Rd

φ(x) exp{−2πi⟨x, y⟩}dx

is the Fourier transform of the function φ. Note that the Fourier transform of each tempered
distribution is also a tempered distribution.

In the paper we consider only the case when f is a measure µ on Rd. We say that µ is
translation bounded, if its variations on balls of radius 1 are uniformly bounded. If the Fourier
transform µ̂ is an atomic measure, then spectrum of µ is the set Γ = {x ∈ Rd : µ̂(x) ̸= 0}.
We denote B(x, r) = {y ∈ Rd : |y − x| < r}, B(r) = B(0, r), A△B = (A \ B) ∪ (B \ A),
and by δλ the unit mass at the point λ. For a measure µ denote by |µ|(t) the value of its
variation on the ball B(t), and by |µ| the value of its total variation, if it is finite. A measure
µ is slowly increasing, if |µ|(t) grows at most polynomially as t→ ∞.
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Next, a set E ⊂ Rd is relatively dense, if there is R <∞ such that E ∩ B(x,R) ̸= ∅ for
all x ∈ Rd. A set E is discrete, if E ∩ B(x, 1) is finite for all x ∈ Rd. A set E is uniformly
discrete, if |x − x′| ≥ ε > 0 for all x, x′ ∈ E, x ̸= x′. A measure is discrete (uniformly
discrete), if its support is discrete (uniformly discrete).

Let µ ∈ S ′(Rd) be a Radon measure with discrete support Λ. Note that such measures
are the main object in the theory of Fourier quasicrystals (see [1]–[12]). The following result
is valid:

Theorem 1 (Y. Meyer, [11]). Let µ =
∑

λ∈Λ aλδλ, aλ ∈ S, be a measure on the real line R
with discrete support Λ and some finite set S ⊂ C \ {0}. If µ ∈ S ′(R) and its Fourier
transform µ̂ is a translation bounded measure on R, then

Λ = E△
N∪
j=1

(αjZ+ βj), αj > 0, βj ∈ R, E finite. (4)

The main tool is the following idempotent theorem by P. J. Cohen:

Theorem 2 ([2]). Let G be a locally compact abelian group and Ĝ its dual group. If µ is a
finite Borel measure on G such that its Fourier transform µ̂(γ) ∈ {0, 1} for all γ ∈ Ĝ, then
the set {γ : µ̂(γ) = 1} is in the coset ring of Ĝ.

Recall that a coset ring of any topological group is the smallest collection of subsets of
which is closed under finite unions, finite intersections and complements and contains all
cosets of all open subgroups of G.

Note that Y. Meyer used the Cohen’s theorem for measures on Bohr compactification
R of R and their Fourier transform on the dual group Rdis that is the real line in the
discrete topology. Therefore the end of the proof of Meyer’s theorem follows from the result
of P. H. Rosenthal.

Theorem 3 ([15]). The elements of the ring of cosets of Rdis which are discrete in the usual
topology of R are precisely the sets of the form (4).

To formulate the results for Rd with d > 1 we need some definitions.
A lattice is a discrete subgroup of Rd. If A be a lattice or a coset of some lattice in Rd,

then dimA is the dimension of the smallest translated subspace of Rd that contains A. Every
lattice L of dimension k has the form TZk, where T : Zk → Zd is a linear operator of rank k.
For k = d we say that L is a full-rank lattice.

Theorem 4 (M. Kolountzakis, [5]). Let µ =
∑

λ∈Λ aλδλ, aλ ∈ S, be a measure on Rd with
discrete support Λ and some finite set S ⊂ C \ {0}. If µ ∈ S ′(Rd) and its Fourier transform
µ̂ is a measure with the property

|µ̂|(t) = O(td) as t→ ∞, (5)

then Λ is a finite union of sets of the type

A \
( N∪
j=1

Bj

)
, A, Bj discrete cosets, dimBj < dimA for all j. (6)
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Note that each translation bounded measure µ̂ satisfies (5).

Here the following theorem was used instead of Theorem 3:

Theorem 5 ([5]). The elements of the ring of cosets of Rd
dis which are discrete in the usual

topology of Rd are precisely finite unions of sets of the type (6).

Note that A. Cordoba ([1]) considered a uniformly discrete measure µ =
∑

λ∈Λ aλδλ with
aλ from a finite set S ⊂ C \ {0} and translation bounded measure µ̂ with a countable
support. He proved that if this is the case, then Λ is a finite union of translates of several
full-rank lattices. In our previous paper [4] we relaxed the conditions of Cordoba’s theorem:
we considered a uniformly discrete measure µ =

∑
λ∈Λ aλδλ with |aλ| from a finite set S of

positive numbers. We also assumed that the measure µ̂ had a countable support and satisfied
condition (5) instead of being translation bounded.

Set for a measure µ on Rd

κ(µ) = lim sup
t→∞

|µ|(t)/ωdt
d,

where ωd is the volume of the unit ball in Rd.

The first result of the present paper is the following

Theorem 6. Let Λ be a discrete set in Rd, µ =
∑

λ∈Λ aλδλ be a measure from S ′(Rd),
µ̂ be a measure such that κ(µ̂) < ∞, G(z, w) be a holomorphic function on a polydisk
{(z, w) ∈ C2 : |z| < R, |w| < R} with R > κ(µ̂) and G(0, 0) = 1. If G(aλ, ᾱλ) = 0 for all
λ ∈ Λ, then Λ is a finite union of sets (6).

Proof. Let ρ(E) = µ̂(−E) for any Borel set E ⊂ Rd. Clearly, ρ̂ = µ. By conditions of the
theorem, for each κ′ > κ(µ̂) and sufficiently large t we have |ρ|(t) ≤ κ′ωdt

d.
Let φ(|x|) be a nonnegative infinitely differentiable function on Rd such that φ(|x|) = 0

for |x| ≥ 1 and

φ̂(0) =

∫
Rd

φ(|x|)dx = −ωd

∫ 1

0

φ′(t)tddt = 1. (7)

Define a measure ρM by the equality

ρM(E) =M−d

∫
E

φ(|y|/M)dρ(y), E is a Borel set in Rd.

Integrating by parts, we get

|ρM | ≤M−d

∫ M

0

φ(t/M)d|ρ|(t) ≤M−d−1

(
C(κ′)− κ′ωd

∫ M

0

tdφ′(t/M)dt

)
.

By (7), the integral in the right-hand side equals −Md+1/ωd, therefore,

lim sup
M→∞

|ρM | ≤ κ(µ̂) < R. (8)

The Fourier transform ρ̂M is an infinitely differentiable (even real-analytic) function on Rd.
Let ψ be a nonnegative infinitely differentiable function on Rd with compact support such
that ψ(x) ≡ 1 for |x| ≤ 1. For each point x ∈ Rd we get

ρ̂M(x) = (φ̂(M ·)∗µ)(x) =
∫
ψ(x−y)φ̂(M(x−y))dµ(y)+

∫
(1−ψ(x−y))φ̂(M(x−y))dµ(y).

(9)
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The set Λ∩{y : ψ(x−y) ̸= 0} is at most finite. Since φ̂(M(x−y)) → 0 for x ̸= y as M → ∞,
we see that the first integral tends to 0 for x ̸∈ Λ and tends to a(λ) for x = λ ∈ Λ.

By (1) and (2), there is m < ∞ such that the second integral in (9) is bounded by the
quantity

C sup
|x−y|>1

(1 + |x− y|)m max
|k1|+···+|kd|≤m

|Dk[(1− ψ(x− y))φ̂(M(x− y))]|. (10)

Since ψ(x− y)φ̂(M(x− y)) ∈ S(Rd), we see that (10) for each N <∞ does not exceed

C ′(N)Mm−N sup
|x−y|>1

|x− y|m−N ,

hence it tends to 0 as M → ∞.
Consider the Bohr compactification R of Rd. The dual group to R is Rd

dis, then Rd is a
dense subset of R with respect to the topology on R, and restrictions to Rd of continuous
functions on R are just almost periodic functions on Rd, in particular, they are bounded
and continuous on Rd (see for example [13]). By (8), variations of the measures ρM are
uniformly bounded, the measures ρM act on all bounded functions on Rd, and hence also on
all functions from C(R). Therefore there exists a measure r on R with the total variation
|r| < R, and a subsequence M ′ such that ρM ′ → r in the weak–star topology. In other words,
⟨ρM ′ , f⟩ → ⟨r, f⟩ as M ′ → ∞ for all f ∈ C(R). Applying this to any character of R in place
of f we obtain

r̂(x) = lim
M ′→∞

ρ̂M ′(x) =

{
aλ, x = λ ∈ Λ,

0, x ̸∈ Λ.

Note that r̂(x) is a continuous function with respect to the discrete topology on Rd, and
|aλ| ≤ |r| < R for all aλ.

Define a measure on R by equality n(E) = r(−E). Note that n̂(x) = r̂(x) for all x ∈ Rd

and |n| < R. Let P (z, z̄) =
∑

1≤l+m≤r cl,mz
lz̄m be any polynomial on C. Then the Fourier

transform of the corresponding convolution polynomial p =
∑

1≤l+m≤r cl,mr
∗ln∗m has the

form

p̂(x) =

{
P (aλ, āλ), x = λ ∈ Λ,

0, x ̸∈ Λ.

Besides, the variation p is bounded by
∑

1≤l+m≤p |cl,m||r|l|n|m.
Furthermore, the function 1−G(z, w) is the absolutely convergent series

∑
l+m≥1 cl,mz

lwm

for |z| < R, |w| < R, therefore the series
∑

l+m≥1 |cl,m||r|l|n|m converges, and the sums
sr =

∑
1≤l+m≤r cl,mr

∗ln∗m converge in the space C ′(R) to a measure g. As above we get

ĝ(x) =

{
1−G(aλ, āλ) = 1, x = λ ∈ Λ,

1−G(0, 0) = 0, x ̸∈ Λ.

Using Theorem 2 and Theorem 5, we obtain the assertion of our theorem.

Now we consider conditions for support of a discrete measure to be a finite union of
translations of a single lattice. We begin with the following theorem:
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Theorem 7 (N. Lev, A. Olevskii, [9]). Let µ =
∑

λ∈Λ a(λ)δλ and µ̂ =
∑

γ∈Γ b(γ)δγ be
slowly increasing measures in Rd with countable support Λ and countable spectrum Γ. If Γ
is discrete and Λ − Λ is uniformly discrete, then the sets Λ is a subset of a finite union of
translates of a single full-rank lattice L, and Γ is a subset of a finite union of translates of
the conjugate lattice.

Also, there is a measure µ with countable support Λ and spectrum Γ such that Λ− Λ is
uniformly discrete, but Λ is not contained in a finite union of translates of any lattice.

We prove the following theorem, which amplifies the previous one

Theorem 8. Let µ =
∑

λ∈Λ a(λ)δλ and µ̂ =
∑

γ∈Γ b(γ)δγ be measures in Rd with countable
support Λ and countable spectrum Γ, infλ∈Λ |a(λ)| > 0, and let µ̂ be a slowly increasing
measure. If Λ− Λ is a discrete set, then Λ is a finite union of translates of a single full-rank
lattice L.

Here we need not the discreteness of spectrum Γ of the measure.
Theorem 8 is a consequence of the result on pairs of measures:

Theorem 9. Let µj =
∑

λ∈Λj
aj(λ)δλ be measures on Rd with countable Λj such that

infλ∈Λj
|aj(λ)| > 0, µ̂j =

∑
γ∈Γj

bj(γ)δγ be slowly increasing measures with countable Γj, for
j = 1, 2. If the set of differences Λ1−Λ2 is discrete, then the sets Λ1 and Λ2 are finite unions
of translates of a single full-rank lattice L.

For µ2 = αµ1 we get a slight strengthening of Theorem 8:

Corollary 1. Let µ =
∑

λ∈Λ a(λ)δλ be measures on Rd with countable Λ such that
infλ∈Λ |a(λ)| > 0, let µ̂ =

∑
γ∈Γ b(γ)δγ be slowly increasing measures with countable Γ.

If the set {x − αx′ : x, x′ ∈ Λ} for some α ∈ R \ {0} is discrete, then Λ is a finite union of
translates of a single full-rank lattice L.

To prove Theorem 9 we recall some definitions connected with the notion of almost
periodicity (see, for example, [10]).

A continuous function f on Rd is almost periodic if for every ε > 0 the set of ε-almost
periods of f {

τ ∈ Rd : sup
x∈Rd

|f(x+ τ)− f(x)| < ε
}

is a relatively dense set in Rd.
A (complex) measure µ on Rd is almost periodic if for every continuous function ψ on Rd

with compact support the function (ψ ⋆ µ)(t) is almost periodic in t ∈ Rd.
A discrete set Λ is almost periodic if the measure

∑
λ∈Λ δλ is almost periodic.

Theorem 10 (L. Ronkin, [14]). Every almost periodic measure is translation bounded.

Earlier we proved an analog of Theorem 9 for almost periodic measures:

Theorem 11 ([4]). If measures µj =
∑

λ∈Λj
aj(λ)δλ, infλ∈Λj

|aj(λ)| > 0, with countable Λj,
for j = 1, 2, are almost periodic, and the set of differences Λ1 − Λ2 is discrete, then the sets
Λ1 and Λ2 are finite unions of translates of a single full-rank lattice L.

Corollary 2 ([3]). If Λ is an almost periodic set and Λ−Λ is discrete set, then Λ is a finite
union of translates of a single full-rank lattice L.
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This is a positive solution of Lagarias’ (Problem 4.4, [7]).
A connection between almost periodicity of measure and properties of its Fourier trans-

form was found by Y. Meyer.

Theorem 12 ([10]). Let µ and its Fourier transform µ̂ be translation bounded measures.
Then µ is almost periodic if and only if the spectrum of µ is countable.

Here we need a small supplement of this result.

Theorem 13. Let µ be a uniformly discrete measure, and let its Fourier transform µ̂ be
a slowly increasing measure with countable support. Then µ is almost periodic.

Proof. Let µ =
∑

λ∈Λ aλδλ and ε = inf{|x − x′| : x, x′ ∈ Λ, x ̸= x′}, let ψ(|y|) be
a C∞-function such that suppψ(|y|) ⊂ B(0, ε/2) and ψ(0) = 1. Using (3), we have

sup
λ∈Λ

|aλ| ≤ sup
x∈Rd

∣∣∣∣∫ ψ(|x− λ|)dµ(λ)
∣∣∣∣ = sup

x∈Rd

∣∣∣∣∫
Rd

ψ̂(y)e2πi⟨x,y⟩dµ̂(y)

∣∣∣∣ . (11)

Since ψ̂(y) ∈ S(Rd), we have |ψ̂(y)| ≤ cN(1 + |y|)−N for any N < ∞. Therefore, the latter
integral in (11) does not exceed

cN

∫ ∞

0

d|µ̂|(t)
(1 + t)N

≤ lim
T→∞

cN |µ̂|(T )
(1 + T )N

+ cNN

∫ ∞

0

|µ̂|(t)dt
(1 + t)N+1

.

The measure µ̂ is slowly increasing, hence the right-hand side is finite for appropriate N ,
and the numbers aλ are uniformly bounded.

Furthermore, take any φ ∈ S(Rd). Since µ̂ =
∑

γ∈Γ b(γ)δγ with countable Γ, we get

(φ ⋆ µ)(t) =

∫
Rd

φ(t− x)dµ(x) =

∫
Rd

φ̂(γ)e2πi⟨t,γ⟩dµ̂(γ) =
∑
γ∈Γ

b(γ)φ̂(γ)e2πi⟨t,γ⟩. (12)

Note that |φ̂(γ)| ≤ cN(1 + |γ|)−N , therefore the latter sum in (12) is majorized by

∑
γ∈Γ

cN(1 + |γ|)−N |b(γ)| ≤ cN

∫ ∞

0

(1 + t)−Nd|µ̂|(t).

Arguing as above, we get that the integral is finite, therefore the sum in (12) uniformly
converges, and it is almost periodic in t ∈ Rd.

Check that (f ⋆ µ)(t) is almost periodic for each continuous function f with a compact
support in a ball B(R). Let φn ∈ S(Rd), suppφn ⊂ B(R+1), be a sequence that uniformly
converges to f . The numbers aλ are uniformly bounded, hence the almost periodic functions
(φn ⋆ µ)(t) uniformly converge to (f ⋆ µ)(t), and the latter function is also almost periodic.

Combining Theorems 11 and 13 and taking into account that the discreteness of Λ − Λ
implies the uniformly discreteness of Λ, we obtain the proof of Theorem 9.
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