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We begin with an improvement to Blanchet’s extension result for subharmonic functions.
With the aid of this improvement we then give extension results both for harmonic and for
holomorphic functions. Our results for holomorphic functions are related to Besicovitch’s and
Shiffman’s extension results, at least in some sense.

1. Introduction. 1.1. We will consider extension problems for subharmonic, harmonic
and holomorphic functions. Our results are based on an extension result for subharmonic
functions, see Theorem 1 below. The starting point for this result is a result of Blanchet. As a
matter of fact, Blanchet has shown that hypersurfaces of class C1 are removable singularities
for subharmonic functions, provided the considered subharmonic functions satisfy certain
assumptions. We have showed that, in certain cases, it is sufficient that the exceptional sets
are of finite (n-1)-dimensional Hausdorff measure, (see [21], Theorem, p. 568).

We will then apply our subharmonic function result to get extension results both for
harmonic and for holomorphic functions, see Sections 3 and 4 below.

1.2. Notation. Our notation is more or less standard (see [19, 20]). However, for the conveni-
ence of the reader we recall here the following. We use the common convention 0 · ±∞ = 0.
For each n ≥ 1 we identify Cn with R2n. In integrals we will write dx for the Lebesgue
measure in Rn, n ∈ N. Let 0 ≤ α ≤ n and A ⊂ Rn, n ≥ 1. Then we write Hα(A) for the
α-dimensional Hausdorff (outer) measure of A. Recall that H0(A) is the number of points
of A. If x = (x1, . . . , xn) ∈ Rn, n ≥ 2, and j ∈ N, 1 ≤ j ≤ n, then we write x = (xj, Xj),
where Xj = (x1, . . . , xj−1, xj+1, . . . , xn). Moreover, if A ⊂ Rn, 1 ≤ j ≤ n, and x0

j ∈ R,
X0

j ∈ Rn−1, we write

A(x0
j) = {Xj ∈ Rn−1 : x = (x0

j , Xj) ∈ A }, A(X0
j ) = {xj ∈ R : x = (xj, X

0
j ) ∈ A }.

If Ω ⊂ Rn and p > 0, then Lp
loc(Ω), p > 0, is the space of functions u in Ω for which |u|p is

locally integrable on Ω.
For the definition and properties of harmonic and subharmonic functions, see e.g. [7, 8,

9, 14, 16], for the definition of holomorphic functions see e.g. [3, 10, 11].
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2. Lemmas.
2.1. A result of Federer. The following important result of Federer on geometric measure
theory will be used repeatedly.
Lemma. ([4], Theorem 2.10.25, p. 188, and [24], Corollary 4, Lemma 2, p. 114) Suppose
that E ⊂ Rn, n ≥ 2.

1. If Hn−1(E) = 0, then for all j, 1 ≤ j ≤ n, and for Hn−1-almost all Xj ∈ Rn−1 the set
E(Xj) is empty.

2. If Hn−1(E) < +∞, then for all j, 1 ≤ j ≤ n, and for Hn−1-almost all Xj ∈ Rn−1 the
set E(Xj) is finite.

2.2. A result of Blanchet and our improvement.
2.2.1. For the sake of orientation we begin by recalling the result of Blanchet [2], Theorems
3.1, 3.2 and 3.3, pp. 312-313:

Blanchet’s theorem. Let Ω be a domain in Rn, n ≥ 2, and let S be a hypersurface of
class C1 which divides Ω into two subdomains Ω1 and Ω2. Let u ∈ C0(Ω) ∩ C2(Ω1 ∪ Ω2) be
subharmonic (respectively convex (or respectively plurisubharmonic provided Ω is then a
domain in Cn, n ≥ 1)) in Ω1 and Ω2. If ui = u|Ωi ∈ C1(Ωi ∪ S), i = 1, 2, and

∂ui

∂nk
≥ ∂uk

∂nk
(1)

on S with i, k = 1, 2, then u is subharmonic (respectively convex (or respectively pluri-
subharmonic)) in Ω.

Above nk = (nk
1, n

k
2, . . . , n

k
n) is the unit normal exterior to Ωk, and uk ∈ C1(Ωk ∪ S),

k = 1, 2, means that there exist n functions vjk, j = 1, 2, . . . , n, continuous on Ωk ∪ S, such
that

vjk(x) =
∂uk

∂xj

(x)

for all x ∈ Ωk, k = 1, 2 and j = 1, 2, . . . , n.

The following example shows that one cannot drop the above condition (1) in Blanchet’s
theorem.

Example. The function u : R2 → R,

u(z) = u(x+ iy) = u(x, y) :=

{
1 + x, when x < 0;

1− x, when x ≥ 0,

is continuous in R2 and subharmonic, even harmonic in R2 \ ({0}×R). It is easy to see that
u does not satisfy the condition (1) on S = {0} × R and that u is not subharmonic in R2.

Remark 1. For related results, previous and later, see [12], Lemma 2.2, p. 201, Fundamental
Theorem 2.1, p. 200-201, and [13], Lemma 4.1, p. 503, Theorem 2.1, p. 498, Theorems 3.1
and 3.2, p. 500-501. In this connection, see also [7], 1.4.3, p. 21-22.

2.2.2. An improvement to the result of Blanchet. Already in [19], Theorem 4, p. 181-
182, we have given partial improvements to the cited subharmonic removability results of
Blanchet. Below we recall, however, our more recent improvement to Blanchet’s result, see
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Theorem 1 below. Instead of hypersurfaces of class C1, now arbitrary sets of finite (n− 1)-
dimensional Hausdorff measure are allowed as exceptional sets. Then, however, the condition
(1) is replaced by another, related condition, the condition (iv) below. Moreover, an addi-
tional integrability condition on the second partial derivatives ∂2u

∂x2
j
, j = 1, 2, . . . , n, must be

imposed, see (iii) below.

Theorem 1 ([21], Theorem, p. 568). Suppose that Ω is a domain in Rn, n ≥ 2. Let E ⊂ Ω
be closed in Ω and let Hn−1(E) < +∞. Let u : Ω → [−∞,+∞] be such that the following
conditions are satisfied:

(i) u ∈ L1
loc(Ω).

(ii) u ∈ C2(Ω \ E).

(iii) For each j, 1 ≤ j ≤ n, ∂2u
∂x2

j
∈ L1

loc(Ω).

(iv) For each j, 1 ≤ j ≤ n, and for Hn−1-almost all Xj ∈ Rn−1 such that E(Xj) is finite,
the following condition holds: For each x0

j ∈ E(Xj) there exist sequences x0,1
j,l , x

0,2
j,l ∈

(Ω \ E)(Xj), l = 1, 2, . . . , such that x0,1
j,l ↗ x0

j , x
0,2
j,l ↘ x0

j , and that

(iv(a)) liml→+∞ u(x0,1
j,l , Xj) = liml→+∞ u(x0,2

j,l , Xj) ∈ R,
(iv(b)) −∞ < liml→+∞

∂u
∂xj

(x0,1
j,l , Xj) ≤ liml→+∞

∂u
∂xj

(x0,2
j,l , Xj) < +∞.

(v) u is subharmonic in Ω \ E.

Then u|Ω \ E has a subharmonic extension to Ω.

Corollary 1 ([19], Theorem 4, p. 181–182). Suppose that Ω is a domain in Rn, n ≥ 2. Let
E ⊂ Ω be closed in Ω and let Hn−1(E) < +∞. Let u : Ω → R be such that

(i) u ∈ C0(Ω).

(ii) u ∈ C2(Ω \ E).

(iii) For each j, 1 ≤ j ≤ n. ∂
2u

∂x2j
∈ L1

loc(Ω).

(iv) For each j, 1 ≤ j ≤ n, and for Hn−1-almost all Xj ∈ Rn−1 such that E(Xj) is finite,
one has

−∞ < lim inf
ϵ→0+0

∂u

∂xj

(x0
j − ϵ,Xj) ≤ lim sup

ϵ→0+0

∂u

∂xj

(x0
j + ϵ,Xj) < +∞

for each x0
j ∈ E(Xj).

(v) u is subharmonic in Ω \ E.

Then u is subharmonic.

Corollary 2 ([19], Corollary 4A, p. 185–186). Suppose that Ω is a domain in Rn, n ≥ 2.
Let E ⊂ Ω be closed in Ω and let Hn−1(E) < +∞. Let u : Ω → R be such that

(i) u ∈ C1(Ω),

(ii) u ∈ C2(Ω \ E),

(iii) for each j, 1 ≤ j ≤ n, ∂
2u

∂x2j
∈ L1

loc(Ω),
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(iv) u is subharmonic in Ω \ E.

Then u is subharmonic.

3. Removability results for harmonic functions.
3.1. Removability results for harmonic functions are stated, among others, in [5, 6, 15, 25].

Now, using our Theorem 1, we give the following extension result for harmonic functions:

Theorem 2. Suppose that Ω is a domain in Rn, n ≥ 2. Let E ⊂ Ω be closed in Ω and let
Hn−1(E) < +∞. Let u : Ω → [−∞,+∞] be such that the following conditions are satisfied:

(i) u ∈ L1
loc(Ω).

(ii) For each j, 1 ≤ j ≤ n, ∂2u
∂x2

j
∈ L1

loc(Ω).

(iii) For each j, 1 ≤ j ≤ n, and for Hn−1-almost all Xj ∈ Rn−1 such that E(Xj) is finite,
the following condition holds: For each x0

j ∈ E(Xj) there exist sequences x0,1
j,l , x

0,2
j,l ∈

(Ω \ E)(Xj), l = 1, 2, . . . , such that x0,1
j,l ↗ x0

j , x
0,2
j,l ↘ x0

j , and that

(iii(a)) liml→+∞ u(x0,1
j,l , Xj) = liml→+∞ u(x0,2

j,l , Xj) ∈ R,
(iii(b)) liml→+∞

∂u
∂xj

(x0,1
j,l , Xj) = liml→+∞

∂u
∂xj

(x0,2
j,l , Xj) ∈ R.

(iv) u is harmonic in Ω \ E.

Then u|Ω \ E has a harmonic extension to Ω.

Proof. Since the assumptions of Theorem 1 do hold for the subharmonic function u, u has a
subharmonic extension u∗ to Ω. On the other hand, the assumptions of Theorem 1 hold also
for the subharmonic function v = −u. Thus v = −u has a subharmonic extension v∗ = (−u)∗

to Ω. Since −v∗ = u∗, the extension u∗ of u is both subharmonic and superharmonic, thus
harmonic and the claim follows.

3.2. Then a concise special case to our above Theorem 2:

Corollary 3. Suppose that Ω is a domain in Rn, n ≥ 2. Let E ⊂ Ω be closed in Ω and let
Hn−1(E) = 0. Let u : Ω → [−∞,+∞] be such that the following conditions are satisfied:

(i) u ∈ L1
loc(Ω),

(ii) for each j, 1 ≤ j ≤ n, ∂2u
∂x2

j
∈ L1

loc(Ω),

(iii) u is harmonic in Ω \ E.

Then u|Ω \ E has a harmonic extension to Ω.

Proof. With the aid of the above lemma one sees easily that the assumptions of Theorem 2
are satisfied.

4. Removability results for holomorphic functions.
4.1. Below we will give certain counterparts to some of Shiffman’s well-known extension
results for holomorphic functions. For Shiffman’s results, see, among others, [24, 5, 6, 15].

4.2. We consider first a counterpart to the following result:

Shiffman’s theorem. ([24], Lemma 3, p. 115, and [6], Theorem 1.1 (b), p. 703) Let Ω be
a domain in Cn, n ≥ 1. Let E ⊂ Ω be closed in Ω and let H2n−1(E) < +∞. If f : Ω → C is
continuous and f |Ω \ E is holomorphic, then f has a unique holomorphic extension to Ω.
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Shiffman’s proof was based on coordinate rotation, on use of the Cauchy integral formula
and on the cited result of Federer, the lemma above.

For slightly more general versions of Shiffman’s result with different proofs, see [17],
Theorem 3.1, p. 49, Corollary 3.2, p. 52, and [18], Theorem 3.1, p. 333, Corollary 3.3, p. 336.

4.3. Using also here our above Theorem 1, or more directly Theorem 2, we get the following
counterpart to Shiffman’s above result:

Theorem 3. Suppose that Ω is a domain in Cn, n ≥ 1. Let E ⊂ Ω be closed in Ω and let
H2n−1(E) < +∞. Let f : Ω \ E → C be such that the following conditions are satisfied:

(i) f ∈ L1
loc(Ω).

(ii) For each j, 1 ≤ j ≤ 2n, ∂2f
∂x2

j
∈ L1

loc(Ω).

(iii) For each j, 1 ≤ j ≤ 2n, and for H2n−1-almost all Xj ∈ R2n−1 such that E(Xj) is finite,
the following condition holds: For each x0

j ∈ E(Xj) there exist sequences x0,1
j,l , x

0,2
j,l ∈

(Ω \ E)(Xj), l = 1, 2, . . . , such that x0,1
j,l ↗ x0

j , x
0,2
j,l ↘ x0

j , and that

(iii(a)) liml→+∞ f(x0,1
j,l , Xj) = liml→+∞ f(x0,2

j,l , Xj) ∈ C,
(iii(b)) liml→+∞

∂f
∂xj

(x0,1
j,l , Xj) = liml→+∞

∂f
∂xj

(x0,2
j,l , Xj) ∈ C.

(iv) f is holomorphic in Ω \ E.

Then f |Ω \ E has a holomorphic extension to Ω.

Proof. Write f = u + iv. It is sufficient to show that u and v have harmonic extensions u∗

and v∗ to Ω. As a matter of fact, then f ∗ = u∗ + iv∗ : Ω → C is C∞ and thus a continuous
function. Therefore the claim follows from Shiffman’s theorem or from [17, 18].

Another possibility for the proof is just to observe that the in Ω \E harmonic functions
u and v have by Theorem 2 harmonic extensions u∗ and v∗ to Ω. Since u∗ and v∗ are thus
C∞ functions, the holomorphy of the extension f∗ = u∗ + iv∗ in Ω follows easily.

Therefore it remains only to check that both u and v satisfy the assumptions of our above
Theorem 2. But this is seen at once!

4.4. Then a counterpart to another result of Shiffman.
The following result of Besicovitch is well-known.

Besicovitch’s theorem. ([1], Theorem 1, p. 2) Let D be a domain in C. Let E ⊂ D be
closed in D and let H1(E) = 0. If f : D \E → C is holomorphic and bounded, then f has a
unique holomorphic extension to D.

Much later Shiffman gave the following general version:

Another theorem of Shiffman. ([24], Lemma 3, p. 115, and [6], Theorem 1.1 (c), p. 703))
Let Ω be a domain in Cn, n ≥ 1. Let E ⊂ Ω be closed in Ω and let H2n−1(E) = 0. If
f : Ω \ E → C is holomorphic and bounded, then f has a unique holomorphic extension
to Ω.

Shiffman’s proof was based on Besicovitch’s result, on coordinate rotation, on the use of
Cauchy integral formula and on the already stated important result of Federer, Lemma 2.
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For slightly more general versions of Shiffman’s result with different proofs, see [17],
Theorem 3.1, p. 49, Corollary 3.2, p. 52, and [18], Theorem 3.1, p. 333, Corollary 3.3, p. 336.

4.5. Now we give the following counterpart to Shiffman’s above result. The proof will be
based, in addition to Federer’s cited Lemma above, again on our Theorem 1, or more directly
on our above Corollary 3.

Theorem 4. Suppose that Ω is a domain in Cn, n ≥ 1. Let E ⊂ Ω be closed in Ω and let
H2n−1(E) = 0. Let f : Ω \E → C be holomorphic and such that the following conditions are
satisfied:

(i) f ∈ L1
loc(Ω),

(ii) for each j, 1 ≤ j ≤ 2n, ∂2f
∂x2

j
∈ L1

loc(Ω).

Then f has a holomorphic extension to Ω.

Proof. Write f = u + iv. It is sufficient to show that u and v have subharmonic extensions
to Ω. As a matter of fact, then f will be locally bounded in Ω, and thus the claim will follow
from Shiffman’s theorem or also from the already cited slightly more general results from
[17, 18].

And to see that u and v have indeed subharmonic extensions to Ω, we use our Theorem 1
as follows.

It is sufficient to show that the assumption (iv) of Theorem 1 is satisfied. For that purpose
take j, 1 ≤ j ≤ 2n, arbitrarily. By Federer’s result, lemma above, we know that for H2n−1

almost all Xj ∈ R2n−1 the set E(Xj) is empty. Thus for H2n−1 almost all Xj ∈ R2n−1 the
functions u(·, Xj) : Ω(Xj) → R and v(·, Xj) : Ω(Xj) → R are C∞ functions. Therefore, the
assumption (iv) is satisfied both for u and for v, concluding the proof.

Another, and perhaps more direct, possibility for the proof is just to observe that the in
Ω \E harmonic functions u and v have by Corollary 3 harmonic extensions u∗ and v∗ to Ω.
Since u∗ and v∗ are C∞ functions, the holomorphy of the extension f∗ = u∗+ iv∗ in Ω follows
easily.
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