I. E. Chyzhykov, M. A. Voitovych

ON ASYMPTOTIC BEHAVIOR OF THE p TH MEANS OF THE GREEN POTENTIAL FOR $0<p \leq 1$

[^0]1. Introduction and main result. For $n \in \mathbb{N}$, let \mathbb{C}^{n} denote the n-dimensional complex space with the inner product

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}, z, w \in \mathbb{C}^{n}
$$

Let B denote the unit ball $\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ with the boundary $S=\left\{z \in \mathbb{C}^{n}:|z|=1\right\}$, where $|z|=\sqrt{\langle z, z\rangle}$.

For $z, w \in B$, define the involutive automorphism φ_{w} of the unit ball B given by

$$
\varphi_{w}(z)=\frac{w-P_{w} z-\left(1-|w|^{2}\right)^{1 / 2} Q_{w} z}{1-\langle z, w\rangle}
$$

where $P_{0} z=0, P_{w} z=\frac{\langle z, w\rangle}{|w|^{2}} w, w \neq 0$, is the orthogonal projection of \mathbb{C}^{n} onto the subspace generated by w and $Q_{w}=I-P_{w}$. We note that ([10, p.11])

$$
\begin{equation*}
1-\left|\varphi_{w}(z)\right|^{2}=\frac{\left(1-|w|^{2}\right)\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|^{2}} \tag{1}
\end{equation*}
$$

The invariant Laplacian $\tilde{\Delta}$ on B is defined by

$$
\tilde{\Delta} f(a)=\Delta\left(f \circ \varphi_{a}\right)(0)
$$

where $f \in C^{2}(B), \Delta=4 \sum_{i=1}^{n}\left(\partial^{2} / \partial z_{i} \partial \bar{z}_{i}\right)$ is the ordinary Laplacian. The operator $\tilde{\Delta}$ is invariant with respect to any holomorphic automorphism of B, i.e., $\tilde{\Delta}(f \circ \psi)=(\tilde{\Delta} f) \circ \psi$ for all $\psi \in \mathcal{M}$, the group of holomorphic automorphisms of B ([8, Chap.4], [10]).

The Green's function for the invariant Laplacian is defined by $G(z, w)=g\left(\varphi_{w}(z)\right)$, where $g(z)=\frac{n+1}{2 n} \int_{|z|}^{1}\left(1-t^{2}\right)^{n-1} t^{-2 n+1} d t$ ([10, Chap.6.2]).

[^1]If μ is a nonnegative Borel measure on B, the function G_{μ} defined by

$$
G_{\mu}(z)=\int_{B} G(z, w) d \mu(w)
$$

is called the (invariant) Green potential of μ, provided $G_{\mu} \not \equiv+\infty$. It is known that ([10, Chap. 6.4]) the condition $G_{\mu} \not \equiv+\infty$ is equivalent to

$$
\begin{equation*}
\int_{B}\left(1-|w|^{2}\right)^{n} d \mu(w)<\infty \tag{2}
\end{equation*}
$$

The Green potential is closely connected to the notion of an \mathcal{M}-subharmonic function ([10, Chap. 3]). A function u on B is called \mathcal{M}-harmonic if $u \in C^{2}(B)$ and $\tilde{\Delta} u=0$. A function u on B is called \mathcal{M}-subharmonic if it is upper semicontinuos and $\tilde{\Delta} u \geq 0$ in the sense of distributions. In particular, $-G_{\mu}$ is \mathcal{M}-subharmonic. Note that in the case $n=1$ the classes of \mathcal{M}-subharmonic functions and subharmonic functions coincide.

Let u be a measurable function locally integrable on B. For $0<p<\infty$ we define

$$
m_{p}(r, u)=\left(\int_{S}|u(r \xi)|^{p} d \sigma(\xi)\right)^{\frac{1}{p}}
$$

where $d \sigma$ is the Lebesgue measure on S normalized so that $\sigma(S)=1$.
The following Riesz Decomposition Theorem holds.
Theorem A ([11]). Suppose that u is \mathcal{M}-subharmonic in B and

$$
\sup _{1 / 2 \leq r<1} m_{1}(r, u)<\infty
$$

Let μ be the Riesz measure of u in B with ' $d \mu(z)=\tilde{\Delta} u(z)\left(1-|z|^{2}\right)^{-n-1} d V(z)^{\prime}$ where V is the Lebesgue measure on B. Then there exists a signed Borel measure ν on S such that for all $z \in B$

$$
\begin{equation*}
u(z)=P[\nu](z)-G_{\mu}(z) \tag{3}
\end{equation*}
$$

where

$$
P[\nu](z)=\int_{S} \frac{\left(1-|z|^{2}\right)^{n}}{|1-\langle z, \zeta\rangle|^{2 n}} d \nu(\zeta)
$$

is the Poisson-Stieltjes integral.
Growth of the integral $P[\nu](z)$ in the uniform metric is described in terms of smoothness properties of the measure ν in [1] for $n=1$, and in [4] for arbitrary $n \in \mathbb{N}$. Growth of $m_{p}(r, P[\nu])$ for $n=1$ and $p \geq 1$ is described in [15].

In the case $n>1$, sharp estimates of the growth rate of $m_{p}\left(r, G_{\mu}\right)$ for the whole class of Borel measures satisfying (2) are proved by M. Stoll in [9]. The case $n=1$ is studied much more deeper, see e.g. [12, 13, 14]).
Theorem B ([9]). Let G_{μ} be the Green potential on B.
(1) If $1 \leq p<\frac{2 n-1}{2(n-1)}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 1-}\left(1-r^{2}\right)^{n(1-1 / p)} m_{p}\left(r, G_{\mu}\right)=0 \tag{4}
\end{equation*}
$$

(2) If $n \geq 2$ and $\frac{2 n-1}{2(n-1)} \leq p<\frac{2 n-1}{2 n-3}$, then

$$
\begin{equation*}
\liminf _{r \rightarrow 1-}\left(1-r^{2}\right)^{n(1-1 / p)} m_{p}\left(r, G_{\mu}\right)=0 \tag{5}
\end{equation*}
$$

Theorem B gives the maximal growth rate of the p th mean of the Green potentials, but does not take into account particular properties of a measure μ. It appears that smoothness properties of the so called complete measure (in the sense of Grishin [7, 2, 3]) or the related measure (see [6]) of a subharmonic function allow us to describe its growth. Here we just note that in the case when $n=1$ and $u=-G_{\mu}$, the complete measure $\lambda=\lambda_{u}$ of u is the weighted Riesz measure $d \lambda(z)=(1-|z|) d \mu(z)$.

Define for $a, b \in \bar{B}$ the nonisotropic metric on S by $d(a, b)=|1-\langle a, b\rangle|^{1 / 2}$ ([8, Chap.5.1]). For $\xi \in S$ and $\delta>0$ we set
$C(\xi, \delta)=\left\{z \in B: d(z, \xi)<\delta^{1 / 2}\right\}, \quad D(\xi, \delta)=\{z \in B: d(z, \xi)<\delta\}, \quad d \lambda(z)=(1-|z|)^{n} d \mu(z)$.
The growth of $m_{p}\left(r, G_{\mu}\right)$ in terms of properties of the measure μ are described in [5] for $n>1$. One dimensional analogue has been established earlier in [3] for all $p>1$.

Theorem C ([5]). Let $n \in \mathbb{N}, 1<p<\frac{2 n-1}{2(n-1)}, 0 \leq \gamma<2 n$, and let μ be a Borel measure satisfying (2). Then

$$
\begin{equation*}
m_{p}\left(r, G_{\mu}\right)=O\left((1-r)^{\gamma-n}\right), r \uparrow 1 \tag{6}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\left(\int_{S} \lambda^{p}(C(\xi, \delta)) d \sigma(\xi)\right)^{\frac{1}{p}}=O\left(\delta^{\gamma}\right), 0<\delta<1 \tag{7}
\end{equation*}
$$

In this paper we would like to consider the case $0<p \leq 1$. For this interval one can obtain an analogue of necessity part of Theorem C.

Theorem 1. Let $n>1,0<p \leq 1,0 \leq \gamma<2 n$, and let μ be a Borel measure satisfying (2) and

$$
\begin{equation*}
m_{p}\left(r, G_{\mu}\right)=O\left((1-r)^{\gamma-n}\right), r \uparrow 1 \tag{8}
\end{equation*}
$$

hold. Then

$$
\begin{equation*}
\left(\int_{S} \lambda^{p}(C(\xi, \delta)) d \sigma(\xi)\right)^{\frac{1}{p}}=O\left(\delta^{\gamma}\right), 0<\delta<1 \tag{9}
\end{equation*}
$$

Proof. The proof repeats that of necessity in Theorem C.
The following theorem is the main result of the paper.
Theorem 2. Let $n>1,0<p \leq 1,0 \leq \gamma<2 n$, and let μ be a Borel measure satisfying (2) and

$$
\begin{equation*}
\int_{S} \lambda(C(\xi, \delta)) d \sigma(\xi)=O\left(\delta^{\gamma}\right), 0<\delta<1 \tag{10}
\end{equation*}
$$

hold. Then

$$
\begin{equation*}
m_{p}\left(r, G_{\mu}\right)=O\left((1-r)^{\gamma-n}\right), r \uparrow 1 \tag{11}
\end{equation*}
$$

Remark 1. An example in Section 4 shows that estimate (11) is sharp for all $p \in(0,1]$. As a corollary we obtain a criterion of the growth of $m_{p}\left(r, G_{\mu}\right)$ in terms of properties of the measure μ in the case $p=1$.

Corollary 1. Let $n>1,0 \leq \gamma<2 n$, and let μ be a Borel measure satisfying (2). Then

$$
\begin{equation*}
\int_{S} \lambda(C(\xi, \delta)) d \sigma(\xi)=O\left(\delta^{\gamma}\right), 0<\delta<1 \tag{12}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
m_{1}\left(r, G_{\mu}\right)=O\left((1-r)^{\gamma-n}\right), r \uparrow 1 . \tag{13}
\end{equation*}
$$

Remark 2. Due to Proposition 1.10 ([5]) we always have

$$
\int_{S} \lambda(C(\xi, \delta)) d \sigma(\xi)=o\left(\delta^{n}\right), \delta \downarrow 0
$$

This agrees with the relation $m_{1}\left(r, G_{\mu}\right)=o(1), r \uparrow 1$ as it was shown by Ulrich ([11], see also [10]).
2. Some properties of the Green's function. The following lemma gives some basic properties of g which will be needed later.

Lemma A ([10]). Let $0<\delta<\frac{1}{2}$ be fixed. Then g satisfies the following two inequalities:

$$
\begin{gather*}
g(z) \geq \frac{n+1}{4 n^{2}}\left(1-|z|^{2}\right)^{n}, \quad z \in B \\
g(z) \leq c(\delta)\left(1-|z|^{2}\right)^{n}, \quad z \in B,|z| \geq \delta \tag{14}
\end{gather*}
$$

where $c(\delta)$ is a positive constant. Furthermore, if $n>1$ then

$$
\begin{equation*}
g(z) \asymp|z|^{-2 n+2}, \quad|z| \leq \delta . \tag{15}
\end{equation*}
$$

We need an estimate of p-means of the Green's function for $0<p \leq 1$. Analogues estimates for $p>1$ are established by Stoll ([9, Lemma 5]). His proof does not work for $p \leq 1$, though we use some ideas and notation from [9].

For fixed $\delta, 0<\delta<1 / 2$, denote $B^{*}(z, \delta)=\left\{w \in B:\left|\varphi_{w}(z)\right|<\delta\right\}$ and for $0<r<1$ denote

$$
E(r)=\bigcup_{t \in S} B^{*}(r t, \delta)
$$

Lemma 1. Let $0<p \leq 1, n \in \mathbb{N}$. Then there exists $r_{0} \in(0,1)$ such that for all $r \in\left(r_{0}, 1\right)$ and $w \in E(r)$

$$
\begin{gathered}
m_{p}(G(\cdot, w), r) \asymp\left(1-r^{2}\right)^{n / p}, \quad \text { if } p \in(0,1] \backslash\left\{\frac{1}{2(n-1)}\right\}, \\
m_{p}(G(\cdot, w), r)=O\left(\left(1-r^{2}\right)^{n / p}\left(\ln \frac{1}{1-r}\right)^{1 / p}\right), \text { if } p=\frac{1}{2(n-1)}, n>1 .
\end{gathered}
$$

Proof. Let $w \in E(r),|w|=\rho$. Since σ is invariant under the group of unitary transformations of \mathbb{C}^{n},

$$
\int_{S} g\left(\varphi_{w}(r t)\right)^{p} d \sigma(t)=\int_{S} g\left(\varphi_{\rho e}(r t)\right)^{p} d \sigma(t)=\int_{S} g\left(\varphi_{r e}(\rho t)\right)^{p} d \sigma(t),
$$

where $e=(1,0, \ldots, 0) \in \mathbb{C}^{n}$.
For $0<r, \rho<1$, and fixed $\delta \in\left(0, \frac{1}{2}\right]$, let $N_{r}^{\rho}=\left\{t \in S: \rho t \in B^{*}(r e, \delta)\right\}$.

For $t \in S \backslash N_{r}^{\rho}$, we have ([9, p. 491])

$$
\begin{equation*}
\int_{S} g\left(\varphi_{r e}(\rho t)\right)^{p} d \sigma(t) \leq c\left(1-\rho^{2}\right)^{p n}\left(1-r^{2}\right)^{-n(p-1)} \leq c\left(1-r^{2}\right)^{n} \tag{16}
\end{equation*}
$$

Also, for $c>0$, let $\Omega_{r}^{c}=\left\{s e^{i \theta}: 0<1-s<c\left(1-r^{2}\right),|\theta|<c\left(1-r^{2}\right)\right\}$ and $Q_{r}^{c}=\{t=$ $\left.\left(t_{1}, \ldots, t_{n}\right) \in S: t_{1} \in \Omega_{r}^{c}\right\}$.

By the definition of N_{r}^{ρ}, one has $\left|\varphi_{r e}(\rho t)\right|<\delta$ for $t \in N_{r}^{\rho}$. Hence by (15) and (1)

$$
\begin{equation*}
g\left(\varphi_{r e}(\rho t)\right) \asymp\left|\varphi_{r e}(\rho t)\right|^{-2(n-1)}=c_{1} \frac{\left|1-r \rho t_{1}\right|^{2(n-1)}}{\left(\left|1-r \rho t_{1}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{n-1}}, \tag{17}
\end{equation*}
$$

where $c_{1}=c_{1}(n)$.
It is known that ([9, Lemma 3]) there exist $c_{2}=c_{2}(\delta)$ and $r(\delta)$ such that $N_{r}^{\rho} \subset Q_{r}^{c_{2}}$ for all ρ with $\rho e \in B^{*}(r e, \delta)$, and all $r>r(\delta)$. Moreover, one can choose $r_{0} \in(0,1)$ such that the inclusion holds for all $r \in\left(r_{0}, 1\right)$ and $0<\delta \leq \frac{1}{2}$.

By $(1), \rho t \in B^{*}(r e, \delta)$ if and only if $\left(1-r^{2}\right)\left(1-\rho^{2}\right)>\left(1-\delta^{2}\right)\left|1-r \rho t_{1}\right|^{2}$, i.e.

$$
\left|1-r \rho t_{1}\right|^{2} \leq \frac{1}{1-\delta^{2}}\left(1-r^{2}\right)\left(1-\rho^{2}\right) \leq \frac{4}{3}\left(1-r^{2}\right)\left(1-\rho^{2}\right)
$$

Since $t \in N_{r}^{\rho}$, we can apply the previous inequality to deduce

$$
\begin{gather*}
\int_{N_{r}^{p}} g\left(\varphi_{r e}(\rho t)\right)^{p} d \sigma(t) \leq c_{3}\left(1-r^{2}\right)^{p(n-1)}\left(1-\rho^{2}\right)^{p(n-1)} \times \\
\times \int_{Q_{r}^{c_{2}}}\left(\left|1-r \rho t_{1}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{-p(n-1)} d \sigma(t)=: c_{3}\left(1-r^{2}\right)^{p(n-1)}\left(1-\rho^{2}\right)^{p(n-1)} I_{r} \tag{18}
\end{gather*}
$$

Since ([9, p. 488])

$$
\begin{gather*}
\left|1-r \rho s e^{i \theta}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)=(\rho-r)^{2}+2 \rho r(1-s)-r^{2} \rho^{2}\left(1-s^{2}\right)+4 r \rho s \sin ^{2} \frac{\theta}{2} \geq \\
\geq(r-\rho)^{2}+(1-s)(1-r)+\frac{\theta^{2}}{\pi^{2}}, \quad \min \{\rho r, s\} \geq \frac{1}{2} \tag{19}
\end{gather*}
$$

by formula 1.4.5(2) in [8],

$$
\begin{aligned}
& I_{r}=c_{4}(n) \iint_{\Omega_{r}^{2}}\left(1-s^{2}\right)^{n-2}\left(\left|1-r \rho s e^{i \theta}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{-p(n-1)} s d s d \theta \leq \\
\leq & c_{5} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}\left[\int_{0}^{c_{2}\left(1-r^{2}\right)}(1-s)^{n-2}\left[(r-\rho)^{2}+(1-s)(1-r)+\frac{\theta^{2}}{\pi^{2}}\right]^{-p(n-1)} d \theta\right] d s .
\end{aligned}
$$

So

$$
I_{r} \leq c_{5} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}(1-s)^{n-2}\left[\int_{0}^{\pi \sqrt{(1-s)(1-r)}}\left((1-s)(1-r)+\frac{\theta^{2}}{\pi^{2}}\right)^{-p(n-1)} d \theta+\right.
$$

$$
\begin{gathered}
\left.+\left|\int_{\pi \sqrt{(1-s)(1-r)}}^{c_{2}\left(1-r^{2}\right)}\left((1-s)(1-r)+\frac{\theta^{2}}{\pi^{2}}\right)^{-p(n-1)} d \theta\right|\right] d s \leq \\
\leq c_{5} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}(1-s)^{n-2}\left[\int_{0}^{\pi \sqrt{(1-s)(1-r)}}((1-s)(1-r))^{-p(n-1)} d \theta+\right. \\
\left.+\left|\int_{\pi \sqrt{(1-s)(1-r)}}^{\int_{0}^{c\left(1-r^{2}\right)}}\left(\frac{\theta}{\pi}\right)^{-2 p(n-1)} d \theta\right|\right] d s
\end{gathered}
$$

Direct calculation shows that for $0 \leq 1-s \leq c_{2}\left(1-r^{2}\right)$

$$
\left|\int_{\pi \sqrt{(1-s)(1-r)}}^{c_{2}\left(1-r^{2}\right)} \theta^{-2 p(n-1)} d \theta\right| \leq \begin{cases}c_{6}(1-r)^{1-2 p(n-1)}, & p \in(0,1] \backslash\left\{\frac{1}{2(n-1)}\right\} \\ c_{6} \ln \frac{1}{1-r}, & p=\frac{1}{2(n-1)}\end{cases}
$$

Let us consider three cases. Firstly, let $0<p<\frac{1}{2(n-1)}$. Since $0<1-s<2 c_{2}(1-r)$, we get

$$
I_{r} \leq c_{7} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}(1-s)^{n-2}(1-r)^{1-2 p(n-1)} d s \leq c_{8}\left(1-r^{2}\right)^{n-2 p(n-1)}
$$

Now let $1 \geq p>\frac{1}{2(n-1)}$. Then

$$
\begin{gathered}
I_{r} \leq c_{9} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}\left((1-s)^{n-\frac{3}{2}-p(n-1)}(1-r)^{\frac{1}{2}-p(n-1)}+(1-s)^{n-2}(1-r)^{1-2 p(n-1)}\right) d s \leq \\
\leq c_{10}\left(1-r^{2}\right)^{n-2 p(n-1)} .
\end{gathered}
$$

Finally, if $p=\frac{1}{2(n-1)}, n>1$, then

$$
I_{r} \leq c_{9} \int_{1-c_{2}\left(1-r^{2}\right)}^{1}(1-s)^{n-2}\left(1+\ln \frac{1}{1-r}\right) d s \leq c_{11}\left(1-r^{2}\right)^{n-1} \ln \frac{1}{1-r}
$$

Therefore from the latter inequalities, (16) and (18) we get

$$
\begin{gathered}
m_{p}(G(\cdot, w), r) \leq c_{11}\left[\left(1-r^{2}\right)^{p(n-1)}\left(1-\rho^{2}\right)^{p(n-1)}\left(1-r^{2}\right)^{n-2 p(n-1)}\right]^{1 / p}= \\
=c_{11} \frac{\left(1-\rho^{2}\right)^{n-1}}{\left(1-r^{2}\right)^{n-1-n / p} \leq c(n, p)\left(1-r^{2}\right)^{n / p}, \quad p \neq \frac{1}{2(n-1)},} \\
m_{p}(G(\cdot, w), r) \leq c_{12}\left(\left(\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{\frac{1}{2}}\left(1-r^{2}\right)^{n-1} \ln \frac{1}{1-r}\right)^{1 / p} \leq \\
\leq c(n)\left(1-r^{2}\right)^{n / p} \ln ^{1 / p} \frac{1}{1-r}, \quad p=\frac{1}{2(n-1)} .
\end{gathered}
$$

The upper estimates are proved. Let us prove the lower estimate. By (17) we have

$$
\begin{aligned}
& \int_{S} g\left(\varphi_{r e}(\rho t)\right)^{p} d \sigma(t) \geq \tilde{c}_{1} \int_{Q_{r}^{c}}\left|\varphi_{r e}(\rho t)\right|^{-2 p(n-1)} d \sigma(t)= \\
= & \tilde{c}_{1} \int_{Q_{r}^{c}} \frac{\left|1-r \rho t_{1}\right|^{2 p(n-1)}}{\left(\left|1-r \rho t_{1}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{p(n-1)}} d \sigma(t) \geq \\
\geq & \tilde{c}_{1} \int_{Q_{r}^{c}} \frac{(1-r \rho)^{2 p(n-1)}}{\left(\left|1-r \rho t_{1}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{p(n-1)}} d \sigma(t) .
\end{aligned}
$$

Equality (19) implies

$$
\left|1-r \rho s e^{i \theta}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right) \leq(r-\rho)^{2}+2(1-s)(1-r \rho s)+\theta^{2} \leq \tilde{c}_{2}(1-r)^{2}, \quad s e^{i \theta} \in Q_{r}^{c} .
$$

Then

$$
\begin{gathered}
\int_{S} g\left(\varphi_{r e}(\rho t)\right)^{p} d \sigma(t) \geq \tilde{c}_{3}|1-r \rho|^{2 p(n-1)} \times \\
\times \int_{1-c\left(1-r^{2}\right)}^{1}\left[\int_{0}^{c\left(1-r^{2}\right)}\left(1-s^{2}\right)^{n-2}\left(\left|1-r \rho s e^{i \theta}\right|^{2}-\left(1-r^{2}\right)\left(1-\rho^{2}\right)\right)^{-p(n-1)} s d s\right] d \theta \geq \\
\geq \tilde{c}_{4}(1-r)^{2 p(n-1)} \int_{1-c\left(1-r^{2}\right)}^{1}\left[\int_{0}^{c\left(1-r^{2}\right)}\left(1-s^{2}\right)^{n-2}(1-r)^{-2 p(n-1)} s d s\right] d \theta=\tilde{c}_{5}\left(1-r^{2}\right)^{n} .
\end{gathered}
$$

So, $m_{p}(G(\cdot, w), r) \geq \tilde{c}_{6}\left(1-r^{2}\right)^{n / p}, p \in(0 ; 1] \backslash\left\{\frac{1}{2(n-1)}\right\}$.
3. Proof of Theorem 2. Since, by the convexity, $m_{p}\left(r, G_{\mu}\right) \leq m_{1}\left(r, G_{\mu}\right), 0<p \leq 1$, it is enough to prove (11) for $p=1$. We follow the scheme from [5].

Let us estimate the absolute values of

$$
u_{1}(z):=\int_{B^{*}\left(z, \frac{1}{4}\right)} G(z, w) d \mu(w) \text { and } u_{2}(z):=\int_{B \backslash B^{*}\left(z, \frac{1}{4}\right)} G(z, w) d \mu(w) .
$$

We start with u_{1}. By definition

$$
0 \leq u_{1}(z)=\int_{B^{*}\left(z, \frac{1}{4}\right)} G(z, w) d \mu(w)=\int_{B^{*}\left(z, \frac{1}{4}\right)} g\left(\varphi_{w}(z)\right) d \mu(w) .
$$

By (15) we have $g(z) \leq c|z|^{-2 n+2}$ for $|z| \leq \frac{1}{4}$ and some positive constant c. Thus,

$$
\left|u_{1}(z)\right| \leq c \int_{B^{*}\left(z, \frac{1}{4}\right)}\left|\varphi_{w}(z)\right|^{-2 n+2} d \mu(w)
$$

Denote $z=r \xi$, where $r=|z|, \frac{1}{2}<r<1$ and $w=|w| \eta, \xi, \eta \in S$. Let

$$
K\left(z, \sigma_{1}, \sigma_{2}\right)=\left\{w \in B:|r-|w|| \leq \sigma_{1}, d(\xi, \eta) \leq \sigma_{2}\right\} .
$$

In [5] it is proved that

$$
\begin{equation*}
B^{*}\left(z, \frac{1}{4}\right) \subset K\left(z, c_{13}(1-r), c_{14}(1-r)^{\frac{1}{2}}\right) \tag{20}
\end{equation*}
$$

where $c_{13}=\frac{2}{3}$ and $c_{14}=4 \sqrt{2}$. We denote

$$
K(z):=K\left(z, \frac{2}{3}(1-r), 4 \sqrt{2}(1-r)^{\frac{1}{2}}\right), \tilde{K}(z):=K\left(z, \frac{2}{3}(1-r), 8 \sqrt{2}(1-r)^{\frac{1}{2}}\right) .
$$

The inclusion (20) implies

$$
\begin{gathered}
I_{1}:=\int_{S}\left|u_{1}(r \xi)\right| d \sigma(\xi) \leq c_{15} \int_{S} \int_{B^{*}\left(r \xi, \frac{1}{4}\right)}\left|\varphi_{w}(r \xi)\right|^{-(2 n-2)} d \mu(w) d \sigma(\xi) \leq \\
\leq c_{15} \int_{S} \int_{K(r \xi)} \frac{d \mu(w)}{\left|\varphi_{w}(r \xi)\right|^{2 n-2}} d \sigma(\xi)
\end{gathered}
$$

where $c_{15}=c_{15}(p)$. Then, by Fubini's theorem we deduce $(z=r \xi, w=|w| \eta)$

$$
\begin{gather*}
I_{1} \leq c_{16}(n, p) \int_{\substack{\eta \in S \\
| | w|-r|<\frac{2}{3}(1-r)}} \int_{d(\xi, \eta)<4 \sqrt{2}(1-r)^{1 / 2}} \frac{d \sigma(\xi)}{\left|\varphi_{w}(r \xi)\right|^{2 n-2}} d \mu(|w| \eta) \leq \\
\leq c_{16}(p, n) \int_{\| w|-r|<\frac{2}{3}(1-r)} \int_{S} \frac{d \sigma(\xi)}{\left|\varphi_{w}(r \xi)\right|^{2 n-2}} d \mu(w) . \tag{21}
\end{gather*}
$$

Applying to (21) subsequently (1), (14) and Lemma 1, we obtain that for $0<p \leq 1$

$$
\int_{S} \frac{d \sigma(\xi)}{\left|\varphi_{w}(r \xi)\right|^{2 n-2}}=\int_{S} \frac{d \sigma(\xi)}{\left|\varphi_{r \xi}(w)\right|^{2 n-2}} \leq \int_{S} g\left(\varphi_{r \xi}(w)\right) d \sigma(\xi) \leq c_{17}\left(1-r^{2}\right)^{n}, \quad \frac{1}{2}<r<1 .
$$

Substituting the estimate of the inner integral into (21) we get

$$
\begin{equation*}
I_{1} \leq c_{18}(1-r)^{n} \int_{\| w|-r|<\frac{2}{3}(1-r)} d \mu(|w| \eta) \tag{22}
\end{equation*}
$$

We need the following lemma that plays a key role in the proof of Theorem C.
Lemma B ([5]). Let ν be a finite positive Borel measure on $S, 0<\delta<\frac{1}{2}$, and $p \geq 1$. Then

$$
\int_{S} \nu^{p-1}(D(\xi, \delta)) d \nu(\xi) \leq \frac{N^{p}}{\delta^{2 n}} \int_{S} \nu^{p}(D(\xi, \delta)) d \sigma(\xi)
$$

where N is a positive constant independent of p and δ.
To obtain the final estimate of I_{1}, for a fixed $r \in\left(\frac{1}{2}, 1\right)$, we define the measure ν_{1} on the balls $\{D(\eta, t): \eta \in S, t>0\}$ by

$$
\nu_{1}(D(\eta, t))=\lambda\left(\left\{\rho \zeta \in B:|\rho-r|<\frac{2}{3}(1-r), d(\zeta, \eta)<t\right\}\right)
$$

It can be expanded to the family of all Borel sets on B in the standard way. It is clear that

$$
\nu_{1}(D(\eta, t)) \asymp(1-r)^{n} \mu\left(\left\{\rho \zeta \in B:|\rho-r|<\frac{2}{3}(1-r), d(\zeta, \eta)<t\right\}\right) .
$$

By using of (22) and Lemma B we get

$$
\begin{gathered}
I_{1} \leq c_{19} \int_{||w|-r|<\frac{2}{3}(1-r)} d \lambda(|w| \eta)=c_{19} \int_{S} d \nu_{1}(\eta) \leq \\
\leq \frac{c_{19} N}{(1-r)^{n}} \int_{S} \nu_{1}\left(D\left(\eta, 8 \sqrt{2}(1-r)^{\frac{1}{2}}\right)\right) d \sigma(\eta)=\frac{c_{20}(n, p)}{(1-r)^{n}} \int_{S} \lambda(\tilde{K}(r \eta)) d \sigma(\eta) .
\end{gathered}
$$

Note that if $\rho \zeta \in \tilde{K}(r \eta)$ then

$$
\begin{equation*}
|1-\langle\rho \zeta, \eta\rangle| \leq|1-\langle\zeta, \eta\rangle|+(1-\rho)|\langle\zeta, \eta\rangle| \leq\left(4 c_{14}^{2}+c_{13}+1\right)(1-r)=c_{21}(1-r) . \tag{23}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
I_{1} \leq \frac{c_{20}}{(1-r)^{n}} \int_{S} \lambda\left(C\left(\eta, c_{21}(1-r)\right)\right) d \sigma(\eta) \tag{24}
\end{equation*}
$$

By the assumption of the theorem we deduce

$$
\begin{equation*}
I_{1}=O\left((1-r)^{\gamma-n}\right), r \uparrow 1 \tag{25}
\end{equation*}
$$

Let us estimate

$$
u_{2}(z)=\int_{B} G(z, w)(1-|w|)^{-n} d \tilde{\lambda}(w)
$$

where $d \tilde{\lambda}(w)=(1-|w|)^{n} \chi_{B \backslash B^{*}\left(z, \frac{1}{4}\right)}(w) d \mu(w), \chi_{E}$ is the characteristic function of a set E. We may assume that $|z| \geq \frac{1}{2}$.

We denote

$$
E_{k}=E_{k}(z)=\left\{w \in B:\left|1-\left\langle\frac{z}{|z|}, w\right\rangle\right|<2^{k+1}(1-|z|)\right\}, \quad k \in \mathbb{Z}_{+} .
$$

Since $|1-\langle z, w\rangle| \geq \frac{1}{2}\left|1-\left\langle\frac{z}{|z|}, w\right\rangle\right|$, one has that for $w \in E_{k+1} \backslash E_{k},|1-\langle z, w\rangle| \geq 2^{k-1}(1-|z|)$. Combining Lemma A with the equality in (1) for $z \in B$ such that $|z| \geq \frac{1}{2}$ we get that $0 \leq G(z, w) \leq c_{22}\left(\frac{\left(1-|w|^{2}\right)\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|^{2}}\right)^{n}$ holds. So

$$
\begin{gathered}
\left|u_{2}(z)\right| \leq c_{22} \int_{B}\left(\frac{(1+|w|)\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|^{2}}\right)^{n} d \tilde{\lambda}(w) \leq \\
\leq \sum_{k=1}^{\left[\log _{2} \frac{1}{1-r}\right]} c_{22} \int_{E_{k+1} \backslash E_{k}}\left(\frac{(1+|w|)\left(1-|z|^{2}\right)}{2^{2(k-1)}(1-|z|)^{2}}\right)^{n} d \tilde{\lambda}(w)+c_{22} \int_{E_{1}}\left(\frac{(1+|w|)\left(1-|z|^{2}\right)}{(1-|z|)^{2}}\right)^{n} d \tilde{\lambda}(w) \leq \\
\leq \sum_{k=1}^{\infty} \int_{E_{k+1} \backslash E_{k}} \frac{4^{n} c_{22}}{\left(2^{2(k-1)}(1-|z|)\right)^{n}} d \tilde{\lambda}(w)+\int_{E_{1}} \frac{4^{n} c_{22}}{(1-|z|)^{n}} d \tilde{\lambda}(w) \leq
\end{gathered}
$$

$$
\leq \frac{4^{n} c_{22}}{(1-|z|)^{n}}\left(\sum_{k=1}^{\infty} \frac{\tilde{\lambda}\left(E_{k+1}\right)}{2^{2 n(k-1)}}+\tilde{\lambda}\left(E_{1}\right)\right) \leq \frac{4^{n} c_{22}}{(1-|z|)^{n}} \sum_{k=1}^{\infty} \frac{\tilde{\lambda}\left(E_{k}\right)}{2^{2 n(k-2)}}
$$

Therefore

$$
\begin{gathered}
\int_{S}\left|u_{2}(r \xi)\right| d \sigma(\xi) \leq \frac{c_{23}}{(1-r)^{n}} \sum_{k=1}^{\infty} \int_{S} \frac{\tilde{\lambda}\left(E_{k}(r \xi)\right)}{2^{2 n(k-2)}} d \sigma(\xi)= \\
=\frac{c_{23}}{(1-r)^{n}} \sum_{k=1}^{\infty} \frac{1}{2^{2 n(k-2)}} \int_{S} \tilde{\lambda}\left(C\left(\xi, 2^{k+1}(1-r)\right)\right) d \sigma(\xi) \leq \frac{c_{24}}{(1-r)^{n}} \sum_{k=1}^{\infty} \frac{2^{\gamma(k+1)}(1-r)^{\gamma}}{2^{2 n(k-2)}}= \\
=\frac{c_{25}}{(1-r)^{n}} \sum_{k=1}^{\infty} 2^{k(\gamma-2 n)}=\frac{c_{25}}{(1-r)^{n-\gamma}} \frac{2^{\gamma-2 n p}}{1-2^{\gamma-2 n}}=\frac{c_{26}(n, \gamma)}{(1-r)^{n-\gamma}} .
\end{gathered}
$$

Hence

$$
m_{p}\left(r, G_{\mu}\right) \leq m_{1}\left(r, G_{\mu}\right) \leq \int_{S}\left|u_{1}(r \xi)\right| d \sigma(\xi)+\int_{S}\left|u_{2}(r \xi)\right| d \sigma(\xi) \leq \frac{c(n, \gamma)}{(1-r)^{n-\gamma}}
$$

4. An example.

Proposition 1. For $n>1,0<p \leq 1, n<\gamma<2 n$, there exists a Borel measure μ on B sutisfying (2) and such that

$$
\begin{equation*}
G_{\mu}(z)=O\left((1-|z|)^{\gamma-n}\right),|z| \uparrow 1 \tag{26}
\end{equation*}
$$

and for some $C>0$

$$
\begin{equation*}
\lambda(C(\xi, \delta)) \geq C \delta^{\gamma}, 0<\delta<1 \tag{27}
\end{equation*}
$$

Proof. We define $d \mu(z)=\frac{d V(z)}{(1-|z|)^{2 n+1-\gamma}}$, where V is the Lebesgue measure on B.
We write

$$
G_{\mu}(z)=\int_{B} G(z, w) d \mu(w)=\int_{B^{*}\left(z, \frac{1}{4}\right)} G(z, w) d \mu(w)+\int_{B \backslash B^{*}\left(z, \frac{1}{4}\right)} G(z, w) d \mu(w)=: J_{1}+J_{2} .
$$

Since, by (20) $1-|w| \asymp 1-|z|$ holds for $w \in B^{*}\left(z, \frac{1}{4}\right)$, we get

$$
J_{1} \leq c_{27} \int_{B^{*}\left(z, \frac{1}{4}\right)} \frac{G(z, w) d V(w)}{(1-|z|)^{2 n+1-\gamma}} \leq \frac{c_{27}}{(1-|z|)^{2 n+1-\gamma}} \int_{r-c_{1}(1-r)}^{r+c_{1}(1-r)} \int_{S} G(z, \rho \eta) d \sigma(\eta) \rho^{2 n-1} d \rho
$$

Using Lemma 1 for $p=1$, we obtain

$$
J_{1} \leq \frac{c_{28}}{(1-|z|)^{2 n+1-\gamma}} \int_{r-c_{1}(1-r)}^{r+c_{1}(1-r)}(1-\rho)^{n} \rho^{2 n-1} d \rho \leq \frac{c_{29}}{(1-r)^{n-\gamma}} .
$$

For $w \in B \backslash B^{*}\left(z, \frac{1}{4}\right)$ we have (see (1))

$$
0 \leq G(z, w) \leq c\left(\frac{\left(1-|w|^{2}\right)\left(1-|z|^{2}\right)}{|1-\langle z, w\rangle|^{2}}\right)^{n}
$$

Then by the above inequality and [8, Chap.1.4.10] it follows that

$$
J_{2} \leq c(1-|z|)^{n} \int_{B} \frac{\left(1-|w|^{2}\right)^{-n-1+\gamma}}{|1-\langle z, w\rangle|^{2 n}} d V(w) \leq c_{30}(1-|z|)^{n}(1-|z|)^{-2 n+\gamma}=c_{30}(1-|z|)^{\gamma-n}
$$

Thus $m_{1}\left(r, G_{\mu}\right)=O\left((1-r)^{\gamma-n}\right), r \uparrow 1$.
Let us prove (27). We have $d \lambda(w)=\frac{d V(w)}{(1-|w|)^{n+1-\gamma}}$. Then

$$
\begin{gathered}
\lambda(C(\xi, \delta)) \geq \int_{C(\xi, \delta) \cap\left\{1-\frac{\delta}{2} \leq|w| \leq 1-\frac{\delta}{4}\right\}} \frac{d V(w)}{(1-|w|)^{n+1-\gamma}} \geq \\
\geq \delta^{\gamma-n-1} \int_{C(\xi, \delta) \cap\left\{1-\frac{\delta}{2} \leq|w| \leq 1-\frac{\delta}{4}\right\}} d V(w) \geq c \delta^{\gamma-n-1} \delta^{n+1}=\delta^{\gamma} .
\end{gathered}
$$

The latter estimates follow from the inclusion

$$
C(\xi, \delta) \cap\left\{1-\frac{\delta}{2} \leq|w| \leq 1-\frac{\delta}{4}\right\} \supset\left\{|w| \eta: \frac{\delta}{4} \leq 1-|w| \leq \frac{\delta}{2}, d(\xi, \eta) \leq \sqrt{\frac{\delta}{2}}\right\}
$$

Let us prove this. We denote $v=\left(1-\frac{\delta}{2}\right) \zeta \in \partial C(\xi, \delta), \zeta \in S$. Since $\min \{\delta(\xi, \eta):|w| \eta \in$ $\left.C(\xi, \delta) \cap\left\{1-\frac{\delta}{2} \leq|w| \leq 1-\frac{\delta}{4}\right\}\right\}$ is attained at v, it is enough to estimate $d(\xi, \zeta)$ from below.

$$
\begin{aligned}
& d(\xi, \zeta)=\sqrt{|1-\langle\xi, \zeta\rangle|}=\sqrt{|1-\langle\xi, \zeta\rangle-\langle\xi,| v| \zeta\rangle+\langle\xi,| v|\zeta\rangle \mid} \geq \\
& \geq \sqrt{|1-\langle\xi,| v| \zeta\rangle|-|\langle\xi, \zeta\rangle-\langle\xi,| v| \zeta\rangle \mid}=\sqrt{\delta-\frac{\delta}{2}|\langle\xi, \zeta\rangle|} \geq \sqrt{\frac{\delta}{2}} .
\end{aligned}
$$

The estimate (27) is proved.

REFERENCES

1. I.E. Chyzhykov, Growth and representation of analytic and harmonic functions in the unit disc, Ukrainian Math. Bulletin, 3 (2006), №1, 31-44.
2. I.E. Chyzhykov, Growth of analytic functions in the unit disc and complete measure in the sense of Grishin, Mat. Stud., 29 (2008), 35-44.
3. I.E. Chyzhykov, Growth of pth means of analytic and subharmonic function in the unit disk and angular distribution of zeros, arXiv:1509.02141v2 [math.CV], (2015), 1-19.
4. I. Chyzhykov, M. Voitovych, On the growth of the Cauchy-Szegô transform in the unit ball, J. Math. Phys. Anal, Geom., 11 (2015), №1, 236-244.
5. I. Chyzhykov, M. Voitovych, Growth description of pth means of the Green potential in the unit ball, Complex Variables and Elliptic Equations, http://dx.doi.org/10.1080/17476933.2016.1251423 (2016).
6. S.J. Gardiner, Representation and growth of subharmonic functions in half-space, Proc. London Math. Soc., (3), 48 (1984), 300-318.
7. A. Grishin, Continuity and asymptotic continuity of subharmonic functions, Math. Physics, Analysis, Geometry, ILPTE, 1 (1994), 193-215. (in Russian)
8. W. Rudin, Theory functions in the unit ball in \mathbb{C}^{n}. - Berlin-Heidelberg, New York: Springer Verlag, 1980.
9. M. Stoll, Rate of growth of pth means of invariant potentials in the unit ball of \mathbb{C}^{n}, J. Math. Anal. Appl., 143 (1989), 480-499.
10. M. Stoll, Invariant Potential Theory in the Unit Ball of \mathbb{C}^{n}. - Cambridge: Cambridge University Press, 1994.
11. D. Ulrich, Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc., 292 (1985), 501-518.
12. C.N. Linden Integral logarithmic means for regular functions, Pacific J. of Math., 138 (1989), 119-127.
13. C.N. Linden The characterization of orders for regular functions, Math. Proc. Cambridge Phil. Soc., 111 (1992), 299-307.
14. M. Stoll Boundary limits of subharmonic functions in the disc, Proc. Amer. Math. Soc., 93 (1985), 567-568.
15. I.E. Chyzhykov Generalization of a Hardy-Littlewood theorem, Math. Methods and Phys.-Mech. Fields, 49 (2006), №2, 74-79. (in Ukrainian)

Ivan Franko National University of Lviv
chyzhykov@yahoo.com
urkevych@gmail.com

[^0]: I. E. Chyzhykov, M. A. Voitovych. On asymptotic behavior of the pth means of the Green potential for $0<p \leq 1$, Mat. Stud. 46 (2016), 159-170.

 For $0<p \leq 1$ we prove sharp estimates of p th means of the invariant Green potentials in the unit ball in \mathbb{C}^{n} in terms of smoothness properties of a measure.

[^1]: 2010 Mathematics Subject Classification: 31B25; 31C05.
 Keywords: Green potential; unit ball; invariant Laplacian; \mathcal{M}-subharmonic function; Riesz measure. doi:10.15330/ms.46.2.159-170

