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For 0 < p ≤ 1 we prove sharp estimates of pth means of the invariant Green potentials in
the unit ball in Cn in terms of smoothness properties of a measure.

1. Introduction and main result. For n ∈ N, let Cn denote the n-dimensional complex
space with the inner product

⟨z, w⟩ =
n∑

j=1

zjwj, z, w ∈ Cn.

Let B denote the unit ball {z ∈ Cn : |z| < 1} with the boundary S = {z ∈ Cn : |z| = 1},
where |z| =

√
⟨z, z⟩.

For z, w ∈ B, define the involutive automorphism φw of the unit ball B given by

φw(z) =
w − Pwz − (1− |w|2)1/2Qwz

1− ⟨z, w⟩
,

where P0z = 0, Pwz = ⟨z,w⟩
|w|2 w, w ̸= 0, is the orthogonal projection of Cn onto the subspace

generated by w and Qw = I − Pw. We note that ([10, p.11])

1− |φw(z)|2 =
(1− |w|2)(1− |z|2)

|1− ⟨z, w⟩|2
. (1)

The invariant Laplacian ∆̃ on B is defined by

∆̃f(a) = ∆(f ◦ φa)(0),

where f ∈ C2(B), ∆ = 4
∑n

i=1(∂
2/∂zi∂z̄i) is the ordinary Laplacian. The operator ∆̃ is

invariant with respect to any holomorphic automorphism of B, i.e., ∆̃(f ◦ψ) = (∆̃f) ◦ψ for
all ψ ∈ M, the group of holomorphic automorphisms of B ([8, Chap.4], [10]).

The Green’s function for the invariant Laplacian is defined by G(z, w) = g(φw(z)), where
g(z) = n+1

2n

∫ 1

|z|(1− t2)n−1t−2n+1dt ([10, Chap.6.2]).
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If µ is a nonnegative Borel measure on B, the function Gµ defined by

Gµ(z) =

∫
B

G(z, w)dµ(w)

is called the (invariant) Green potential of µ, provided Gµ ̸≡ +∞. It is known that ([10,
Chap. 6.4]) the condition Gµ ̸≡ +∞ is equivalent to∫

B

(1− |w|2)ndµ(w) <∞. (2)

The Green potential is closely connected to the notion of an M-subharmonic function ([10,
Chap. 3]). A function u on B is called M-harmonic if u ∈ C2(B) and ∆̃u = 0. A function
u on B is called M-subharmonic if it is upper semicontinuos and ∆̃u ≥ 0 in the sense of
distributions. In particular, −Gµ is M-subharmonic. Note that in the case n = 1 the classes
of M-subharmonic functions and subharmonic functions coincide.

Let u be a measurable function locally integrable on B. For 0 < p <∞ we define

mp(r, u) =

(∫
S

|u(rξ)|p dσ(ξ)
) 1

p

,

where dσ is the Lebesgue measure on S normalized so that σ(S) = 1.
The following Riesz Decomposition Theorem holds.

Theorem A ([11]). Suppose that u is M-subharmonic in B and

sup
1/2≤r<1

m1(r, u) <∞.

Let µ be the Riesz measure of u in B with ‘dµ(z) = ∆̃u(z)(1 − |z|2)−n−1dV (z)’ where V is
the Lebesgue measure on B. Then there exists a signed Borel measure ν on S such that for
all z ∈ B

u(z) = P [ν](z)−Gµ(z) (3)

where
P [ν](z) =

∫
S

(1− |z|2)n

|1− ⟨z, ζ⟩|2n
dν(ζ)

is the Poisson-Stieltjes integral.

Growth of the integral P [ν](z) in the uniform metric is described in terms of smoothness
properties of the measure ν in [1] for n = 1, and in [4] for arbitrary n ∈ N. Growth of
mp(r, P [ν]) for n = 1 and p ≥ 1 is described in [15].

In the case n > 1, sharp estimates of the growth rate of mp(r,Gµ) for the whole class of
Borel measures satisfying (2) are proved by M. Stoll in [9]. The case n = 1 is studied much
more deeper, see e.g. [12, 13, 14]).

Theorem B ([9]). Let Gµ be the Green potential on B.
(1) If 1 ≤ p < 2n−1

2(n−1)
, then

lim
r→1−

(1− r2)n(1−1/p)mp(r,Gµ) = 0. (4)

(2) If n ≥ 2 and 2n−1
2(n−1)

≤ p < 2n−1
2n−3

, then

lim inf
r→1−

(1− r2)n(1−1/p)mp(r,Gµ) = 0. (5)



BEHAVIOR THE PTH MEANS OF THE GREEN POTENTIAL 161

Theorem B gives the maximal growth rate of the pth mean of the Green potentials, but
does not take into account particular properties of a measure µ. It appears that smoothness
properties of the so called complete measure (in the sense of Grishin [7, 2, 3]) or the related
measure (see [6]) of a subharmonic function allow us to describe its growth. Here we just
note that in the case when n = 1 and u = −Gµ, the complete measure λ = λu of u is the
weighted Riesz measure dλ(z) = (1− |z|)dµ(z).

Define for a, b ∈ B̄ the nonisotropic metric on S by d(a, b) = |1−⟨a, b⟩|1/2 ([8, Chap.5.1]).
For ξ ∈ S and δ > 0 we set

C(ξ, δ) = {z ∈ B : d(z, ξ) < δ1/2}, D(ξ, δ) = {z ∈ B : d(z, ξ) < δ}, dλ(z) = (1−|z|)ndµ(z).

The growth of mp(r,Gµ) in terms of properties of the measure µ are described in [5] for
n > 1. One dimensional analogue has been established earlier in [3] for all p > 1.

Theorem C ([5]). Let n ∈ N, 1 < p < 2n−1
2(n−1)

, 0 ≤ γ < 2n, and let µ be a Borel measure
satisfying (2). Then

mp (r,Gµ) = O
(
(1− r)γ−n

)
, r ↑ 1 (6)

holds if and only if (∫
S

λp (C(ξ, δ)) dσ(ξ)

) 1
p

= O (δγ) , 0 < δ < 1. (7)

In this paper we would like to consider the case 0 < p ≤ 1. For this interval one can
obtain an analogue of necessity part of Theorem C.

Theorem 1. Let n > 1, 0 < p ≤ 1, 0 ≤ γ < 2n, and let µ be a Borel measure satisfying (2)
and

mp (r,Gµ) = O
(
(1− r)γ−n

)
, r ↑ 1 (8)

hold. Then (∫
S

λp (C(ξ, δ)) dσ(ξ)

) 1
p

= O (δγ) , 0 < δ < 1. (9)

Proof. The proof repeats that of necessity in Theorem C.

The following theorem is the main result of the paper.

Theorem 2. Let n > 1, 0 < p ≤ 1, 0 ≤ γ < 2n, and let µ be a Borel measure satisfying (2)
and ∫

S

λ (C(ξ, δ)) dσ(ξ) = O (δγ) , 0 < δ < 1, (10)

hold. Then
mp (r,Gµ) = O

(
(1− r)γ−n

)
, r ↑ 1. (11)

Remark 1. An example in Section 4 shows that estimate (11) is sharp for all p ∈ (0, 1].
As a corollary we obtain a criterion of the growth of mp(r,Gµ) in terms of properties of the
measure µ in the case p = 1.
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Corollary 1. Let n > 1, 0 ≤ γ < 2n, and let µ be a Borel measure satisfying (2). Then∫
S

λ (C(ξ, δ)) dσ(ξ) = O (δγ) , 0 < δ < 1, (12)

holds if and only if
m1 (r,Gµ) = O

(
(1− r)γ−n

)
, r ↑ 1. (13)

Remark 2. Due to Proposition 1.10 ([5]) we always have∫
S

λ (C(ξ, δ)) dσ(ξ) = o(δn), δ ↓ 0.

This agrees with the relation m1(r,Gµ) = o(1), r ↑ 1 as it was shown by Ulrich ([11], see
also [10]).

2. Some properties of the Green’s function. The following lemma gives some basic
properties of g which will be needed later.

Lemma A ([10]). Let 0 < δ < 1
2

be fixed. Then g satisfies the following two inequalities:

g(z) ≥ n+ 1

4n2
(1− |z|2)n, z ∈ B,

g(z) ≤ c(δ)(1− |z|2)n, z ∈ B, |z| ≥ δ, (14)

where c(δ) is a positive constant. Furthermore, if n > 1 then

g(z) ≍ |z|−2n+2, |z| ≤ δ. (15)

We need an estimate of p-means of the Green’s function for 0 < p ≤ 1. Analogues
estimates for p > 1 are established by Stoll ([9, Lemma 5]). His proof does not work for
p ≤ 1, though we use some ideas and notation from [9].

For fixed δ, 0 < δ < 1/2, denote B∗(z, δ) = {w ∈ B : |φw(z)| < δ} and for 0 < r < 1
denote

E(r) =
∪
t∈S

B∗(rt, δ).

Lemma 1. Let 0 < p ≤ 1, n ∈ N. Then there exists r0 ∈ (0, 1) such that for all r ∈ (r0, 1)
and w ∈ E(r)

mp(G(·, w), r) ≍ (1− r2)n/p, if p ∈ (0, 1] \
{ 1

2(n− 1)

}
,

mp(G(·, w), r) = O

(
(1− r2)n/p

(
ln

1

1− r

)1/p
)
, if p =

1

2(n− 1)
, n > 1.

Proof. Let w ∈ E(r), |w| = ρ. Since σ is invariant under the group of unitary transformations
of Cn, ∫

S

g(φw(rt))
pdσ(t) =

∫
S

g(φρe(rt))
pdσ(t) =

∫
S

g(φre(ρt))
pdσ(t),

where e = (1, 0, . . . , 0) ∈ Cn.
For 0 < r, ρ < 1, and fixed δ ∈ (0, 1

2
], let Nρ

r = {t ∈ S : ρt ∈ B∗(re, δ)}.
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For t ∈ S \Nρ
r , we have ([9, p. 491])∫
S

g(φre(ρt))
pdσ(t) ≤ c(1− ρ2)pn(1− r2)−n(p−1) ≤ c(1− r2)n. (16)

Also, for c > 0, let Ωc
r = {seiθ : 0 < 1 − s < c(1 − r2), |θ| < c(1 − r2)} and Qc

r = {t =
(t1, . . . , tn) ∈ S : t1 ∈ Ωc

r}.
By the definition of Nρ

r , one has |φre(ρt)| < δ for t ∈ Nρ
r . Hence by (15) and (1)

g(φre(ρt)) ≍ |φre(ρt)|−2(n−1) = c1
|1− rρt1|2(n−1)

(|1− rρt1|2 − (1− r2)(1− ρ2))n−1
, (17)

where c1 = c1(n).
It is known that ([9, Lemma 3]) there exist c2 = c2(δ) and r(δ) such that Nρ

r ⊂ Qc2
r for

all ρ with ρe ∈ B∗(re, δ), and all r > r(δ). Moreover, one can choose r0 ∈ (0, 1) such that
the inclusion holds for all r ∈ (r0, 1) and 0 < δ ≤ 1

2
.

By (1), ρt ∈ B∗(re, δ) if and only if (1− r2)(1− ρ2) > (1− δ2)|1− rρt1|2, i.e.

|1− rρt1|2 ≤
1

1− δ2
(1− r2)(1− ρ2) ≤ 4

3
(1− r2)(1− ρ2).

Since t ∈ Nρ
r , we can apply the previous inequality to deduce∫

Nρ
r

g(φre(ρt))
pdσ(t) ≤ c3(1− r2)p(n−1)(1− ρ2)p(n−1)×

×
∫
Q

c2
r

(
|1− rρt1|2 − (1− r2)(1− ρ2)

)−p(n−1)
dσ(t) =: c3(1− r2)p(n−1)(1− ρ2)p(n−1)Ir. (18)

Since ([9, p. 488])

|1− rρseiθ|2 − (1− r2)(1− ρ2) = (ρ− r)2 + 2ρr(1− s)− r2ρ2(1− s2) + 4rρs sin2 θ

2
≥

≥ (r − ρ)2 + (1− s)(1− r) +
θ2

π2
, min{ρr, s} ≥ 1

2
, (19)

by formula 1.4.5(2) in [8],

Ir = c4(n)

∫∫
Ω

c2
r

(1− s2)n−2
(
|1− rρseiθ|2 − (1− r2)(1− ρ2)

)−p(n−1)
sdsdθ ≤

≤ c5

1∫
1−c2(1−r2)

 c2(1−r2)∫
0

(1− s)n−2
[
(r − ρ)2 + (1− s)(1− r) +

θ2

π2

]−p(n−1)

dθ

 ds.
So

Ir ≤ c5

1∫
1−c2(1−r2)

(1− s)n−2

[ π
√

(1−s)(1−r)∫
0

(
(1− s)(1− r) +

θ2

π2

)−p(n−1)

dθ+
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+

∣∣∣∣∣
c2(1−r2)∫

π
√

(1−s)(1−r)

(
(1− s)(1− r) +

θ2

π2

)−p(n−1)

dθ

∣∣∣∣∣
]
ds ≤

≤ c5

1∫
1−c2(1−r2)

(1− s)n−2

[ π
√

(1−s)(1−r)∫
0

((1− s)(1− r))−p(n−1) dθ+

+

∣∣∣∣∣
c(1−r2)∫

π
√

(1−s)(1−r)

(
θ

π

)−2p(n−1)

dθ

∣∣∣∣∣
]
ds.

Direct calculation shows that for 0 ≤ 1− s ≤ c2(1− r2)∣∣∣∣∣
c2(1−r2)∫

π
√

(1−s)(1−r)

θ−2p(n−1)dθ

∣∣∣∣∣ ≤
{
c6(1− r)1−2p(n−1), p ∈ (0, 1] \

{
1

2(n−1)

}
;

c6 ln
1

1−r
, p = 1

2(n−1)
.

Let us consider three cases. Firstly, let 0 < p < 1
2(n−1)

. Since 0 < 1− s < 2c2(1− r), we
get

Ir ≤ c7

1∫
1−c2(1−r2)

(1− s)n−2(1− r)1−2p(n−1)ds ≤ c8(1− r2)n−2p(n−1).

Now let 1 ≥ p > 1
2(n−1)

. Then

Ir ≤ c9

1∫
1−c2(1−r2)

(
(1− s)n−

3
2
−p(n−1)(1− r)

1
2
−p(n−1) + (1− s)n−2(1− r)1−2p(n−1)

)
ds ≤

≤ c10(1− r2)n−2p(n−1).

Finally, if p = 1
2(n−1)

, n > 1, then

Ir ≤ c9

1∫
1−c2(1−r2)

(1− s)n−2

(
1 + ln

1

1− r

)
ds ≤ c11(1− r2)n−1 ln

1

1− r
.

Therefore from the latter inequalities, (16) and (18) we get

mp(G(·, w), r) ≤ c11[(1− r2)p(n−1)(1− ρ2)p(n−1)(1− r2)n−2p(n−1)]1/p =

= c11
(1− ρ2)n−1

(1− r2)n−1−n/p
≤ c(n, p)(1− r2)n/p, p ̸= 1

2(n− 1)
,

mp(G(·, w), r) ≤ c12

((
(1− r2)(1− ρ2)

) 1
2 (1− r2)n−1 ln

1

1− r

)1/p

≤

≤ c(n)(1− r2)n/p ln1/p 1

1− r
, p =

1

2(n− 1)
.
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The upper estimates are proved. Let us prove the lower estimate. By (17) we have∫
S

g(φre(ρt))
pdσ(t) ≥ c̃1

∫
Qc

r

|φre(ρt)|−2p(n−1)dσ(t) =

= c̃1

∫
Qc

r

|1− rρt1|2p(n−1)(
|1− rρt1|2 − (1− r2)(1− ρ2)

)p(n−1)
dσ(t) ≥

≥ c̃1

∫
Qc

r

(1− rρ)2p(n−1)(
|1− rρt1|2 − (1− r2)(1− ρ2)

)p(n−1)
dσ(t).

Equality (19) implies

|1− rρseiθ|2 − (1− r2)(1− ρ2) ≤ (r − ρ)2 + 2(1− s)(1− rρs) + θ2 ≤ c̃2(1− r)2, seiθ ∈ Qc
r.

Then ∫
S

g(φre(ρt))
pdσ(t) ≥ c̃3|1− rρ|2p(n−1)×

×
1∫

1−c(1−r2)

[ c(1−r2)∫
0

(1− s2)n−2
(
|1− rρseiθ|2 − (1− r2)(1− ρ2)

)−p(n−1)
sds

]
dθ ≥

≥ c̃4(1− r)2p(n−1)

1∫
1−c(1−r2)

[ c(1−r2)∫
0

(1− s2)n−2(1− r)−2p(n−1)sds

]
dθ = c̃5(1− r2)n.

So, mp(G(·, w), r) ≥ c̃6(1− r2)n/p, p ∈ (0; 1]\{ 1
2(n−1)

}.

3. Proof of Theorem 2. Since, by the convexity, mp (r,Gµ) ≤ m1 (r,Gµ) , 0 < p ≤ 1, it is
enough to prove (11) for p = 1. We follow the scheme from [5].

Let us estimate the absolute values of

u1(z) :=

∫
B∗(z, 14)

G(z, w)dµ(w) and u2(z) :=

∫
B\B∗(z, 14)

G(z, w)dµ(w).

We start with u1. By definition

0 ≤ u1(z) =

∫
B∗(z, 14)

G(z, w)dµ(w) =

∫
B∗(z, 14)

g(φw(z))dµ(w).

By (15) we have g(z) ≤ c|z|−2n+2 for |z| ≤ 1
4

and some positive constant c. Thus,

|u1(z)| ≤ c

∫
B∗(z, 14)

|φw(z)|−2n+2 dµ(w).

Denote z = rξ, where r = |z|, 1
2
< r < 1 and w = |w|η, ξ, η ∈ S. Let

K(z, σ1, σ2) = {w ∈ B : |r − |w|| ≤ σ1, d(ξ, η) ≤ σ2} .
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In [5] it is proved that

B∗
(
z,

1

4

)
⊂ K(z, c13(1− r), c14(1− r)

1
2 ) (20)

where c13 = 2
3

and c14 = 4
√
2. We denote

K(z) := K

(
z,

2

3
(1− r), 4

√
2(1− r)

1
2

)
, K̃(z) := K

(
z,

2

3
(1− r), 8

√
2(1− r)

1
2

)
.

The inclusion (20) implies

I1 :=

∫
S

|u1(rξ)|dσ(ξ) ≤ c15

∫
S

∫
B∗(rξ, 14)

|φw(rξ)|−(2n−2)dµ(w)dσ(ξ) ≤

≤ c15

∫
S

∫
K(rξ)

dµ(w)

|φw(rξ)|2n−2
dσ(ξ)

where c15 = c15(p). Then, by Fubini’s theorem we deduce (z = rξ, w = |w|η)

I1 ≤ c16(n, p)

∫
η∈S

||w|−r|< 2
3
(1−r)

∫
d(ξ,η)<4

√
2(1−r)1/2

dσ(ξ)

|φw(rξ)|2n−2
dµ(|w|η) ≤

≤ c16(p, n)

∫
||w|−r|< 2

3
(1−r)

∫
S

dσ(ξ)

|φw(rξ)|2n−2
dµ(w). (21)

Applying to (21) subsequently (1), (14) and Lemma 1, we obtain that for 0 < p ≤ 1∫
S

dσ(ξ)

|φw(rξ)|2n−2
=

∫
S

dσ(ξ)

|φrξ(w)|2n−2
≤
∫
S

g(φrξ(w))dσ(ξ) ≤ c17(1− r2)n,
1

2
< r < 1.

Substituting the estimate of the inner integral into (21) we get

I1 ≤ c18(1− r)n
∫

||w|−r|< 2
3
(1−r)

dµ(|w|η). (22)

We need the following lemma that plays a key role in the proof of Theorem C.

Lemma B ([5]). Let ν be a finite positive Borel measure on S, 0 < δ < 1
2
, and p ≥ 1. Then∫

S

νp−1(D(ξ, δ))dν(ξ) ≤ Np

δ2n

∫
S

νp(D(ξ, δ)) dσ(ξ),

where N is a positive constant independent of p and δ.

To obtain the final estimate of I1, for a fixed r ∈ (1
2
, 1), we define the measure ν1 on the

balls {D(η, t) : η ∈ S, t > 0} by

ν1(D(η, t)) = λ
({
ρζ ∈ B : |ρ− r| < 2

3
(1− r), d(ζ, η) < t

})
.
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It can be expanded to the family of all Borel sets on B in the standard way. It is clear that

ν1(D(η, t)) ≍ (1− r)nµ
({
ρζ ∈ B : |ρ− r| < 2

3
(1− r), d(ζ, η) < t

})
.

By using of (22) and Lemma B we get

I1 ≤ c19

∫
||w|−r|< 2

3
(1−r)

dλ(|w|η) = c19

∫
S

dν1(η) ≤

≤ c19N

(1− r)n

∫
S

ν1

(
D(η, 8

√
2(1− r)

1
2 )
)
dσ(η) =

c20(n, p)

(1− r)n

∫
S

λ
(
K̃(rη)

)
dσ(η).

Note that if ρζ ∈ K̃(rη) then

|1− ⟨ρζ, η⟩| ≤ |1− ⟨ζ, η⟩|+ (1− ρ) |⟨ζ, η⟩| ≤ (4c214 + c13 + 1)(1− r) = c21(1− r). (23)

Hence,

I1 ≤
c20

(1− r)n

∫
S

λ (C(η, c21(1− r))) dσ(η). (24)

By the assumption of the theorem we deduce

I1 = O((1− r)γ−n), r ↑ 1. (25)

Let us estimate
u2(z) =

∫
B

G(z, w)(1− |w|)−ndλ̃(w)

where dλ̃(w) = (1 − |w|)nχB\B∗(z, 14)
(w)dµ(w), χE is the characteristic function of a set E.

We may assume that |z| ≥ 1
2
.

We denote

Ek = Ek(z) =

{
w ∈ B :

∣∣∣∣1−⟨ z

|z|
, w

⟩∣∣∣∣ < 2k+1(1− |z|)
}
, k ∈ Z+.

Since |1−⟨z, w⟩| ≥ 1
2

∣∣∣1− ⟨ z
|z| , w

⟩∣∣∣, one has that for w ∈ Ek+1\Ek, |1−⟨z, w⟩| ≥ 2k−1(1−|z|).
Combining Lemma A with the equality in (1) for z ∈ B such that |z| ≥ 1

2
we get that

0 ≤ G(z, w) ≤ c22

(
(1−|w|2)(1−|z|2)

|1−⟨z,w⟩|2

)n
holds. So

|u2(z)| ≤ c22

∫
B

(
(1 + |w|)(1− |z|2)

|1− ⟨z, w⟩|2

)n

dλ̃(w) ≤

≤
[log2

1
1−r

]∑
k=1

c22

∫
Ek+1\Ek

(
(1 + |w|)(1− |z|2)
22(k−1)(1− |z|)2

)n

dλ̃(w) + c22

∫
E1

(
(1 + |w|)(1− |z|2)

(1− |z|)2

)n

dλ̃(w) ≤

≤
∞∑
k=1

∫
Ek+1\Ek

4nc22
(22(k−1)(1− |z|))n

dλ̃(w) +

∫
E1

4nc22
(1− |z|)n

dλ̃(w) ≤



168 I. E. CHYZHYKOV, M. A. VOITOVYCH

≤ 4nc22
(1− |z|)n

(
∞∑
k=1

λ̃ (Ek+1)

22n(k−1)
+ λ̃ (E1)

)
≤ 4nc22

(1− |z|)n
∞∑
k=1

λ̃ (Ek)

22n(k−2)
.

Therefore ∫
S

|u2(rξ)|dσ(ξ) ≤
c23

(1− r)n

∞∑
k=1

∫
S

λ̃ (Ek(rξ))

22n(k−2)
dσ(ξ) =

=
c23

(1− r)n

∞∑
k=1

1

22n(k−2)

∫
S

λ̃
(
C
(
ξ, 2k+1(1− r)

))
dσ(ξ) ≤ c24

(1− r)n

∞∑
k=1

2γ(k+1)(1− r)γ

22n(k−2)
=

=
c25

(1− r)n

∞∑
k=1

2k(γ−2n) =
c25

(1− r)n−γ

2γ−2np

1− 2γ−2n
=

c26(n, γ)

(1− r)n−γ
.

Hence

mp(r,Gµ) ≤ m1(r,Gµ) ≤
∫
S

|u1(rξ)|dσ(ξ) +
∫
S

|u2(rξ)|dσ(ξ) ≤
c(n, γ)

(1− r)n−γ
.

4. An example.

Proposition 1. For n > 1, 0 < p ≤ 1, n < γ < 2n, there exists a Borel measure µ on B
sutisfying (2) and such that

Gµ(z) = O
(
(1− |z|)γ−n

)
, |z| ↑ 1 (26)

and for some C > 0

λ (C(ξ, δ)) ≥ Cδγ, 0 < δ < 1. (27)

Proof. We define dµ(z) = dV (z)
(1−|z|)2n+1−γ , where V is the Lebesgue measure on B.

We write

Gµ(z) =

∫
B

G(z, w)dµ(w) =

∫
B∗(z, 14)

G(z, w)dµ(w) +

∫
B\B∗(z, 14)

G(z, w)dµ(w) =: J1 + J2.

Since, by (20) 1− |w| ≍ 1− |z| holds for w ∈ B∗ (z, 1
4

)
, we get

J1 ≤ c27

∫
B∗(z, 14)

G(z, w)dV (w)

(1− |z|)2n+1−γ
≤ c27

(1− |z|)2n+1−γ

∫ r+c1(1−r)

r−c1(1−r)

∫
S

G(z, ρη)dσ(η)ρ2n−1dρ.

Using Lemma 1 for p = 1, we obtain

J1 ≤
c28

(1− |z|)2n+1−γ

∫ r+c1(1−r)

r−c1(1−r)

(1− ρ)nρ2n−1dρ ≤ c29
(1− r)n−γ

.

For w ∈ B \B∗ (z, 1
4

)
we have (see (1))

0 ≤ G(z, w) ≤ c

(
(1− |w|2)(1− |z|2)

|1− ⟨z, w⟩|2

)n

.
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Then by the above inequality and [8, Chap.1.4.10] it follows that

J2 ≤ c(1− |z|)n
∫
B

(1− |w|2)−n−1+γ

|1− ⟨z, w⟩|2n
dV (w) ≤ c30(1− |z|)n(1− |z|)−2n+γ = c30(1− |z|)γ−n.

Thus m1(r,Gµ) = O((1− r)γ−n), r ↑ 1.

Let us prove (27). We have dλ(w) = dV (w)
(1−|w|)n+1−γ . Then

λ(C(ξ, δ)) ≥
∫

C(ξ,δ)∩{1− δ
2
≤|w|≤1− δ

4}

dV (w)

(1− |w|)n+1−γ
≥

≥ δγ−n−1

∫
C(ξ,δ)∩{1− δ

2
≤|w|≤1− δ

4}

dV (w) ≥ cδγ−n−1δn+1 = δγ.

The latter estimates follow from the inclusion

C(ξ, δ) ∩
{
1− δ

2
≤ |w| ≤ 1− δ

4

}
⊃

{
|w|η : δ

4
≤ 1− |w| ≤ δ

2
, d(ξ, η) ≤

√
δ

2

}
.

Let us prove this. We denote v = (1 − δ
2
)ζ ∈ ∂C(ξ, δ), ζ ∈ S. Since min{δ(ξ, η) : |w|η ∈

C(ξ, δ)∩
{
1− δ

2
≤ |w| ≤ 1− δ

4

}
} is attained at v, it is enough to estimate d(ξ, ζ) from below.

d(ξ, ζ) =
√

|1− ⟨ξ, ζ⟩| =
√

|1− ⟨ξ, ζ⟩ − ⟨ξ, |v|ζ⟩+ ⟨ξ, |v|ζ⟩| ≥

≥
√
|1− ⟨ξ, |v|ζ⟩| − |⟨ξ, ζ⟩ − ⟨ξ, |v|ζ⟩| =

√
δ − δ

2
|⟨ξ, ζ⟩| ≥

√
δ

2
.

The estimate (27) is proved.
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Phys. Anal, Geom., 11 (2015), №1, 236–244.

5. I. Chyzhykov, M. Voitovych, Growth description of pth means of the Green potential in the unit ball,
Complex Variables and Elliptic Equations, http://dx.doi.org/10.1080/17476933.2016.1251423 (2016).

6. S.J. Gardiner, Representation and growth of subharmonic functions in half-space, Proc. London Math.
Soc., (3), 48 (1984), 300–318.

7. A. Grishin, Continuity and asymptotic continuity of subharmonic functions, Math. Physics, Analysis,
Geometry, ILPTE, 1 (1994), 193–215. (in Russian)

8. W. Rudin, Theory functions in the unit ball in Cn. – Berlin-Heidelberg, New York: Springer Verlag,
1980.



170 I. E. CHYZHYKOV, M. A. VOITOVYCH

9. M. Stoll, Rate of growth of pth means of invariant potentials in the unit ball of Cn, J. Math. Anal. Appl.,
143 (1989), 480–499.

10. M. Stoll, Invariant Potential Theory in the Unit Ball of Cn. – Cambridge: Cambridge University Press,
1994.

11. D. Ulrich, Radial limits of M -subharmonic functions, Trans. Amer. Math. Soc., 292 (1985), 501–518.
12. C.N. Linden Integral logarithmic means for regular functions, Pacific J. of Math., 138 (1989), 119–127.
13. C.N. Linden The characterization of orders for regular functions, Math. Proc. Cambridge Phil. Soc.,

111 (1992), 299–307.
14. M. Stoll Boundary limits of subharmonic functions in the disc, Proc. Amer. Math. Soc., 93 (1985),

567–568.
15. I.E. Chyzhykov Generalization of a Hardy-Littlewood theorem, Math. Methods and Phys.-Mech. Fields,

49 (2006), №2, 74–79. (in Ukrainian)

Ivan Franko National University of Lviv
chyzhykov@yahoo.com
urkevych@gmail.com

Received 2.07.2016


