УДК 517.5

A. TALHAOUI

THE CAUCHY-RIEMANN EQUATIONS FOR A CLASS OF (0, 1)-FORMS IN l^2

A. Talhaoui. The Cauchy-Riemann equations for a class of (0, 1)-forms in l^2 , Mat. Stud. 46 (2016), 171–177.

We study the local exactness of $\overline{\partial}$ operator in the unit ball of l^2 for a particular class of (0, 1)-forms ω of the type $\omega(z) = \sum_i z_i \omega^i(z) d\overline{z_i}$, $z = (z_i)$ in l^2 . We suppose each function $\omega^i(z)$ of class C^{∞} in the closed unit ball of l^2 of the form $\omega^i(z) = \sum_k \omega_k^i(z^k)$, where $\mathbb{N} = \bigcup I_k$ is a partition of \mathbb{N} , $(\operatorname{card} I_k) < +\infty$, and z^k is the projection of z on \mathbb{C}^{I_k} . We establish sufficient conditions for exactness of ω related to the expansion in Fourier series of the functions ω_k^i .

1. Introduction. The study of local exactness of infinitely differentiable (0, 1)-forms was the object of important work, in particular those of L. Lempert. This author gets local exactness in the space l^1 and on any space of Banach when the forms are real analytical ([1], [2]).

In Hilbert spaces few results are known, however we must mention an important result due to G.Coeuré: he gives an example of (0, 1)-form ω of class C^1 in the unit ball of an infinite dimensional separable Hilbert space such that the equation $\overline{\partial} f = \omega$ does not admit any local solution around 0, (see Mazet [3]). No other example is known with ω of the class $C^p(1 .$

In this paper, we study the local exactness of $\overline{\partial}$ in the Hilbert space l^2 , for a particular class of (0,1)-forms of the type

$$\omega(z) = \sum_{i} z_i \omega^i(z) d\overline{z}_i, \quad z = (z_i) \text{ in } l^2$$

under the following assumptions (H_1) :

i) Each function ω^i is indefinitely differentiable on the closed unit ball of l^2 denoted \overline{B} , and of the form

$$\omega^i(z) = \sum_k \omega^i_k(z^k) \tag{1}$$

where the series (1) is supposed to be absolutely convergent, and where $\mathbb{N} = \bigcup I_k$ is a partition of \mathbb{N} , with z^k standing for the projection of z on \mathbb{C}^{I_k} , and ω_k^i being a function of class \mathcal{C}^{∞} on the closed unit ball of \mathbb{C}^{I_k} provided with the norm of l^2 .

ii) For all k, card I_k noted |k| is finite.

The used method is based on the expansion in Fourier series of the indefinitely differentiable functions f on the closed unit ball of \mathbb{C}^N . In ([5], Theorem 2.1) we show that such

²⁰¹⁰ Mathematics Subject Classification: 32F20, 46G20.

Keywords: $\overline{\partial}$ operator; Hilbert space; infinite dimension.

doi:10.15330/ms.46.2.171-177

functions admit necessarily a Fourier series expansion of the form

$$f(z) = \sum_{(\alpha,\beta)\in(\mathbb{N}\times\mathbb{N})^N} z^{\alpha}\overline{z}^{\beta} f_{\alpha,\beta}(|z|^2)$$
, with $z^{\alpha} = z_1^{\alpha_1} \dots z_N^{\alpha_N}$

and $|z|^2 = (|z_1|^2, \ldots, |z_N|^2)$. This allows us to study the local exactness of $\overline{\partial}$ for a restricted class of forms ω which respond moreover to the additional assumption (H_2) :

$$\omega_k^i = \sum_{\alpha \in \mathbb{N}^{|k|}} (z^k)^{\alpha} \omega_{\alpha,k}^i(|z^k|^2), \text{ for all } i \text{ and } k.$$

In [5] the following results was proved.

Theorem A. Let ω be a closed (0,1)-form of the class C^{∞} on \overline{B} of the type $\omega(z) = \sum z_i \omega^i(z) d\overline{z_i}$ and verifying the assumptions (H_1) and (H_2) . If there exists a positive integer M such that the coefficients $\omega^i_{\alpha,k}$ are null for all $|\alpha| > M$, all k and all i in I_k , then the series F_k and F converge and define indefinitely differentiable functions on \overline{B} .

Theorem B. Let ω be a closed (0,1)-form of class C^{∞} on \overline{B} according to the type

$$\omega(z) = \sum z_i \omega^i(z) d\overline{z}_i$$

and verifying the assumptions (H_1) and (H_2) . We assume furthermore that the sequence (|k|) is bounded and that the derivatives $D^p \omega^i$ are uniformly bounded in *i* on the unit ball of l^2 for $0 \le p \le 2$. Then there exists a real number r > 0 and a function F of class C^{∞} on the ball with radius r such that

$$\overline{\partial}F = \omega \text{ and } |F(z)| \le C ||z||^2 \sup_{i, \ 0 \le p \le 2} ||D^p \omega^i||_{\infty} \text{ for } ||z|| < r$$

where C is a constant and D designates the differentiation operator.

Here we study the local exactness of $\overline{\partial}$ when the sequence (|k|) is not bounded.

If $z = (z_i)$ is a finite or infinite sequence of numbers, we denote by #z the number of nonzero entries z_i . For every integers $0 \le n \le N$, let \mathbb{N}_n^N be the set of all multiindicies $\alpha \in \mathbb{N}^N$ such that $\#\alpha = n$. In section 3, we establish the following result which generalize Theorem B.

Theorem 1. Let ω be a closed (0,1)-form of the class C^{∞} on the closed unit ball of l^2 according to the type $\omega(z) = \sum z_i \omega^i(z) d\overline{z}_i$ and verifying the assumptions (H_1) and (H_2) . Let (n_k) be a sequence of integers such that $1 \leq n_k \leq |k|$ for all k, and $\liminf_{k \to +\infty} \frac{n_k}{|k|} > 0$. We assume furthermore that for every k, the coefficients $\omega_{\alpha,k}^i$ are null if $\alpha \in \mathbb{N}_n^{|k|}$ for all $n < n_k$, and all i in I_k , and that the derivatives $D^p \omega^i$ are uniformly bounded in i on the unit ball of l^2 for $0 \leq p \leq 2$. Then there exist a real number r > 0 and a function F of the class C^{∞} on the ball of radius r such that

$$\overline{\partial}F = \omega \text{ and } |F(z)| \le C \sup_{i, \ 0 \le p \le 2} \|D^p \omega^i\|_{\infty} \text{ for } \|z\| < r,$$

where C is a constant and D designates the differentiation operator.

2. Preliminaries.

2.1. Notations. In this work our main concern will be the Hilbert space l^2 , and so, unless indicated otherwise, $\| \|$ will denote the l^2 -norm on l^2 or on \mathbb{C}^N : if $z = (z_i) \in l^2$ or \mathbb{C}^N , $\| z \| = \sum |z_i|^2$. B(r) and $B_N(r)$ will denote the ball $\| z \| < r$ in l^2 and \mathbb{C}^N respectively. When r = 1, we simply write B and B_N for B(1) and $B_N(1)$, respectively. We shall make extensive use of muti-indices. A multi-index $\alpha = (\alpha_i)_{i=1}^{\infty}$ for us is a sequence of integers $\alpha_i \ge 0$ with $\alpha_i = 0$ for i sufficiently large. The length of α is $|\alpha| = \sum_{i=1}^{\infty} \alpha_i$. We let $\alpha! = \prod_{i=1}^{\infty} \alpha_i!$, where the usual convention 0! = 1 is observed. For a sequence of complex numbers $z = (z_i)_{i=1}^{\infty}$, we put $z^{\alpha} = \prod_{i=1}^{\infty} z_i^{\alpha_i}$, where 0^0 is defined to be 1.

If z and w are in \mathbb{C}^N , the following notations will be used in the sequel: $z'_i = (z_1, z_2, \ldots, z_i)$; $z''_i = (z_i, z_{i+1}, \ldots, z_N)$ $(i = 1, 2, \ldots, N)$. When α is a multi-index of \mathbb{N}^N , we simply write $z^{\alpha'_i}$ for $(z'_i)^{\alpha'_i}$. $|z|^2 = (|z_1|^2, \ldots, |z_N|^2)$, $zw = (z_1w_1, \ldots, z_Nw_N)$. If x is a vector of \mathbb{R}^N_+ , then $\sqrt{x} = (\sqrt{x_1}, \ldots, \sqrt{x_N})$.

If f is in $\mathcal{C}^{\infty}(\overline{B_N})$, in the sense of Frechet, then for each $p \in \mathbb{N}$, we put

$$||D^p f||_{\infty} = \sup_{z \in \overline{B_N}} ||D^p f(z)||,$$

where $||D^p f(z)||$ denotes the norm of the *p*th differential operator.

2.2. A series in infinitely many variables. If $z = (z_i)_{i=1}^{\infty}$ is in the unit ball of l^2 , we put

$$P_n(z) = \sum_{\#\alpha \ge n} \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} z^{\alpha}.$$

Lemma 1. Given $1 \le n \le N$, and $\epsilon \in \left]0, \frac{1}{2}\right[$, there is a real number $\rho > 0$ and a constant C > 0 such that if $z \in B_N(\rho)$, then

$$|P_n(z)| \le C \left(e^{1/2\epsilon}\rho\right)^n \mathcal{C}_N^n$$

C depends only on ρ and ϵ but not on N.

Proof. Let us consider in \mathbb{C} the entire function $g(z) = \sum_{\alpha \ge 1} \frac{z^{\alpha}}{\alpha^{\alpha/2}}$. For every $\epsilon > 0$, we have

$$|g(z)| \leq \sum_{\alpha \geq 1} \frac{|z|^{\alpha}}{\epsilon^{\alpha/2} \sqrt{\alpha!}} \epsilon^{\alpha/2}$$

Using the Cauchy-Schwarz inequality, we obtain

$$|g(z)| \le \left(\sum_{\alpha \ge 1} \frac{|z|^{2\alpha}}{\epsilon^{\alpha} \alpha!}\right)^{1/2} \left(\sum_{\alpha \ge 1} \epsilon^{\alpha}\right)^{1/2}.$$

Let $1 \leq n \leq N, q \in \mathbb{N}^*$, and let $z \in \mathbb{C}^N$, we have

$$\sum_{\substack{\alpha \in \mathbb{N}_n^{|k|} \\ |\alpha| = q}} \frac{z^{\alpha}}{\alpha^{\alpha/2}} = \sum_{1 \le i_1 < \dots < i_n \le N} \sum_{\substack{\alpha_{i_1}, \dots, \alpha_{i_n} > 0 \\ |\alpha| = q}} \frac{z_{i_1}^{\alpha_{i_1}}}{\alpha_{i_1}^{\alpha_{i_1}/2}} \cdots \frac{z_{i_n}^{\alpha_{i_n}}}{\alpha_{i_n}^{\alpha_{i_n}/2}}.$$
(2)

A. TALHAOUI

For any $1 \leq i_1 < \ldots < i_n \leq N$, we observe that the second sum in the right hand of (2) is the homogeneous component of degree q of the product $g(z_{i_1}) \ldots g(z_{i_n})$. It follows, when $z \in B_N(\sqrt{q})$, the majorization

$$\left|\sum_{\substack{\alpha_{i_1},\dots,\alpha_{i_n}>0\\|\alpha|=q}} \frac{z_{i_1}^{\alpha_{i_1}}}{\alpha_{i_1}^{\alpha_{i_1}/2}} \cdots \frac{z_{i_n}^{\alpha_{i_n}}}{\alpha_{i_n}^{\alpha_{i_n}/2}}\right| \le \exp\left(\frac{q}{2\epsilon}\right) \left(\sqrt{\frac{\epsilon}{1-\epsilon}}\right)^n.$$

By homothety on the ball of radius ρ , we get

$$\left|\sum_{\substack{\alpha_{i_1},\dots,\alpha_{i_n}>0\\|\alpha|=q}} \frac{z_{i_1}^{\alpha_{i_1}}}{\alpha_{i_1}^{\alpha_{i_1}/2}} \cdots \frac{z_{i_n}^{\alpha_{i_n}}}{\alpha_{i_n}^{\alpha_{i_n}/2}}\right| \le \left(\frac{\rho}{\sqrt{q}}\right)^q \exp\left(\frac{q}{2\epsilon}\right) \left(\sqrt{\frac{\epsilon}{1-\epsilon}}\right)^n$$

and therefore, if ρ is sufficiently small, we get

$$|P_n(z)| \le \sum_{q \ge n} \left| \sum_{\substack{\alpha \in \mathbb{N}_n^{|k|} \\ |\alpha| = q}} \frac{q^{q/2} z^{\alpha}}{\alpha^{\alpha/2}} \right| \le \frac{\left(e^{1/2\epsilon}\rho\right)^n}{1 - \rho e^{1/2\epsilon}} \mathcal{C}_N^n.$$

2.3. Fourier series expansion.

Theorem 2. If f is in $\mathcal{C}^{\infty}(\overline{B_N})$, then it admits the Fourier series expansion

$$f(z) = \sum_{\alpha \in \mathbb{Z}^N} z^{\alpha} f_{\alpha}(|z|^2), \qquad (3)$$

where $z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_N^{\alpha_N}$ with $z_i^{\alpha_i} = (\overline{z_i})^{|\alpha_i|}$ if $\alpha_i < 0$.

The series (3) is normally convergent with its derivatives on $\overline{B_N}$; the coefficients f_{α} are \mathcal{C}^{∞} on $\{x \in \mathbb{R}^N_+; x_1 + \ldots + x_N < 1\}$, that satisfy

$$\forall \alpha \in \mathbb{Z}^N \; ; \; z^{\alpha} f_{\alpha}(|z|^2) = \int_{[0,2\pi]^N} f(ze^{i\theta}) e^{-i(\alpha \cdot \theta)} \frac{d\theta}{(2\pi)^N},$$

where $(\alpha \cdot \theta) = \sum_{i=1}^{N} \alpha_i \theta_i$, $e^{i\theta} = (e^{i\theta_1}, \dots, e^{i\theta_N})$, and $\frac{d\theta}{(2\pi)^N} = \frac{d\theta_1}{2\pi} \dots \frac{d\theta_N}{2\pi}$.

For the proof see ([5], Theorem 2.1).

3. Exactness of a class of (0,1)-forms. We study the local exactness of $\overline{\partial}$ in the Hilbert space l^2 for a particular class of (0, 1)-forms of the type

$$\omega(z) = \sum_{i} z_i \omega^i(z) d\overline{z_i}, \quad z = (z_i) \text{ in } l^2$$

under the following assumptions (H_1) :

i) Each function ω^i is indefinitely differentiable on the closed unit ball of l^2 , and it takes the form

$$\omega^i(z) = \sum_k \omega^i_k(z^k) \tag{4}$$

where the series (4) is supposed to be absolutely convergent, and where $\mathbb{N} = \bigcup I_k$ is a partition of \mathbb{N} , with z^k standing for the projection of z on \mathbb{C}^{I_k} , and ω_k^i being a function of class \mathcal{C}^{∞} on the closed unit ball of \mathbb{C}^{I_k} provided with the norm of l^2 . ii) For all k, card I_k noted |k| is finite.

According to Theorem 2, for all i and k the function ω_k^i admits a Fourier series expansion in the form $\omega_k^i(z^k) = \sum_{\alpha \in \mathbb{Z}^{|k|}} (z^k)^{\alpha} \omega_{\alpha,k}^i(|z^k|^2)$, where the coefficients $\omega_{\alpha,k}^i$ are functions of class \mathcal{C}^{∞} , on the closed unit ball of \mathbb{C}^{I_k} .

In what follows, we make the assumption (H_2) :

$$\omega_k^i(z^k) = \sum_{\alpha \in \mathbb{N}^{|k|}} (z^k)^{\alpha} \omega_{\alpha,k}^i(|z^k|^2) \quad \text{for all } i \text{ and } k \text{ in } \mathbb{N}.$$

Following ([5], Theorem 3.2), ω is $\overline{\partial}$ -closed if and only if the form $\Phi_{\alpha,k} = \sum_{i \in I_k} \omega_{\alpha,k}^i dt_i$ is *d*-closed in the closed unit ball of $\mathbb{R}^{|k|}_+$ for each α and k. So we are led to integrate the (0, 1)-form $\tilde{\omega} = \sum_k \tilde{\omega}_k$ such that

$$\tilde{\omega}_k(z^k) = \sum_{i \in I_k} z_i \left[\sum_{\alpha \in \mathbb{N}^{|k|}} (z^k)^\alpha \frac{\partial \Omega_{\alpha,k}}{\partial t_i} (|z^k|^2) \right] d\overline{z_i}$$

where $\Omega_{\alpha,k}$ is an anti-derivative of the form $\Phi_{\alpha,k}$.

Each $\tilde{\omega}_k$ is a $\overline{\partial}$ -closed (0, 1)-form of class \mathcal{C}^{∞} on the closed unit ball of \mathbb{C}^{I_k} .

Let $F_k(z^k) = \sum_{\alpha \in \mathbb{N}^{|k|}} (z^k)^{\alpha} \Omega_{\alpha,k}(|z^k|^2)$. Then $F = \sum_{k=1}^{\infty} F_k$ is a formal solution of the equation $\overline{\partial}F = \tilde{\omega}$ and according to ([3], Appendix 3, Lemma 5) the problem is reduced to the existence of a real number $r \in [0, 1[$, and for every α and k an anti-derivatives $\Omega_{\alpha,k}$ such that the series F_k converge and satisfies an estimate independent of k on the ball of radius r of \mathbb{C}^{I_k} . We give a positive response for two particular cases.

i) The polynomial case.

Theorem 3. Let ω be a closed (0, 1)-form of class C^{∞} on \overline{B} of the type $\omega(z) = \sum z_i \omega^i(z) d\overline{z_i}$ and verifying the assumptions (H_1) and (H_2) . If there exists a positive integer M such that the coefficients $\omega_{\alpha,k}^i$ are null for all $|\alpha| > M$, all k and all i in I_k , then the series F_k and Fconverge and define indefinitely differentiable functions on \overline{B} .

For the proof see ([5], Theorem 4.1).

ii)Non-polynomial case. Let (n_k) be a sequence of integers such that $1 \leq n_k \leq |k|$ for all k, and $\liminf \frac{n_k}{|k|} > 0$. If we suppose that for every k, the coefficients $\omega_{\alpha,k}^i$ are null if $\alpha \in \mathbb{N}_n^{|k|}$ for all $n < n_k$, and all i in I_k , then we shall prove that there exists r > 0 such that for ksufficiently large the series F_k and F converge and define indefinitely differentiable functions on B(r).

The proof of Theorem 1 is a direct consequence of the forthcoming proposition.

Proposition 1. Let ω be a closed (0, 1)-form of the class C^{∞} on the closed unit ball of l^2 according to the type $\omega(z) = \sum z_i \omega^i(z) d\overline{z}_i$ and verifying the assumptions (H_1) and (H_2) . Let (n_k) be a sequence of integers such that $1 \leq n_k \leq |k|$ for all k, and $\liminf_{k \to +\infty} \frac{n_k}{|k|} > 0$. We suppose moreover that for each k, the coefficients $\omega_{\alpha,k}^i$ are null if $\alpha \in \mathbb{N}_n^{|k|}$ for all $n < n_k$, and all *i* in I_k , and that the derivatives $D^p \omega^i$ are uniformly bounded in *i* on the unit ball of l^2 for $0 \le p \le 2$. Then there exists r > 0 and $\lambda > 0$ such that for *k* sufficiently large and $z \in B(r)$, the series F_k converge and defines a $\overline{\partial}$ -antiderivates of $\tilde{\omega}_k$ of class C^∞ on $\overline{B_{|k|}}(r)$ for which

$$|F_k(z^k)| \le C \left(\|z^k\|^2 + (2r^{\lambda})^{|k|} \right) \sup_{\substack{0 \le p \le 2}} \|D^p \omega^i\|_{\infty}$$
(5)

where C is a constant independent of k.

Proof. We recall that $\Phi_{\alpha,k}$ designates the closed form in $\mathbb{R}^{|k|}_+$ defined by $\Phi_{\alpha,k} = \sum_{i \in I_k} \omega^i_{\alpha,k} dt_i$. Its anti-derivative is given by $\Omega_{\alpha,k}(|z^k|^2) = \int_{\gamma} \Phi_{\alpha,k}$, and the path γ defined below joins the point $|z^k|^2$ to a fixed point of the closed unit ball of $\mathbb{R}^{|k|}_+$.

We also recall that we can take the function F_k for a $\overline{\partial}$ -antiderivates of $\tilde{\omega}_k$ conditioned by its series convergence.

Given 0 < r < 1 and $z \in \overline{B(r)}$, the path γ is the union in $\mathbb{R}^{|k|}_+$ of the adjacent segments $[M^m, M^{m+1}]$ $(m = 0, \ldots, |k|)$, defined by $M^0 = |z^k|^2$, and for $m \in \{1, 2, \ldots, |k| + 1\}$,

$$M_i^m = \begin{cases} \frac{\alpha_i}{|\alpha|} & \text{if } i < m\\ \left(\frac{|z_i|}{r}\right)^2 & \text{if } i \ge m \end{cases}$$

Let

$$F_k^m(z^k) = \sum_{n \ge n_k} \sum_{\alpha \in \mathbb{N}_n^{|k|}} (z^k)^\alpha \int_{M^m}^{M^{m+1}} \Phi_\alpha, \quad m = 0, \dots, |k|.$$

Since $F_k = \sum_{m=0}^{|k|} F_k^m$, it will be enough to prove that, for all $m = 0, \ldots, |k|$, the series F_k^m converges and satisfies an estimate independent of k.

Let us start with the case m = 0.

$$\begin{split} F_k^0(z^k) &= \sum_{n \ge n_k} \sum_{\alpha \in \mathbb{N}_n^{|k|}} \int_1^{1/r^2} (z^k)^\alpha \sum_{i \in I_k} \omega_\alpha^i(u|z^k|^2) \cdot |z_i|^2 du \\ &= \sum_{q \ge n_k} \int_1^{1/r^2} \int_0^{2\pi} \frac{1}{(\sqrt{u})^{q+1}} \langle \tilde{\omega}(\sqrt{u}z^k e^{i\theta}), z^k \rangle e^{-iq\theta} \frac{d\theta}{2\pi} du. \end{split}$$

By making two integrations by parts relatively to θ in each term of the above sum, we obtain

$$|F_k^0(z^k)| \le C ||z^k||^2 \sup_{p \le 2} ||D^p \tilde{\omega}||_{\infty},$$
(6)

where C is a constant independent of k. Now, let us consider the series F_k^m for $m \ge 1$. We can write

$$F_k^m(z^k) = \sum_{\substack{\alpha \in \mathbb{N}_n^{|k|} \\ n \ge n_k}} \int_0^{2\pi} \int_{M^m}^{M^{m+1}} \frac{|\alpha|^{\frac{|\alpha|}{2}} (z_k)^{\alpha'_m} (\alpha''_m)^{\frac{1}{2}\alpha''_m} r^{|\alpha''_{m+1}|}}{\alpha^{\frac{\alpha}{2}} (t_m |\alpha|)^{\frac{1}{2}\alpha_m} |\alpha|^{\frac{1}{2}|\alpha''_{m+1}|}} \omega^m \left(\sqrt{t}e^{i\theta}\right) e^{-i|\alpha|\theta} \frac{d\theta}{2\pi} dt_m.$$

An easy computation shows that

$$|z_m^{\alpha_m}| \int_{M^m}^{M^{m+1}} \frac{dt_m}{(\sqrt{t_m})^{\alpha_m}} \le Cr^{\alpha_m},$$

where C is a constant.

If we choose r sufficiently small, then an application of Lemma 1 shows that

$$|F_k^m(z^k)| \le C2^{|k|} \sup_i \|\omega^i\|_{\infty} r^{n_k}.$$

for every $z \in \overline{B(r)}$ and $m \ge 1$.

Since $\liminf_{k \to +\infty} \frac{n_k}{|k|} > 0$, there exists a real number $\lambda > 0$ such that $n_k \ge \lambda |k|$ for k sufficiently large, hence we are led to the majorization

$$\sum_{m=1}^{|k|} |F_k^m(z^k)| \le C(2r^\lambda)^{|k|} \sup_i \|\omega^i\|_{\infty}$$
(7)

for all $z \in \overline{B(r)}$, where r is choosen sufficiently small, and C is a constant independent of k. Now, (6) and (7) implies the required estimate (5).

REFERENCES

- 1. L. Lempert, The Dolbeault complex in infinite dimension, 1, J. Amer. Math. Soc, 11 (1998), 485-520.
- 2. L. Lempert, The Dolbeault complex in infinite dimension, 2, J. Amer. Math. Soc, 12 (1999), 775–793.
- 3. P. Mazet, Analytic sets in locally convex spaces, North Holland Math. Studies, Amsterdam, V.89, 1984.
- 4. R.A. Ryan, Holomorphic mappings in l¹, Trans. Amer. Math. Soc., **302** (1987), 797–811.
- 5. A. Talhaoui, Exactness of some (0,1)-forms in Hilbert spaces of infinite dimension, Math. Nachr., 8–9 (2011), 1172-1184.
- 6. A. Talhaoui, The Cauchy-Riemann equations in the unit ball of l², Rend. Circ. Mat. Palermo, DOI 10. 1007/s12215-014-0151-0, 2014.

National Polythecnic School of Oran, Algeria talhaoui abd@yahoo.fr

Received 1.10.2016