A. Talhaoui

THE CAUCHY-RIEMANN EQUATIONS FOR A CLASS OF $(0,1)$-FORMS IN l^{2}

Abstract

A. Talhaoui. The Cauchy-Riemann equations for a class of (0,1)-forms in l^{2}, Mat. Stud. 46 (2016), 171-177.

We study the local exactness of $\bar{\partial}$ operator in the unit ball of l^{2} for a particular class of $(0,1)$-forms ω of the type $\omega(z)=\sum_{i} z_{i} \omega^{i}(z) d \overline{z_{i}}, z=\left(z_{i}\right)$ in l^{2}. We suppose each function $\omega^{i}(z)$ of class C^{∞} in the closed unit ball of l^{2} of the form $\omega^{i}(z)=\sum_{k} \omega_{k}^{i}\left(z^{k}\right)$, where $\mathbb{N}=\bigcup I_{k}$ is a partition of $\mathbb{N},\left(\operatorname{card} I_{k}\right)<+\infty$, and z^{k} is the projection of z on $\mathbb{C}^{I_{k}}$. We establish sufficient conditions for exactness of ω related to the expansion in Fourier series of the functions ω_{k}^{i}.

1. Introduction. The study of local exactness of infinitely differentiable $(0,1)$-forms was the object of important work, in particular those of L. Lempert. This author gets local exactness in the space l^{1} and on any space of Banach when the forms are real analytical ([1], [2]).

In Hilbert spaces few results are known, however we must mention an important result due to G.Coeuré: he gives an example of $(0,1)$-form ω of class \mathcal{C}^{1} in the unit ball of an infinite dimensional separable Hilbert space such that the equation $\bar{\partial} f=\omega$ does not admit any local solution around 0 , (see Mazet [3]). No other example is known with ω of the class $\mathcal{C}^{p}(1<p \leq \infty)$.

In this paper, we study the local exactness of $\bar{\partial}$ in the Hilbert space l^{2}, for a particular class of (0,1)-forms of the type

$$
\omega(z)=\sum_{i} z_{i} \omega^{i}(z) d \bar{z}_{i}, \quad z=\left(z_{i}\right) \text { in } l^{2}
$$

under the following assumptions $\left(H_{1}\right)$:
i) Each function ω^{i} is indefinitely differentiable on the closed unit ball of l^{2} denoted \bar{B}, and of the form

$$
\begin{equation*}
\omega^{i}(z)=\sum_{k} \omega_{k}^{i}\left(z^{k}\right) \tag{1}
\end{equation*}
$$

where the series (1) is supposed to be absolutely convergent, and where $\mathbb{N}=\bigcup I_{k}$ is a partition of \mathbb{N}, with z^{k} standing for the projection of z on $\mathbb{C}^{I_{k}}$, and ω_{k}^{i} being a function of class \mathcal{C}^{∞} on the closed unit ball of $\mathbb{C}^{I_{k}}$ provided with the norm of l^{2}.
ii) For all k, card I_{k} noted $|k|$ is finite.

The used method is based on the expansion in Fourier series of the indefinitely differentiable functions f on the closed unit ball of \mathbb{C}^{N}. In ([5], Theorem 2.1) we show that such

[^0]functions admit necessarily a Fourier series expansion of the form
$$
f(z)=\sum_{(\alpha, \beta) \in(\mathbb{N} \times \mathbb{N})^{N}} z^{\alpha} \bar{z}^{\beta} f_{\alpha, \beta}\left(|z|^{2}\right), \text { with } z^{\alpha}=z_{1}^{\alpha_{1}} \ldots z_{N}^{\alpha_{N}}
$$
and $|z|^{2}=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{N}\right|^{2}\right)$. This allows us to study the local exactness of $\bar{\partial}$ for a restricted class of forms ω which respond moreover to the additional assumption $\left(H_{2}\right)$:
$$
\omega_{k}^{i}=\sum_{\alpha \in \mathbb{N}^{|k|}}\left(z^{k}\right)^{\alpha} \omega_{\alpha, k}^{i}\left(\left|z^{k}\right|^{2}\right), \text { for all } i \text { and } k
$$

In [5] the following results was proved.
Theorem A. Let ω be a closed $(0,1)$-form of the class C^{∞} on \bar{B} of the type $\omega(z)=$ $\sum z_{i} \omega^{i}(z) d \overline{z_{i}}$ and verifying the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. If there exists a positive integer M such that the coefficients $\omega_{\alpha, k}^{i}$ are null for all $|\alpha|>M$, all k and all i in I_{k}, then the series F_{k} and F converge and define indefinitely differentiable functions on \bar{B}.

Theorem B. Let ω be a closed $(0,1)$-form of class C^{∞} on \bar{B} according to the type

$$
\omega(z)=\sum z_{i} \omega^{i}(z) d \bar{z}_{i}
$$

and verifying the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. We assume furthermore that the sequence $(|k|)$ is bounded and that the derivatives $D^{p} \omega^{i}$ are uniformly bounded in i on the unit ball of l^{2} for $0 \leq p \leq 2$. Then there exists a real number $r>0$ and a function F of class C^{∞} on the ball with radius r such that

$$
\bar{\partial} F=\omega \text { and }|F(z)| \leq C\|z\|^{2} \sup _{i, 0 \leq p \leq 2}\left\|D^{p} \omega^{i}\right\|_{\infty} \text { for }\|z\|<r
$$

where C is a constant and D designates the differentiation operator.
Here we study the local exactness of $\bar{\partial}$ when the sequence $(|k|)$ is not bounded.
If $z=\left(z_{i}\right)$ is a finite or infinite sequence of numbers, we denote by $\# z$ the number of nonzero entries z_{i}. For every integers $0 \leq n \leq N$, let \mathbb{N}_{n}^{N} be the set of all multiindicies $\alpha \in \mathbb{N}^{N}$ such that $\# \alpha=n$. In section 3 , we establish the following result which generalize Theorem B.

Theorem 1. Let ω be a closed (0,1)-form of the class C^{∞} on the closed unit ball of l^{2} according to the type $\omega(z)=\sum z_{i} \omega^{i}(z) d \bar{z}_{i}$ and verifying the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. Let $\left(n_{k}\right)$ be a sequence of integers such that $1 \leq n_{k} \leq|k|$ for all k, and $\liminf _{k \rightarrow+\infty} \frac{n_{k}}{|k|}>0$. We assume furthermore that for every k, the coefficients $\omega_{\alpha, k}^{i}$ are null if $\alpha \in \mathbb{N}_{n}^{|k|}$ for all $n<n_{k}$, and all i in I_{k}, and that the derivatives $D^{p} \omega^{i}$ are uniformly bounded in i on the unit ball of l^{2} for $0 \leq p \leq 2$. Then there exist a real number $r>0$ and a function F of the class C^{∞} on the ball of radius r such that

$$
\bar{\partial} F=\omega \text { and }|F(z)| \leq C \sup _{i, 0 \leq p \leq 2}\left\|D^{p} \omega^{i}\right\|_{\infty} \text { for }\|z\|<r,
$$

where C is a constant and D designates the differentiation operator.

2. Preliminaries.

2.1. Notations. In this work our main concern will be the Hilbert space l^{2}, and so, unless indicated otherwise, $\left\|\|\right.$ will denote the l^{2}-norm on l^{2} or on \mathbb{C}^{N} : if $z=\left(z_{i}\right) \in l^{2}$ or \mathbb{C}^{N}, $\|z\|=\sum\left|z_{i}\right|^{2} . B(r)$ and $B_{N}(r)$ will denote the ball $\|z\|<r$ in l^{2} and \mathbb{C}^{N} respectively. When $r=1$, we simply write B and B_{N} for $B(1)$ and $B_{N}(1)$, respectively. We shall make extensive use of muti-indices. A multi-index $\alpha=\left(\alpha_{i}\right)_{i=1}^{\infty}$ for us is a sequence of integers $\alpha_{i} \geq 0$ with $\alpha_{i}=0$ for i sufficiently large. The length of α is $|\alpha|=\sum_{i=1}^{\infty} \alpha_{i}$. We let $\alpha!=\prod_{i=1}^{\infty} \alpha_{i}!$, where the usual convention $0!=1$ is observed. For a sequence of complex numbers $z=\left(z_{i}\right)_{i=1}^{\infty}$, we put $z^{\alpha}=\prod_{i=1}^{\infty} z_{i}^{\alpha_{i}}$, where 0^{0} is defined to be 1 .

If z and w are in \mathbb{C}^{N}, the following notations will be used in the sequel: $z_{i}^{\prime}=\left(z_{1}, z_{2}, \ldots, z_{i}\right)$; $z_{i}^{\prime \prime}=\left(z_{i}, z_{i+1}, \ldots, z_{N}\right)(i=1,2, \ldots, N)$. When α is a multi-index of \mathbb{N}^{N}, we simply write $z^{\alpha_{i}^{\prime}}$ for $\left(z_{i}^{\prime}\right)^{\alpha_{i}^{\prime}} .|z|^{2}=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{N}\right|^{2}\right), z w=\left(z_{1} w_{1}, \ldots, z_{N} w_{N}\right)$. If x is a vector of \mathbb{R}_{+}^{N}, then $\sqrt{x}=\left(\sqrt{x_{1}}, \ldots, \sqrt{x_{N}}\right)$.

If f is in $\mathcal{C}^{\infty}\left(\overline{B_{N}}\right)$, in the sense of Frechet, then for each $p \in \mathbb{N}$, we put

$$
\left\|D^{p} f\right\|_{\infty}=\sup _{z \in \overline{B_{N}}}\left\|D^{p} f(z)\right\|,
$$

where $\left\|D^{p} f(z)\right\|$ denotes the norm of the p th differential operator.
2.2. A series in infinitely many variables. If $z=\left(z_{i}\right)_{i=1}^{\infty}$ is in the unit ball of l^{2}, we put

$$
P_{n}(z)=\sum_{\# \alpha \geq n} \frac{|\alpha|^{\frac{|\alpha|}{2}}}{\alpha^{\frac{\alpha}{2}}} z^{\alpha} .
$$

Lemma 1. Given $1 \leq n \leq N$, and $\epsilon \in] 0, \frac{1}{2}[$, there is a real number $\rho>0$ and a constant $C>0$ such that if $z \in B_{N}(\rho)$, then

$$
\left|P_{n}(z)\right| \leq C\left(e^{1 / 2 \epsilon} \rho\right)^{n} \mathrm{C}_{N}^{n}
$$

C depends only on ρ and ϵ but not on N.
Proof. Let us consider in \mathbb{C} the entire function $g(z)=\sum_{\alpha \geq 1} \frac{z^{\alpha}}{\alpha^{\alpha / 2}}$. For every $\epsilon>0$, we have

$$
|g(z)| \leq \sum_{\alpha \geq 1} \frac{|z|^{\alpha}}{\epsilon^{\alpha / 2} \sqrt{\alpha!}} \epsilon^{\alpha / 2}
$$

Using the Cauchy-Schwarz inequality, we obtain

$$
|g(z)| \leq\left(\sum_{\alpha \geq 1} \frac{|z|^{2 \alpha}}{\epsilon^{\alpha} \alpha!}\right)^{1 / 2}\left(\sum_{\alpha \geq 1} \epsilon^{\alpha}\right)^{1 / 2}
$$

Let $1 \leq n \leq N, q \in \mathbb{N}^{*}$, and let $z \in \mathbb{C}^{N}$, we have

$$
\begin{equation*}
\sum_{\substack{\alpha \in \mathbb{N}_{n}^{|k|} \\|\alpha|=q}} \frac{z^{\alpha}}{\alpha^{\alpha / 2}}=\sum_{\substack{1 \leq i_{1}<\ldots<i_{n} \leq N}} \sum_{\substack{\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}>0 \\|\alpha|=q}} \frac{z_{i_{1}}^{\alpha_{i_{1}}}}{\alpha_{i_{1}}^{\alpha_{i_{1}} / 2}} \cdots \frac{z_{i_{n}}^{\alpha_{i_{n}}}}{\alpha_{i_{n}}^{\alpha_{i_{n}} / 2}} . \tag{2}
\end{equation*}
$$

For any $1 \leq i_{1}<\ldots<i_{n} \leq N$, we observe that the second sum in the right hand of (2) is the homogeneous component of degree q of the product $g\left(z_{i_{1}}\right) \ldots g\left(z_{i_{n}}\right)$. It follows, when $z \in B_{N}(\sqrt{q})$, the majorization

$$
\left|\sum_{\alpha_{i_{1}, \ldots, \ldots \alpha_{n}>0}^{|\alpha|=q}} \frac{\alpha_{i}^{\alpha_{i_{1}}}}{\alpha_{i_{1}}^{\alpha_{i_{1}} / 2}} \cdots \frac{z_{i_{n}}^{\alpha_{i n}}}{\alpha_{i_{n}}^{\alpha_{i_{n}} / 2}}\right| \leq \exp \left(\frac{q}{2 \epsilon}\right)\left(\sqrt{\frac{\epsilon}{1-\epsilon}}\right)^{n} .
$$

By homothety on the ball of radius ρ, we get

$$
\left|\sum_{\substack{\alpha_{1}, \ldots, \alpha_{i n}>0 \\|\alpha|=q}} \frac{z_{i_{1}}^{\alpha_{i_{1}}}}{\alpha_{i_{1}}^{\alpha_{i_{1}} / 2}} \cdots \frac{z_{i_{n}}^{\alpha_{i_{n}}}}{\alpha_{i_{n}}}\right| \leq\left(\frac{\rho}{\sqrt{q} / 2}\right)^{q} \exp \left(\frac{q}{2 \epsilon}\right)\left(\sqrt{\frac{\epsilon}{1-\epsilon}}\right)^{n}
$$

and therefore, if ρ is sufficiently small, we get

$$
\left|P_{n}(z)\right| \leq \sum_{\substack{q \geq n}}\left|\sum_{\substack{\alpha \in \mathbb{N}_{n}^{k \mid} \\|\alpha|=q}} \frac{q^{q / 2} z^{\alpha}}{\alpha^{\alpha / 2}}\right| \leq \frac{\left(e^{1 / 2 \epsilon} \rho\right)^{n}}{1-\rho e^{1 / 2 \epsilon}} \mathrm{C}_{N}^{n}
$$

2.3. Fourier series expansion.

Theorem 2. If f is in $\mathcal{C}^{\infty}\left(\overline{B_{N}}\right)$, then it admits the Fourier series expansion

$$
\begin{equation*}
f(z)=\sum_{\alpha \in \mathbb{Z}^{N}} z^{\alpha} f_{\alpha}\left(|z|^{2}\right) \tag{3}
\end{equation*}
$$

where $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \ldots z_{N}^{\alpha_{N}}$ with $z_{i}^{\alpha_{i}}=\left(\overline{z_{i}}\right)^{\left|\alpha_{i}\right|}$ if $\alpha_{i}<0$.
The series (3) is normally convergent with its derivatives on $\overline{B_{N}}$; the coefficients f_{α} are \mathcal{C}^{∞} on $\left\{x \in \mathbb{R}_{+}^{N} ; x_{1}+\ldots+x_{N}<1\right\}$, that satisfy

$$
\forall \alpha \in \mathbb{Z}^{N} ; z^{\alpha} f_{\alpha}\left(|z|^{2}\right)=\int_{[0,2 \pi]^{N}} f\left(z e^{i \theta}\right) e^{-i(\alpha \cdot \theta)} \frac{d \theta}{(2 \pi)^{N}}
$$

where $(\alpha \cdot \theta)=\sum_{i=1}^{N} \alpha_{i} \theta_{i}, e^{i \theta}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{N}}\right)$, and $\frac{d \theta}{(2 \pi)^{N}}=\frac{d \theta_{1}}{2 \pi} \ldots \frac{d \theta_{N}}{2 \pi}$.
For the proof see ([5], Theorem 2.1).
3. Exactness of a class of $(\mathbf{0}, \mathbf{1})$-forms. We study the local exactness of $\bar{\partial}$ in the Hilbert space l^{2} for a particular class of $(0,1)$-forms of the type

$$
\omega(z)=\sum_{i} z_{i} \omega^{i}(z) d \overline{z_{i}}, \quad z=\left(z_{i}\right) \text { in } l^{2}
$$

under the following assumptions $\left(H_{1}\right)$:
i) Each function ω^{i} is indefinitely differentiable on the closed unit ball of l^{2}, and it takes the form

$$
\begin{equation*}
\omega^{i}(z)=\sum_{k} \omega_{k}^{i}\left(z^{k}\right) \tag{4}
\end{equation*}
$$

where the series (4) is supposed to be absolutely convergent, and where $\mathbb{N}=\bigcup I_{k}$ is a partition of \mathbb{N}, with z^{k} standing for the projection of z on $\mathbb{C}^{I_{k}}$, and ω_{k}^{i} being a function of class \mathcal{C}^{∞} on the closed unit ball of $\mathbb{C}^{I_{k}}$ provided with the norm of l^{2}.
ii) For all k, card I_{k} noted $|k|$ is finite.

According to Theorem 2, for all i and k the function ω_{k}^{i} admits a Fourier series expansion in the form $\omega_{k}^{i}\left(z^{k}\right)=\sum_{\alpha \in \mathbb{Z}^{k \mid} \mid}\left(z^{k}\right)^{\alpha} \omega_{\alpha, k}^{i}\left(\left|z^{k}\right|^{2}\right)$, where the coefficients $\omega_{\alpha, k}^{i}$ are functions of class \mathcal{C}^{∞}, on the closed unit ball of $\mathbb{C}^{I_{k}}$.

In what follows, we make the assumption $\left(H_{2}\right)$:

$$
\omega_{k}^{i}\left(z^{k}\right)=\sum_{\alpha \in \mathbb{N}^{|k|}}\left(z^{k}\right)^{\alpha} \omega_{\alpha, k}^{i}\left(\left|z^{k}\right|^{2}\right) \quad \text { for all } i \text { and } k \text { in } \mathbb{N} .
$$

Following ([5], Theorem 3.2), ω is $\bar{\partial}$-closed if and only if the form $\Phi_{\alpha, k}=\sum_{i \in I_{k}} \omega_{\alpha, k}^{i} d t_{i}$ is d-closed in the closed unit ball of $\mathbb{R}_{+}^{|k|}$ for each α and k. So we are led to integrate the (0,1)-form $\tilde{\omega}=\sum_{k} \tilde{\omega}_{k}$ such that

$$
\tilde{\omega}_{k}\left(z^{k}\right)=\sum_{i \in I_{k}} z_{i}\left[\sum_{\alpha \in \mathbb{N}^{|k|}}\left(z^{k}\right)^{\alpha} \frac{\partial \Omega_{\alpha, k}}{\partial t_{i}}\left(\left|z^{k}\right|^{2}\right)\right] d \overline{z_{i}},
$$

where $\Omega_{\alpha, k}$ is an anti-derivative of the form $\Phi_{\alpha, k}$.
Each $\tilde{\omega}_{k}$ is a $\bar{\partial}$-closed $(0,1)$-form of class \mathcal{C}^{∞} on the closed unit ball of $\mathbb{C}^{I_{k}}$.
Let $F_{k}\left(z^{k}\right)=\sum_{\alpha \in \mathbb{N}|k|}\left(z^{k}\right)^{\alpha} \Omega_{\alpha, k}\left(\left|z^{k}\right|^{2}\right)$. Then $F=\sum_{k=1}^{\infty} F_{k}$ is a formal solution of the equation $\bar{\partial} F=\tilde{\omega}$ and according to ([3], Appendix 3, Lemma 5) the problem is reduced to the existence of a real number $r \in] 0,1\left[\right.$, and for every α and k an anti-derivatives $\Omega_{\alpha, k}$ such that the series F_{k} converge and satisfies an estimate independent of k on the ball of radius r of $\mathbb{C}^{I_{k}}$. We give a positive response for two particular cases.
i) The polynomial case.

Theorem 3. Let ω be a closed $(0,1)$-form of class C^{∞} on \bar{B} of the type $\omega(z)=\sum z_{i} \omega^{i}(z) d \overline{z_{i}}$ and verifying the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. If there exists a positive integer M such that the coefficients $\omega_{\alpha, k}^{i}$ are null for all $|\alpha|>M$, all k and all i in I_{k}, then the series F_{k} and F converge and define indefinitely differentiable functions on \bar{B}.

For the proof see ([5], Theorem 4.1).
ii)Non-polynomial case. Let $\left(n_{k}\right)$ be a sequence of integers such that $1 \leq n_{k} \leq|k|$ for all k, and $\lim \inf \frac{n_{k}}{|k|}>0$. If we suppose that for every k, the coefficients $\omega_{\alpha, k}^{i}$ are null if $\alpha \in \mathbb{N}_{n}^{|k|}$ for all $n<n_{k}$, and all i in I_{k}, then we shall prove that there exists $r>0$ such that for k sufficiently large the series F_{k} and F converge and define indefinitely differentiable functions on $B(r)$.

The proof of Theorem 1 is a direct consequence of the forthcoming proposition.
Proposition 1. Let ω be a closed $(0,1)$-form of the class C^{∞} on the closed unit ball of l^{2} according to the type $\omega(z)=\sum z_{i} \omega^{i}(z) d \bar{z}_{i}$ and verifying the assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$. Let $\left(n_{k}\right)$ be a sequence of integers such that $1 \leq n_{k} \leq|k|$ for all k, and $\liminf _{k \rightarrow+\infty} \frac{n_{k}}{|k|}>0$. We suppose moreover that for each k, the coefficients $\omega_{\alpha, k}^{i}$ are null if $\alpha \in \mathbb{N}_{n}^{|k|}$ for all $n<n_{k}$, and
all i in I_{k}, and that the derivatives $D^{p} \omega^{i}$ are uniformly bounded in i on the unit ball of l^{2} for $0 \leq p \leq 2$. Then there exists $r>0$ and $\lambda>0$ such that for k sufficiently large and $z \in B(r)$, the series F_{k} converge and defines a $\bar{\partial}$-antiderivates of $\tilde{\omega}_{k}$ of class C^{∞} on $\overline{B_{|k|}}(r)$ for which

$$
\begin{equation*}
\left|F_{k}\left(z^{k}\right)\right| \leq C\left(\left\|z^{k}\right\|^{2}+\left(2 r^{\lambda}\right)^{|k|}\right) \sup _{\substack{i \\ 0 \leq p \leq 2}}\left\|D^{p} \omega^{i}\right\|_{\infty} \tag{5}
\end{equation*}
$$

where C is a constant independent of k.
Proof. We recall that $\Phi_{\alpha, k}$ designates the closed form in $\mathbb{R}_{+}^{|k|}$ defined by $\Phi_{\alpha, k}=\sum_{i \in I_{k}} \omega_{\alpha, k}^{i} d t_{i}$. Its anti-derivative is given by $\Omega_{\alpha, k}\left(\left|z^{k}\right|^{2}\right)=\int_{\gamma} \Phi_{\alpha, k}$, and the path γ defined below joins the point $\left|z^{k}\right|^{2}$ to a fixed point of the closed unit ball of $\mathbb{R}_{+}^{|k|}$.

We also recall that we can take the function F_{k} for a $\bar{\partial}$-antiderivates of $\tilde{\omega}_{k}$ conditioned by its series convergence.

Given $0<r<1$ and $z \in \overline{B(r)}$, the path γ is the union in $\mathbb{R}_{+}^{|k|}$ of the adjacent segments $\left[M^{m}, M^{m+1}\right](m=0, \ldots,|k|)$, defined by $M^{0}=\left|z^{k}\right|^{2}$, and for $m \in\{1,2, \ldots,|k|+1\}$,

$$
M_{i}^{m}= \begin{cases}\frac{\alpha_{i}}{|\alpha|} & \text { if } i<m \\ \left(\frac{\left|z_{i}\right|}{r}\right)^{2} & \text { if } i \geq m\end{cases}
$$

Let

$$
F_{k}^{m}\left(z^{k}\right)=\sum_{n \geq n_{k}} \sum_{\alpha \in \mathbb{N}_{n}^{|k|}}\left(z^{k}\right)^{\alpha} \int_{M^{m}}^{M^{m+1}} \Phi_{\alpha}, \quad m=0, \ldots,|k|
$$

Since $F_{k}=\sum_{m=0}^{|k|} F_{k}^{m}$, it will be enough to prove that, for all $m=0, \ldots,|k|$, the series F_{k}^{m} converges and satisfies an estimate independent of k.

Let us start with the case $m=0$.

$$
\begin{aligned}
F_{k}^{0}\left(z^{k}\right) & =\sum_{n \geq n_{k}} \sum_{\alpha \in \mathbb{N}_{n}^{|k|}} \int_{1}^{1 / r^{2}}\left(z^{k}\right)^{\alpha} \sum_{i \in I_{k}} \omega_{\alpha}^{i}\left(u\left|z^{k}\right|^{2}\right) \cdot\left|z_{i}\right|^{2} d u \\
& =\sum_{q \geq n_{k}} \int_{1}^{1 / r^{2}} \int_{0}^{2 \pi} \frac{1}{(\sqrt{u})^{q+1}}\left\langle\tilde{\omega}\left(\sqrt{u} z^{k} e^{i \theta}\right), z^{k}\right\rangle e^{-i q \theta} \frac{d \theta}{2 \pi} d u .
\end{aligned}
$$

By making two integrations by parts relatively to θ in each term of the above sum, we obtain

$$
\begin{equation*}
\left|F_{k}^{0}\left(z^{k}\right)\right| \leq C\left\|z^{k}\right\|^{2} \sup _{p \leq 2}\left\|D^{p} \tilde{\omega}\right\|_{\infty} \tag{6}
\end{equation*}
$$

where C is a constant independent of k. Now, let us consider the series F_{k}^{m} for $m \geq 1$. We can write

$$
F_{k}^{m}\left(z^{k}\right)=\sum_{\substack{\alpha \in \mathbb{N}_{n}^{k \mid} \\ n \geq n_{k}}} \int_{0}^{2 \pi} \int_{M^{m}}^{M^{m+1}} \frac{|\alpha|^{\frac{|\alpha|}{2}}\left(z_{k}\right)^{\alpha_{m}^{\prime}}\left(\alpha_{m}^{\prime \prime}\right)^{\frac{1}{2} \alpha_{m}^{\prime \prime}} r\left|\alpha_{m+1}^{\prime \prime}\right|}{\alpha^{\frac{\alpha}{2}}\left(t_{m}|\alpha|\right)^{\frac{1}{2} \alpha_{m}}|\alpha|^{\frac{1}{2}}\left|\alpha_{m+1}^{\prime \prime}\right|} \omega^{m}\left(\sqrt{t} e^{i \theta}\right) e^{-i|\alpha| \theta} \frac{d \theta}{2 \pi} d t_{m}
$$

An easy computation shows that

$$
\left|z_{m}^{\alpha_{m}}\right| \int_{M^{m}}^{M^{m+1}} \frac{d t_{m}}{\left(\sqrt{t_{m}}\right)^{\alpha_{m}}} \leq C r^{\alpha_{m}}
$$

where C is a constant.
If we choose r sufficiently small, then an application of Lemma 1 shows that

$$
\left|F_{k}^{m}\left(z^{k}\right)\right| \leq C 2^{|k|} \sup _{i}\left\|\omega^{i}\right\|_{\infty} r^{n_{k}}
$$

for every $z \in \overline{B(r)}$ and $m \geq 1$.
Since $\liminf _{k \rightarrow+\infty} \frac{n_{k}}{|k|}>0$, there exists a real number $\lambda>0$ such that $n_{k} \geq \lambda|k|$ for k sufficiently large, hence we are led to the majorization

$$
\begin{equation*}
\sum_{m=1}^{|k|}\left|F_{k}^{m}\left(z^{k}\right)\right| \leq C\left(2 r^{\lambda}\right)^{|k|} \sup _{i}\left\|\omega^{i}\right\|_{\infty} \tag{7}
\end{equation*}
$$

for all $z \in \overline{B(r)}$, where r is choosen sufficiently small, and C is a constant independent of k. Now, (6) and (7) implies the required estimate (5).

REFERENCES

1. L. Lempert, The Dolbeault complex in infinite dimension, 1, J. Amer. Math. Soc, 11 (1998), 485-520.
2. L. Lempert, The Dolbeault complex in infinite dimension, 2, J. Amer. Math. Soc, 12 (1999), 775-793.
3. P. Mazet, Analytic sets in locally convex spaces, North Holland Math. Studies, Amsterdam, V.89, 1984.
4. R.A. Ryan, Holomorphic mappings in l^{1}, Trans. Amer. Math. Soc., 302 (1987), 797-811.
5. A. Talhaoui, Exactness of some $(0,1)$-forms in Hilbert spaces of infinite dimension, Math. Nachr., 8-9 (2011), 1172-1184.
6. A. Talhaoui, The Cauchy-Riemann equations in the unit ball of l^{2}, Rend. Circ. Mat. Palermo, DOI 10. 1007/s12215-014-0151-0, 2014.

National Polythecnic School of Oran, Algeria
talhaoui_abd@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: 32F20, 46G20.
 Keywords: $\bar{\partial}$ operator; Hilbert space; infinite dimension.
 doi:10.15330/ms.46.2.171-177

