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The famous Ukrainian mathematician Andriy Kondratyuk was born on March 5, 1941
in the village Hremyache. 1t is situated near the city of Ostrog, Rivne Region. The glorious
Volyn land and the close relation to an ancient center of Ukrainian Science Ostrog Academy;,
an ancient center of the Ukrainian sciense, promoted in young Andriy two main features:

patriotism and love for science.

In 1958 he graduated from the Dubno Pedagogical
College and started to work as a teacher of mathematics
in Voronkivska seven-year school in Volodymyrets, Rivne
region.

In 1960 A. Kondratyuk entered the Lviv University and
his life was attached to it forever on. He graduated with
distinction from the Faculty of Mechanics and Mathemati-
cs and entered the PhD courses in 1965. However, for
the next year, Andriy Kondratyuk was doing his military
service in the army. After demobilization he returned to
the postgraduate study. Also he was accepted as an Assi-
stant Professor of Department of Function Theory and
Probability.

The first scientific paper was published in the
journal “Lithuanian mathematical collection” (“Lietuvos
matematikos rinkinys”) in 1967.

Andriy Kondratyuk defended his PhD thesis “Fsti-
mates of indicators of entire functions” in 1969.

He continued with Lviv University as an Assistant Proffesor of the Department of Functi-
on Theory and Probability. In 1971 he became an Associate Professor (Docent) of the same

department.

During 1972-1975 he works as a lecturer of mathematics in Algeria and Cuba. After his
arrival in Lviv Andriy Kondratyuk returned to the work at the Lviv University and began

to conduct his scientific research very actively.

He published a lot of scientific works concerning meromorphic functions of completely
regular growth and subharmonic functions during the next ten years. As a result of such
productive work Kondratyuk defended the DSci thesis “Fourier and Fourier-Laplace series
method for meromorphic and subharmonic functions of completely reqular growth” in 1989.
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Andriy Kondratyuk was a Professor since 1990 and the
Head of the Department of Mathematical and Functional
Analysis of Lviv University since 1992. He conducted acti-
ve scientific work. Many PhD theses and DSci thesis were
defended under his guidance and supervision. In 2010 he
was given the honorary title of Distinguished Professor of
the Ivan Franko Lviv National University.

Professor Andriy Kondratyuk died on April 22, 2016.
A lot of scientific ideas, thoughts, plans left unfinished.

Andriy Kondratyuk always had an active public posi-
tion. He took an active part in democratic processes of
the reformation and collapse of the Soviet Union and the
establishment of the independent Ukraine. He was a deputy of district council for a period,
and one of the founders of the Statute of the Lviv University. Several times he presided at
the first democratic conferences of the university stuff. Professor Kondratyuk always had his
own independent view, often ahead of time.

Andriy Kondratyuk was a real intellectual. He loved and respected nature of his native
land. He was a great fisherman and a mushroom gather. He had many favorite places in
many parts of Ukraine. He mastered skiing in adulthood. His active way of life, optimism,
cheerfulness, benevolence had always been and remain an example for his students, colleagues
and friends.

Andriy Kondratyuk had two sons Taras and Yarema and five grandchildren.
The most essential scientific achievements of A. A. Kondratyuk

Ph.D. thesis
Bounds for Indicators of Entire Functions (1969)

To describe the asymptotic behavior of an entire function f of order p > 0 and of normal
type along the rays {z : arg z = 0}, the function h(0, f) = limsupr—"In|f(re?)|, 0 < < 27

T—+00
is used. It is called the indicator and was introduced by Fragmen and Lindeltf in 1908.

Also there is the notion of lower indicator h(f, f), defined as h(6, f) = limjnf r=In | f(re?)|,
r—400

0 < @ < 2rif f is an entire function with positive zeros and h(0, f) = limjnf*r*” In|f(re)|,
T—>+00

0 < # < 27 in the case of an arbitrary entire function f of order p > 0, where lim inf* means
that before passing to the limit Cy-sets of discs of zero linear density are removed from the
plane C and then supremum in all Cy-sets is taken.

Let us start with classes of entire functions f with positive zeros. It is said that the zeros
of f have density 0 if the counting function n(r) of the zeros of f possesses the property
n(r) ~ dr?,r — +o00. It was Lindel6f who had shown in 1902, even before the introduction of
the notion of the indicator, that in this case the indicator coincides with the lower indicator
(if p is an integer then the indicators are taken with respect to 7”Inr) and can be expressed
in terms of simple functions of §, p and . Later G.Valiron (1914) and E.Titchmarsh (1927)
showed that the existence of the density of the zeros is necessary for the coincidence of the
indicator and lower indicator in the case of noninteger order.

The following problem arises when the density of the zeros does not exist: to give precise
lower and upper estimates for the indicator and lower indicator. First step in this direction
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was done by B. Ya. Levin, who got sharp upper bound for the indicator of an entire function
of order p = % with positive zeros and prescribed upper density. Further results in this
direction belong to A. F. Leont’ev (1956), M. I. Andrashko (1960), Y. V. Ostrovskyi (1961),
N. V. Govorov (1966). The problem of finding sharp estimates of the indicator and lower
indicator for the class of entire functions with positive zeros and prescribed conditions on
the lower and upper densities was completely solved by A. A. Gold’berg (1962-1966).

In A. A. Kondratyuk’s thesis precise estimates of growth of entire functions f of finite
order p along the rays depending on the distribution of their zeros were established.

In particular, he got sharp estimates of h(f, f), h(6, f) in the class of entire functions
with positive zeros under some conditions on the maximal and minimal densities of zeros
introduced by D. Polya (1929). Moreover, the results of Polya were substantially generalized.

Note that in the general case the upper (lower) angular density of zeros is not an additive
measure of an angle. In 1962-1965 A. A. Goldberg developed the theory of the integral
on nonadditive measure and used it to get precise estimates of the indicators with some
conditions on the upper and lower angular densities of zeros. A. A. Kondratyuk introduced
a notion of the maximal angular density of zeros of an entire function. An advantage of his
definition is the fact that the maximal and minimal densities of zeros are additive measures of
an angle. Based on this notion he completely solved the problem of finding precise estimates
for the indicator and lower indicator of entire functions having finite maximal density. The
finiteness of the maximal density means that the sequence of zeros does not have large
accumulations. Such class of functions is distinguished by the fact that, firstly, the lower
indicators of these functions unlike the general case are bounded and, secondly, the estimates
in this class have very simple form.

Doctoral Thests
Fourier and Fourier-Laplace series methods
for meromorphic and subharmonic functions of completely reqular growth (1989)

In 1936-42 B. Levin and A. Pfliiger developed the theory of entire functions of completely
regular growth (c.r.g for short). This theory has wide applications in a number of sections
of modern analysis such as analytic theory of differential equations, Riemann boundary
problem theory, theory of almost periodic functions, interpolation of entire functions and
their representation by ordinary and generalized Laurent series, solvability of the equations of
convolution type in various classes of analytic functions, theory of characteristic functions of
probabilistic laws. Also, directly or indirectly, in a number of theoretical physics, radiophysi-
cs, electrical and radio engineering, computer tomography problems. Therefore the problem
of contensive generalization of this theory on meromorphic functions, and even for a wider
scale than in the case of the ordinary or generalized order naturally arises. This problem
turned out to be extremely difficult, because of a number of nontrivial circumstances. In
particular, it was unclear how to define an indicator of a meromorphic function reasonably.
Furthermore, unlike the case of entire functions, good asymptotics of the logarithm of the
modulus of a meromorphic function does not imply regular (in usual interpretation) distri-
bution of its zeros and poles. Therefore to solve this problem new research tools have to be
used.

Using Fourier series method developed by L. A. Rubel and B. A. Taylor and some results
of A. A. Gol'dberg and V. S. Azarin on regular behavior of the logarithm of the modulus
of an entire function of a proximate order and their Fourier coefficients, A. A. Kondratyuk
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in series of his publications, starting in 1978, constructed complete and contensive theory of
meromorphic functions of completely regular growth in a quite general comparison functi-
ons (growth functions) scale. The theory of meromorphic functions of c.r.g. in sense of
A. A. Kondratyuk covers even wider class of entire functions than the classical Levin-Pfliiger
theory does. The monograph [26] of A. A. Kondratyuk contains comprehensive statement of
this theory.

Subharmonic functions were introduced by F. Hartogs and F. Riesz though the concept
was laid earlier in the works of H. Poincaré. They are in some sense generalizations of convex
functions for the case of several variables. The theory of harmonic and subharmonic functions
plays a significant role in analytic function theory. This is in particular due to the fact that
the real part Re f and the imaginary part Im f of an analytic function f in some domain
are harmonic functions and the functions log |f| and |f|?, p > 0, are subharmonic in this
domain. Thus theories of harmonic and subharmonic functions offer an efficient and powerful
tool investigation of properties of analytic functions. However the utmost importance these
theories have because of direct connections between subharmonic functions and the potential
theory, since the fundamental F. Riesz representation theorem states that any subharmonic
function is a locally sum of some harmonic function and a potential. Hence the studying
of subharmonic and harmonic functions is one of the most important aspects of potential
theory which plays a crucial role in investigation of problems of mathematical physics and
field theory, including the newest ones.

Generalization of Rubel-Taylor theory on subharmonic functions in the plane did not
cause essential complications and was done by P. Noverazz and Ya. V. Vasyl’kiv. Concerning
multidimensional space the problem of the development of Fourier-Laplace series method,
i.e. spherical harmonic series, for subharmonic functions was posed by L. A. Rubel in 1973.
However it could not be solved for a long time. The main task in this problem was to describe
Riesz measures of subharmonic functions of possibly most general type of growth. Also the
problem of the application of results to studying subharmonic functions of c.r.g. in higher
dimensions was of considerable interest.

Using the Poisson transformation of a generalized function on the unit sphere A. A. Kon-
dratyuk introduced and developed spherical harmonic method (Fourier-Laplace series me-
thod) for subharmonic functions in the space. Thus the problem of L. A. Rubel was completely
solved. The main result out of others obtained by A. A. Kondratyuk is a criterion on the
description of Riesz measures of subharmonic functions with arbitrary growth restrictions. As
a consequence analogs of classical Lindelof, Borel, Weierstrafl theorems were obtained. These
and other results were applied to the investigation of differences of subharmonic functions,
subharmonic functions of c.r.g. in the space and subharmonic functions of infinite order with
radially distributed masses. The most important new scientific problems solved in this thesis
are the following: 1) the problem of the construction of complete and contensive theory of
meromorphic functions of c.r.g.; 2) the problem of the development of spherical harmonics
method for subharmonic in the space functions and its application to the investigation of
subharmonic functions of c.r.g. To solve these problems wide enough class of comparising
functions was used as well as Fourier series method for meromorphic functions was further
developed.



104

Further results
General Paley problem

In 1932, Paley conjectured that the following inequality is true for an arbitrary entire
function f of order p > 0 :

ro+o0 T(r,In|f]) = | 2£&, 0<p<1/2.

sinmp?

> 1/2:
lim inf —B<T’1n’f|) < {Wp’ p=1/2

where B(r,In|f]), T(r,In|f|) are commonly known growth characteristics for subharmonic
function u = log|f|. The equality holds, in particular, for Mittag-Leffler’s entire functions.
G. Valiron (1930) and A. Valund (1929) were the first who proved it for the case 0 < p < 1/2.
N. V. Govorov, using methods developed by him in order to solve the Riemann boundary
problem with infinite index, completely proved Paley’s hypothesis. It follows from the results
of V. P. Petrenko that Paley’s relation remains true if the lower order \ is taken instead of
the order p, and f can be assumed meromorphic. In the case of entire functions and A < 1/2
the possibility of replacement p by X in Paley’s relation was proved by A. A. Gol’dberg and
Y. V. Ostrovskiy.
The problem of finding an exact upper bound for
lim inf M

1<qg<
r—+oo  T(r,u) ’ 1= +00,

where u is a subharmonic in RP*2, p € N function of finite lower order, is called the generalized
Paley problem. It was solved by M. L. Sodin in 1983 for subharmonic functions in R2.
A. A. Kondratyuk together with S. I. Tarasyuk and Ya. V. Vasylkiv using the Phragmén-
Lindelof principle for d-subharmonic functions and properties of A. Bernstein star-function
u* completely solved the above mentioned generalized Paley problem. They proved that

+
lim inf my(r, u”)
r—=+oo (7n7 u)

My(A\,p) = mg(QY), Q¥(6) = {

< My(\,p),

AN, p)CP P (cos), 0<0< ay;
07 Q) S 0 S ,

—mi . (/2 _ _ (9 [ e P -
ay =min{f € (0,7): C}'"(cosf) =0}, A(\,p) = (— Cy/'"(cos 8) sin 9d9> ,

Op+1 Jo
where 0, being the measure of the unit sphere in RP, Cf/ ? is the Gegenbauer polynomial.
Functions conjugate to subharmonic functions

The following two fundamental facts are well-known in the modern complex and real
analyses:

1. Real and imaginary parts of holomorphic in simply-connected domain function are
harmonically conjugated functions. This is caused by the very nature of a derivative in
complex analysis sense and is expressed in Cauchy-Riemann conditions.

2. Harmonically conjugated in the unit disk D functions are connected with each other
through harmonic conjugation operator (Hilbert operator for a circle). This operator
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permits to combine methods of the theories of functions of complex and real variables
with methods of commutative harmonic analysis, in particular, with methods of the
metric theory of conjugated functions.

Since on the one hand log B of Blaschke product B is a holomorphic function in the
simply-connected domain D*, the unit disk D with radial slits from its zeros to the boundary
S, the real and imaginary parts of log B should also be expressed by a harmonic conjugation
operator. On the other hand, the function u = log | B is not harmonic in D (it is subharmonic)
and this special fact should be properly reckoned with. A connection between logarithm of the
modulus and the argument of Blaschke product was firstly established by A. A. Kondratyuk
and Ya. V. Vasylkiv in 1996. It has the following form

arg B(re) = u(re') — p(re®)

for almost all # € [0;27] and any fixed r € (0,1), where by ~ the harmonic conjugation
operator is denoted. A compensating function p(z), called the zero distribution function of
a product B(z), has the following form

r

p(re?) = Z P (r,te' i(6=a; )t_l dt, 0<r<1, 6¢€]l0,2n],

aj|<t

where P(r,w) = Re[(r + w)(r —w)™'], Jw| < r, is the Poisson kernel.

The introduction of the notion of the function conjugated to a subharmonic function in a
domain starred with respect to the origin and studying its properties inspired new research
direction.

In 2000, A. A. Kondratyuk jointly with Ya. V. Vasyl’kiv laid the foundations of the theory
of functions conjugated to subharmonic functions. Namely, they introduced the notion of a
function % conjugated to a subharmonic function u in a domain starred with respect to the
origin; established a series of representations of such functions, in particular, they showed
that if w = log|f| and f is holomorphic then the conjugated function @ to the function w is
a branch of Arg f. They also obtained initial relations for the Fourier coefficients of a pair
of functions F' = u + .

The main result is the following. Let u(z) be a subharmonic in the disk {z € C : |z| < R}
function, harmonic in some neighborhood of the origin, u(0) = 0, let u[u] be the Riesz
measure of u. Then for any r € (0,R) i(re?) = u(re®) — p(re) holds for almost all
¢ € [0; 27]. Here

p<z>=7%/ P (115 ) dul /dtf Pt ) dsttop), L= <R

0 la|<t

where s(t, 0) = plu] ({z = |2[e" : 2| <t,0< 0 < 7}).

It should be emphasized that since the function @ conjugated to a subharmonic function
u is expressed in terms of Hilbert operator for a circle, this crucial to the metric theory of
conjugated functions (which by-turn belongs to the commutative harmonic analysis, one of
the classical directions of mathematics) fact allows to combine effectively methods of this
theory with methods of the theory of functions of real and complex variables by means of
the potential theory and Nevanlinna theory methods. Note that this representation allowed
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to solve completely generalized A.Zigmund’s problem, i.e. to describe the behavior of the
Lebesgue integral p-means (1 < p < 4o00) of log B and log|B| of Blaschke product B in
terms of its zero distribution.

Distribution of zeros of the Riemann (-function

The Riemann (-function is defined as follows,

1 1\'
((s) = — or ((s)= (1__3> )
=X o =TI (1-;

where Res > 1, and the product is taken over all prime numbers. This function was first
considered by L. Euler in 1737 for real s. In particular, he proposed its representation as the
infinite product over all prime numbers p. In 1859, G. F. B. Riemann showed that ((s) has
a meromorphic continuation to the whole complex s-plane C with a simple pole at s = 1.
He put forward a hypothesis that all non-trivial (non-real) zeros of the function ((s) lie on
“the critical line” Re s = % This hypothesis is considered to be one of the greatest unsolved
problems in mathematics and is called the Riemann hypothesis.

In 1924 J. Littlewood established an analog of Jensen theorem for a rectangle and derived
from it the following relation

773

1
1 1
/N(n,T)dn:O(Tlog 1), a>§, T — 400,

where N (o, T) is the number of zeros of the Riemann (-function with real parts in [0, 7] and
imaginary parts greater than o.

A. A. Kondratyuk jointly with A. M. Brydun generalized the Jensen-Littlewood theorem
for a rectangle and studied the properties of the Fourier coefficients of the logarithm of the
Riemann (-function. In particular, they showed that the Fourier coefficients Iy (o, T') of the
function log ((s) are continuous functions with respect to ¢ for any fixed 7" > 0, and bounded
when o > 0y > 1/2, T' > 1 by a constant depending only on oy. The coefficient ly(o,T') is
bounded when ¢ > 1/2, T' > 1. Taking this into account they showed that the Riemann
hypothesis is equivalent to the following statement: for any fixed o such that % <o <1,and
for any fixed T > 0 there exists a constant C'(¢,T') such that the inequality

q

T

1

T/u%mw+wmwt < Clo,T)
0

holds for all ¢ > 1.

Another important results obtained by A. A. Kondratyuk in this direction include the
following.

a) Summation of the logarithm of the modulus of the Riemann zeta-function on the
critical line with the kernel 1/|s|*. Jointly with P. A. Yatsulka the following new formulation

of the Riemann hypothesis is obtained. Let {p;} be the sequence of nontrivial zeros of ((s).
Then

L[ loglc(s)]
— =2 Zds|l =1 — 2
o / s =1 -042 ¥

Res=3% Rep;>3

)

; 12 —Rep;)(2Rep; — 1
log Py ‘—i— Z (|pj| ep])( 2/09 )
1—pj i (1 = pj)]

Repj>%
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where v is the Euler constant. The Riemann hypothesis is true if and only if

1 log [¢(s)]
— ——|ds| =1 —~.
27T/ 5[ |ds| v
Res:%

b) An analog of the Carleman-Nevanlinna formula for meromorphic in a rectangle functi-
ons is established and applied to the summation of the logarithm of the modulus of the
Riemann zeta-function on the critical and another vertical lines. In particular, let

—+00

1
I(a):/e“log‘g<§+z’t)‘dt, e >0,
0

and let {p;} be nontrivial zeros of ((s). Then
m
3
j

where I(+0) = lim I(¢). Hence, the Riemann hypothesis is true if and only if I(40) = —7.

e—0

1
Re p; — 5‘ = I(+0) +g

Theory of meromorphic and subharmonic functions
in multiply connected domains

Wide range of known and actual complex analysis problems leads to the study of mero-
morphic functions in multiply connected domains. In particular, considering the composition
foR of a transcendental meromorphic in C function f and a rational function R with n —1
distinct poles in C, we obtain a meromorphic function in an n-connected domain. Nonetheless
a profound and elegant theory operating with convenient notions and notation had not been
constructed yet.

The case of a doubly connected domain is an important special case. By the Doubly
Connected Mapping Theorem any such domain is conformally equivalent to an annulus or
to the punctured plane which can be considered as a generalized annulus. The functions
of the variable z holomorphic on annuli centered at the origin possess some remarkable
properties. They admit the Laurent expansion, the Hadamard Three Circle Theorem holds,
the integral means of their moduli as well as their logarithms are convex with respect to
log |z|. Nevertheless, there is a fundamental difference in a topological sense between si-
mply connected and doubly connected domains which has its reflection in the theory of
meromorphic functions. The fundamental (Poincaré) group of a simply connected domain
is trivial, while for a doubly connected domain we have a group isomorphic to the additive
group Z.

The geometrical approach to the study of meromorphic functions in multiply connected
domains was first proposed in 1940 by G. Hallstrom, the student of Nevanlinna and Li-
ndelof. He used Green functions for multiply connected domains which do not have expli-
cit representation. Many other authors had studied later meromorphic functions in multi-
ply connected domains and generalized the Nevanlinna theory for such classes of functi-
ons. Among them we mention N. Oguztoreli, J. A. Jenkins, H. P. Kunzi, H. Wittich,
V. A. Zmorovich, G. U. Mathevossian, R. Korhonen.
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A. A. Kondratyuk proposed to consider the model case of a doubly connected domain, the
annulus A = {z: 1/ry < |2| < Ro}, Ry € (1,400). Thus, if f(z) is a holomorphic function
on A then f (%) and 2™ f(z), where m € Z, are holomorphic on A as well.

For meromorphic in finitely connected domains A. A. Kondratyuk also proposed two
approaches.

The first approach uses the fact that any given finitely connected domain is conformally
equivalent to some circular domain. The whole complex plane as well as a single point
supposed to be circular domains of radius 400 and 0, respectively. This approach based on
the generalization of the Jensen theorem and the decomposition lemma for circular domains.
By this lemma, any given meromorphic in a circular domain function can be presented as a
product of a meromorphic function and functions meromorphic in the complement of some
internal discs.

The second approach is based on the fact that every finitely connected domain can
be presented as the intersection of a simply connected domain with compact exteriors of
which are components of the complement to the considered domain. Mapping conformally
the exteriors of these compacts onto the unit disc some generalization of the decomposition
lemma is obtained. The Riemann conformal mappings theorem guarantees the existence of
such conformal mapping if a component of the boundary does not degenerate to a point.

The main aspects of this theory can be found in the monographs [55], [59].

Using these new approaches A. A. Kondratyuk jointly with his students A. Ya. Khrysti-
yanyn, [. P. Kshanovskyy, M. O. Hanyak laid the foundations of the Nevanlinna value distri-
bution theory of the functions meromorphic in multiply connected domains and extended
the Fourier series method to this class of functions. Moreover, jointly with O. P. Gnatiuk and
O. V. Stashyshyn he also extended and generalized the main aspects of the this theory to the
case of subharmonic functions. In particular, the one- as well as two-parametric approaches
for the investigation of functions subharmonic in annuli invariant with respect to the inversi-
on and in ball layers were proposed. They also obtained explicit expression for the Green
function and the Poisson-Jensen formula as well as an analog of the Jensen theorem and
established relations between various growth functions. These results were applied to some
electrostatics problems.

Theses of A. A. Kondratyuk and his students

1. A.A. Kondratyuk, Bounds for indicators of entire functions (1969)

2. A.A. Kondratyuk, Fourier and Fourier-Laplace series methods for meromorphic and
subharmonic functions of completely regular growth (1989)

3. Ya.V. Vasylkiv, Investigation of asymptotic properties of entire and subharmonic fun-
ctions by the Fourier series method (1986)

4. O.V. Veselovska, Investigation of properties of harmonic and -subharmonic functions
by the method spherical harmonics (1991)

5. S.I. Tarasyuk, Integral means of §-subharmonic in R™ functions and classes of comple-
tely regular growth (1992)

6. A.Ya. Khrystiyanyn, Properties of analytic in a half-plane and meromorphic in annuli
functions (2006)

7. O.Ya. Brodyak, Growth and zero distribution of entire functions of finite A-type (2007)

8. A.M. Brydun, Fourier series method for meromorphic functions in a half-strip (2008)
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9. Ya.V. Vasylkiv, Development of the harmonical analysis methods for the investigation
of asymptotic properties of meromorphic and subharmonic functions (2008)
10. I.P. Kshanovskyy, Properties of meromorphic functions in double-connected domains

(2009)

LIST OF MONOGRAPHS AND PAPERS OF A. A. KONDRATYUK
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(1967), 79-117. (in Russian)
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(1967), 65-85. (in Russian)
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nian)
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growth II, Mat. Sb., 113(155) (1980), 118-132. (in Russian): English transl. in Math.
USSR Sb., 41 (1982).

14.  Asymptotic behavior and the number of deficient values of entire functions of completely
reqular growth, Dokl. Akad. Nauk Ukr. SSR, Ser. A, 5 (1981), 11-13. (in Russian)

15.  Two properties of meromorphic functions of completely reqular growth, Visn. Lviv Univ.
Ser. Mech. Mat., 18 (1981), 81-85. (in Ukrainian)

16.  On the generalization of classes of entire functions of completely reqular growth, Visn.
Lviv Univ. Ser. Mech. Mat., 18 (1981), 85-89. (in Ukrainian)

17.  On the method of spherical harmonics for subharmonic functions, Mat. Sb., 116(158)
(1981), Ne2, 147-165. (in Russian): English transl. in Math. USSR Sb., 44 (1983).

18.  (joint with Vasyl’kiv Ya.V.) Asymptotic behavior of L,-norms of log |f| in one class of
entire functions, Ukr. Mat. Zh., 34 (1982), Nel, 9-14. (in Ukrainian)
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