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Suppose that (Zn) is a sequence of real independent subnormal random variables, i.e. such
that there exists D > 0 satisfying following inequality for expectation E(eλ0Zk) ≤ eDλ2

0 for
any k ∈ N for all λ0 ∈ R. In this paper is proved that for random entire functions of the form
f(z, ω) =

∑+∞
n=0 Zn(ω)anz

n Levy’s phenomenon holds.

1. Introduction. By the classical Wiman-Valiron theorem ([1]–[4]), for every non-constant
entire function f(z) =

∑+∞
n=0 anz

n and any ε > 0 there exist a set E = E(f) ⊂ (1,+∞)
of finite logarithmic measure (

∫
E
d ln r < +∞) such that for all r ∈ [r0(ε); +∞) \ E the

inequality (Wiman’s inequality)

Mf (r) ≤ µf (r) ln
1/2+ε µf (r) (1)

holds, where Mf (r) = max{|f(z)| : |z| = r}, µf (r) = max{|an|rn : n ≥ 0}. Note that the
constant 1/2 cannot be replaced in general by a smaller number. Indeed, for entire function
f(z) = ez we have ([3], p. 177) Mf (r) ∼

√
2πµf (r) ln

1/2 µf (r) (r → +∞).
In the class of entire functions f represented by gap power series of the form

f(z) =
+∞∑
k=0

akz
nk , nk ∈ Z+, (2)

inequality (1) can be improved (for example see [5, 6]). In particular, from one result ([5])
obtained for entire Dirichlet series it follows that under the condition

(∃∆ ∈ (0;+∞))(∃ρ ∈ [1/2; 1])(∃D > 0) : |n(t)−∆tρ| ≤ D (t ≥ t0), (3)

(here n(t) =
∑

nk≤t 1 is counting function of the sequence (nk)), the inequality

Mf (r) ≤ µf (r) ln
(2ρ−1)/2+ε µf (r), (4)

holds for any ε > 0 and all r ∈ [r0(ε); +∞) \ E1, where E1 is a set of finite logarithmic
measure (for ρ = 1 from inequlity (4) we get the classical Wiman’s inequality). From other
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result ([6], see also [7]) obtained for entire Dirichlet series it follows that under condition (3)
there exists an entire function f of the form (2) such that

Mf (r)

µf (r) ln
(2ρ−1)/2 µf (r)

→ +∞ (r → +∞). (5)

From relation (5) for ρ = 1 it follows that there exists entire function f(z) =
∑+∞

n=0 anz
n

such that
Mf (r)

µf (r) ln
1/2 µf (r)

→ +∞ (r → +∞).

On the other hand (see, for example, [8]–[11]) almost surely (a.s.) on the Steinhaus
probability space (Ω,A, P ) exponent 1/2 in inequality (1) can be replaced by 1/4, and
in inequality (4) (see [7]) a.s. exponent (2ρ − 1)/2 can be replaced by (2ρ − 1)/4 (Levy’s
phenomenon). Here Ω = [0; 1], A is the σ-algebra of Borel’s subsets of [0; 1] and P is the
Lebesque measure (see [12, p. 9]). Note, that similar results for random entire functions
of two complex variables we find in [13]–[15], and for random entire functions of several
variables in [16, 17].

Let N = (nk) be a sequence integer numbers such that n0 = 0, nk < nk+1 (k ≥ 0), power
series of the form (2) be an entire function, and

(
Xn(ω)

)
be a multiplicative system (MS),

i.e. the sequence of real random variables on Steinhaus probability space such that

E(Xi1Xi2 · · ·Xik) = 0

for any i1 < i2 < . . . < ik, k ≥ 1, where Eξ is the expectation of a random variable ξ, i.e.
Eξ =

∫
Ω
ξ(ω)P(dω). We denote

K(f,Z,N ) =

{
f(z, t) =

+∞∑
k=0

akZk(t)z
nk : t ∈ [0, 1]

}
, (6)

where Z = (Zk(t)) is a sequence of complex-valued random variables.
In [7] we find the following theorem.

Theorem 1 ([7]). Let a sequence N = (nk) satisfy condition (3), f be a non-constant
entire function of the form (2), a sequence complex valued variables Z = (Zk) be such that(
ReZk(t)

)
∈ MS,

(
ImZk(t)

)
∈ MS and |Zk(t)| = 1 a.s. (k ≥ 0). Then for every ε > 0 a.s.

in K(f,Z,N ) there exists a set E := E(ε, t, f) ⊂ [1,+∞) of finite logarithmic measure such
that the inequality

Mf (r, t) := max{|f(z, t)| : |z| = r} ≤ µf (r)(lnµf (r))
(2ρ−1)/4+ε (7)

holds for r ∈ [1; +∞) \ E.

In the case nk ≡ k (i.e. N = Z+ := N∪{0}) Theorem 1 implies corresponding result from
paper [10] (see also [11]), and when in addition we suppose that Z = R, Z = H or Z = S,
then we obtain corresponding results from [8], [9] and [18] (see also [19]), respectively, where
R =

(
Rk(t)

)
is the Rademacher sequence, i.e. a sequence of independent random variables,

such that P{t : Rk(t) = −1} = P{t : Rk(t) = 1} = 0, 5 (k ∈ N), and H =
(
Hk(t)

)
is the

Steinhaus sequence, i.e. a sequence independent random variables Hk(t) = exp{2πiηk(t)},
where {ηk(t)} is a sequence independent uniformly distributed on [0; 1] random variables,



12 A. KURYLIAK

S =
(
exp{2πiθk · t}

)
, where (θk) is the sequence of integers numbers such that θk+1/θk ≥

q > 2, k ≥ 0. We remark that
(
cos(2πθkt)

)
∈ MS,

(
sin(2πθkt)

)
∈ MS in this case (in [18]

q > 1).
In general, the exponent (2ρ − 1)/4 in inequality (7) cannot be replaced by a smaller

number. It follows from such a statement.

Theorem 2 ([7]). If a sequence N = (nk) satisfies condition (3), a sequence of complex
valued variables Z = (Zk) ∈ MS and |Zk(t)| = 1 a.s. (k ≥ 0), then there exists an entire
function f of the form (2) such that

lim
r→+∞

Mf (r, t)

µf (r)(lnµf (r))(2ρ−1)/4
= +∞

a.s. in K(f,Z,N ).

Note, that in the paper [9] it the following assertion is proved:
For entire function f(z) = ez and every ε > 0 the relation

lim
r→+∞

Mf (r, t)

µf (r) ln
1/4−ε µf (r)

= +∞ (8)

holds a.s. in K(f,R,Z+) and in K(f,H,Z+). Theorem 2 (for ρ = 1 in condition (3)) implies
that there exists entire function f such that relation (8) holds with ε = 0.

Remark, that in statements cited above (Theorem 1 from [7] and others similarly results)
the expectation of random variables is equal to zero. In connection with this prof. M. M. She-
remeta posed the following question: Can one obtain the sharper Wiman’s inequality for
classes of random entire functions of the form f(z) =

∑+∞
k=0 Zk(t)akz

nk and EZk = α ̸= 0
(k ≥ 0)? Negative answer to this question one can find in [10].

Also in these statements a sequence of random variables is almost surely uniformly
bounded. In connection with this prof. O. B. Skaskiv posed the following question: Does
Levi’s phenomenon hold in the case of unbounded random variables?

In this paper we give partial positive answer for this question in the case of a sequence
of independent subnormal random variables.

2. Auxiliary lemmas. For r ≥ 0 and an entire function

f(z) =
+∞∑
n=0

anz
n (9)

denote by νf (r) = max{n : |an|rn = µf (r)} the central index,

Mf (r) =
+∞∑
n=0

|an|rn, S2
f (r) =

+∞∑
n=0

|an|2r2n, S2
N(r) =

N∑
n=0

|an|2r2n, ln2 x = ln lnx.

We need the following elementary statement (see also [20, 21]).

Proposition 1. If a sequence of random variables
(
Zn(ω)

)
satisfies the condition

(∃α > 0)(∃n0 ∈ N) : sup{E|Zn|α : n ≥ n0} < +∞, (10)

then a.s.
(∃N1(ω) ≥ n0)(∀n > N1(ω)) : |Zn(ω)| ≤ n1/α ln2/α n.
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Indeed, by Markov’s inequality and condition (10) we have

+∞∑
n=n0

P{ω : |Zn(ω)|α ≥ n ln2 n} ≤
+∞∑
n=n0

E|Zn(ω)|α

n ln2 n
< +∞.

Therefore, the First Lemma of Borel-Cantelli implies the statement of Proposition 1.
By condition (10) the radius of convergence of a series of form (6) R(ft) = +∞ a.s.
Also we need the following statement.

Lemma 1 ([22]). For non-constant entire function f(z) and every δ > 0 there exists a set
E(δ) ⊂ (1,+∞) of finite logarithmic measure such that for all r ∈ (1;+∞)\E we have

νf (r) ≤ lnµf (r) ln
1+δ
2 µf (r), (11)

(∀n ∈ Z+) : |an|rn ≤ µf (r) exp
{
− k2

(|k|+ νf (r)) ln
1+δ(|k|+ νf (r))

}
, (12)

where k = n− νf (r).

Define

N(r) = min{n0 : (∀n ≥ n0 ≥ lnµf (r))|an|rn < 1},
Nε(r) = N(reε) = min{n0 : (∀n ≥ n0 ≥ lnµf (re

ε))|an|rnenε < 1} =

= min{n0 : (∀n ≥ n0 ≥ lnµf (re
ε))|an|rn < e−nε}, ε =

1

Nγ(r)
, γ > 0.

Remark that by the definition of Nε(r) we have Nε(r) ≥ lnµf (r).
Similarly as in [23] one can prove such a statement.

Lemma 2. For every δ > 0 there exists a set E(δ) ⊂ (1,+∞) of finite logarithmic measure
such that for all r ∈ (1;+∞)\E

N(r) < lnρ µf (r) ln
ρ+δ
2 µf (r).

Proof. Remark that if n = k+νf (r), k > 0 then (12) implies that for some δ0 > 0 and r ̸∈ E
we get

|an|rn ≤ µf (r) exp
{
−(n− νf (r))

2

n ln1+δ0 n

}
.

Choose n0(r) = 4 lnµf (r) ln
1+δ0
2 µf (r). Then

ln(|an0 |rn0) ≤ lnµf (r)−
9 ln2 µf (r) ln

2+2δ0
2 µf (r)

4 lnµf (r) ln
1+δ0
2 µf (r) ln

1+δ0(4 lnµf (r) ln
1+δ0
2 µf (r))

≤

≤ lnµf (r)−
9

8
lnµf (r) < 0.

Therefore for n > n0(r) we get |an|rn < 1. Finally, for δ = 2ρδ0 and r ̸∈ E we obtain

N(r) < 2∆(4 lnµf (r) ln
1+δ0
2 µf (r))

ρ < lnρ µf (r) ln
ρ+δ
2 µf (r).
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Lemma 3 ([24]). Suppose that L(r) is a positive increasing function of r for r > r0. If γ > 0
and |h| < L−γ(r) then

|L(reh)− L(r)| < γL(r)

for all r outside some set of finite logarithmic measure.

Remark that function N(r) satisfies conditions of Lemma 2 and, therefore, for r → +∞
(r ̸∈ E) we get

N(r) ≤ Nε(r) ≤ (1 + γ)N(r) ≤ (1 + γ) lnρ µf (r) ln
ρ+δ
2 µf (r) ≤ lnρ µf (r) ln

ρ+2δ
2 µf (r). (13)

For an entire function f(z) and sequence of a random variables Zn(t) we denote

gn = gn(r, θ) = anr
neinθ = qn(r, θ) + ipn(r, θ),

G = G(r, θ, t) = Q(r, θ, t) + iP (r, θ, t) =
N∑

n=0

Zn(t)gn(r, θ),

∥G∥∞ = max
0≤θ<2π

|G(r, θ, t)|, ∥Q∥∞ = max
0≤θ<2π

|ReG(r, θ, t)|, ∥P∥∞ = max
0≤θ<2π

| ImG(r, θ, t)|,

SN = SN(r) =
( N∑
n=0

|gn(r, θ)|2
)1/2

=
( N∑
n=0

|an|2r2n
)1/2

.

Lemma 4 ([12], p. 75). If Q(θ) =
∑N

n=0 bn cos(nθ + θn), N ≥ 2, θn ∈ R, then there exists
a segment I such that its measure is equal to 1/N2 and for θ ∈ I we have

|Q(θ)| ≥ 1

2
max

0≤θ<2π
|Q(θ)|.

The similar statement holds for P (r, θ) =
∑N

n=0 anr
n sin(nθ + θn).

Lemma 5. If P (θ) =
∑N

n=0 bn sin(nθ + θn), N ≥ 2, θn ∈ R, then there exists a segment I
such that its measure is equal to 1/N2 and for θ ∈ I we have

|P (θ)| ≥ 1

2
max

0≤θ<2π
|P (θ)|.

It is enough consider θn+π
2

instead of θn. If θn = θ′n+
π
2
, then P (r, θ) =

∑N
n=0 anr

n cos(nθ+
θ′n). It remains to apply the inequality of Lemma 4.

Suppose that (Zn) is a sequence of real independent subnormal random variables, i.e.
such that there exists D > 0 such that for any k ∈ N and all λ0 ∈ R we have

E(eλ0Zk) ≤ eDλ2
0 . (14)

The class of such random variables is denoted by Ξ. Remark that any sequence of random
variables {Zn} ∈ Ξ satisfies conditions of Proposition 1 with α = 2 and random power series
of form (6) is a. s. entire.

For Z ∈ Ξ we have ([12, Exercise 7.8, p.81 ]) for any k ∈ N : E(Zk) = 0 and

sup
k∈N

E(Z2
k) = sup

k∈N
D(Zk) ≤ 2D, (15)

where D(Zk) := E(Z2
k)− (EZk)

2 is the variance of random variable Zk.
We prove the following analogue of the Salem-Zygmund theorem ([12], [25]).
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Lemma 6. Let Z ∈ Ξ, N = Nε(r). Then there exist an absolute constant C > 0 and set E
of finite logarithmic measure such that

P{∥G∥∞ ≥ CSN ln2 SN

√
lnN} ≤ 2

N2
, r → +∞ (r ̸∈ E). (16)

Proof. Using condition (14) we get

E(eλQ(r,θ,t)) = E
(
e
λ

N∑
n=0

Znqn(r,θ)
)
= E

( N∏
n=0

eλZnqn(r,θ)
)
=

N∏
n=0

EeλZnqn(r,θ).

By Lemma 3 there exists a set I = I(ω) such that m(I) ≥ 1
N2 and for θ ∈ I we have

either
Q(r, θ) ≥ ∥Q∥∞

2
or −Q(r, θ) ≥ ∥Q∥∞

2
.

Then

E(eλ∥Q∥∞/2) ≤ N2E
(∫

I

(eλQ(r,θ) + e−λQ(r,θ))dθ
)
≤ N2E

(∫ 2π

0

(eλQ(r,θ) + e−λQ(r,θ))dθ
)
≤

≤ N2

∫ 2π

0

(E(eλQ(r,θ)) + E(e−λQ(r,θ)))dθ ≤

≤ N2

∫ 2π

0

( N∏
n=0

EeλZnqn(r,θ) +
N∏

n=0

Ee−λZnqn(r,θ)
)
dθ. (17)

Let us choose N = Nδ(r) and

λ =
3
√
lnN√

2DSN ln2 SN

.

For any k ∈ N there exists D > 0 such that for all λ0 ∈ R we have E(eλ0Zk) ≤ eDλ2
0 .

Therefore, from (17) we obtain

E(eλ∥Q∥∞/2) ≤ 2N2

N∏
n=0

eDλ2|qn(r,θ)|2 = 2N2

N∏
n=0

eDλ2|an|2r2n = 2N2eDλ2S2
N ,

E(eλ∥Q∥∞/2−Dλ2S2
N ) ≤ 2N4 · 1

N2
,

i.e.
E
(
exp

{λ

2

(
∥Q∥∞ − 2DλS2

N − 2

λ
ln(2N4)

)})
≤ 1

N2
.

From this inequality for N ≥ 4 follows

E
(
exp

{λ

2

(
∥Q∥∞ − 2DλS2

N − 9

λ
lnN

)})
≤ 1

N2
.

By Markov’s inequality

P
{
∥Q∥∞ ≥ 2DλS2

N +
9

λ
lnN

}
= P

{λ

2

(
∥Q∥∞ − 2DλS2

N − 9

λ
lnN

)
≥ 0

}
=
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= P
{
exp

{λ

2

(
∥Q∥∞ − 2DλS2

N − 9

λ
lnN

)}
≥ 1

}
≤

≤ E
(
exp

{λ

2

(
∥Q∥∞ − 2DλS2

N − 9

λ
lnN

)})
≤ 1

N2
.

Finally,

P
{
∥Q∥∞ ≥ 2D

3
√
lnN√

2DSN ln2 SN

S2
N +

9
√
2DSN ln2 SN

3
√
lnN

lnN
}
≤ 1

N2
,

P
{
∥Q∥∞ ≥ 3

√
2D

SN

ln2 SN

+ 3
√
2DSN ln2 SN

√
lnN

}
≤ 1

N2
,

P
{
∥Q∥∞ ≥ 5

√
DSN ln2 SN

√
lnN

}
≤ 1

N2
.

Similarly we obtain

P{∥P∥∞ ≥ 5
√
DSN ln2 SN

√
lnN} ≤ 1

N2

and
P{∥G∥∞ ≥ 10

√
DSN ln2 SN

√
lnN} ≤ 2

N2
.

Lemma 7. Let Z ∈ Ξ, N = Nε(r). There exist an absolute constant C > 0 and a set E of
finite logarithmic measure such that

P{t : Mf (r, t) ≥ CSN(r) ln2 SN(r)
√
lnN} ≤ 3

N2
, r → +∞ (r ̸∈ E). (18)

Proof. Let us choose ε = 1
N(r)

. For n ∈ Nε(r) we consider events Bn = {t : |Zn(t)| ≥ n2}.
Then probabilities of these events we can estimate using Markov’s inequality and (15). We
obtain

P(Bn) = P{t : |Zn(t)|2 ≥ n4} ≤ DZn

n4
≤ 2D

n4
,

+∞∑
n=Nε(r)

P(Bn) ≤ 2D
+∞∑

n=Nε(r)

1

n4
≤ 4D

3N3
ε (r)

, r → +∞.

Let B =
∪+∞

n=Nε(r)
Bn. Then P(B) ≤ 2D

3N3
ε (r)

, r → +∞. For t ̸∈ B we have using (13)

max
0≤θ<2π

∣∣∣ +∞∑
n=Nε(r)

Znanr
neinθ

∣∣∣≤ +∞∑
n=Nε(r)

|Zn||an|rn ≤
+∞∑

n=Nε(r)

n4e−nε ≤

≤ CN5
ε (r) ≤ ln5 µf (r) ln

6
2 µf (r) < ln6 µf (r) < SN(r), r → +∞, (r ̸∈ E).

Therefore,

P
{
t : max

0≤θ<2π

∣∣∣ +∞∑
n=N

Znanr
neinθ

∣∣∣≥ SN

}
≤ 1

N2
, N = Nε(r).

By (16) we have

P{∥G∥∞ ≥ CSN ln2 SN

√
lnN} ≤ 2

N2
, r → +∞ (r ̸∈ E).
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From two previous inequalities we deduce that

P
{
t : max

0≤θ<2π

∣∣∣+∞∑
n=0

Znanr
neinθ

∣∣∣≥ 2CSN ln2 SN

√
lnN

}
≤ 3

N2
, N = Nε(r).

Also we need the following lemma.

Lemma 8 ([11], see also [10]). Let l(r) be a continuous increasing to +∞ function on
(1;+∞), E ⊂ (1;+∞) be a set such that its complement contains an unbounded open set.
Then there is an infinite sequence 1 < r1 ≤ ... ≤ rn → +∞ (n → +∞) such that

(1) (∀n ∈ N) : rn /∈ E;

(2) (∀n ∈ N) : ln l(rn) ≥ n
2
;

(3) if (rn; rn+1) ∩ E ̸= (rn, rn+1), then l(rn+1) ≤ el(rn);

(4) the set of indices, for which (3) holds, is unbounded.

3. Main result.

Theorem 3. Let Z ∈ Ξ. Then there exists a set E(δ) of finite logarithmic measure such
that for all r ∈ (r0(t),+∞)\E almost surely in K(f,Z) we have

Mf (r, t) ≤ µf (r) ln
(2ρ−1)/4 µf (r) ln

3/2+δ
2 µf (r). (19)

Proof. Choose k(r) = µf (r), a set E and a sequence {rk} from Lemma 7. Let

Fk = {t : Mf (rk, t) ≥ CSNε(rk)(rk) ln2 SNε(rk)(rk)
√
lnNε(rk)}.

By Lemma 7 and by the definition of Nε(r) we get
+∞∑
k=1

P (Fk) ≤
+∞∑
k=1

1

N2
ε (rk)

≤
+∞∑
k=1

1

ln2 µf (rk)
≤

+∞∑
k=1

1

k2
< +∞.

Then by Borel-Cantelli’s lemma for almost all t ∈ [0, 1] for k ≥ k0(t) we obtain

Mf (rk, t) < CSNε(rk)(rk) ln2 SNε(rk)(rk)
√

lnNε(rk).

Using inequalites SNε(r)(r) ≤ Mf (r)µf (r) and Nε(r) ≤ lnρ µf (r) ln
ρ+δ
2 µf (r), (r ̸∈ E) we get

Mf (rk, t) < C
√

Mf (rk)µf (rk) ln2(Mf (rk)µf (rk))
√

2 ln2 µf (rk) <

< Cµf (rk) ln
(2ρ−1)/4 µf (rk) · 3 ln2 µf (rk)

√
2 ln2 µf (rk) <

< 5Cµf (rk) ln
(2ρ−1)/4 µf (rk) ln

3/2
2 µf (rk).

Let r ≥ rk0(t) be an arbitrary number outside set the E, r ∈ (rp, rp+1). By Lemma 8
µf (rp+1) ≤ eµf (rp) ≤ eµf (r). Therefore for almost all t ∈ [0; 1] and r ≥ r0(t) outside a set
of finite logarithmic measure E we have

Mf (r, t) ≤ Mf (rp+1, t) < 5Cµf (rp+1) ln
(2ρ−1)/4 µf (rp+1) ln

3/2
2 µf (rp+1) <

< 5Ceµf (r) ln
(2ρ−1)/4(eµf (r)) ln

3/2
2 (eµf (r)) < µf (r) ln

(2ρ−1)/4 µf (r) ln
3/2+δ
2 µf (r).



18 A. KURYLIAK

In the case of complex random variables we get such a statement.

Corollary 1. Let ReZ ∈ Ξ, ImZ ∈ Ξ. Then there exists a set E(δ) of finite logarithmic
measure such that for all r ∈ (r0(t),+∞)\E almost surely in K(f,Z) we have

Mf (r, t) ≤ µf (r) ln
(2ρ−1)/4 µf (r) ln

3/2+δ
2 µf (r). (20)

4. Some examples. There exists Z ̸∈ Ξ such that EZn = 0, supnDZn = +∞ and inequality
(19) does not hold. It follows from the following statement.

Theorem 4. For any α > 0 there exist a sequence of real independent random variables
satisfying for all n ∈ Z+

EZn = 0, sup
n

DZn = +∞,

entire function f(z) and a constant C > 0 such that almost surely in K(f, Z)

Mf (r, t)= max{|f(z, t)| : |z| = r} ≥ Cµf (r) ln
1/4+α µf (r), r > r0(t).

Proof. We choose

f(z) =
+∞∑
n=1

zn

nαn!
, g(z) = ez =

+∞∑
n=0

zn

n!

and a sequence of independent random variables (Zn) such that

P{t : Zn(t) = −nα} = P{t : Zn(t) = nα} =
1

2
.

Then

EZn = −nα1

2
+ nα1

2
= 0, DZn = n2α1

2
+ n2α1

2
= n2α, sup

n
DZn = +∞.

Denote

f(z, t) =
+∞∑
n=1

Zn(t)
zn

nαn!
=

+∞∑
n=1

Rn(t)
zn

n!
= g(z, t),

Mf (r, t) = max{|f(z, t)| : |z| ≤ r} = max{|g(z, t)| : |z| ≤ r} = Mg(r, t),

where {Rn(t)} is a sequence of the Rademacher random variables. By Theorem 2 for ρ = 1
we conclude that for g(z, t) and some C > 0

Mf (r, t) = Mg(r, t) ≥ Cµg(r) ln
1/4 µg(r), r → +∞.

Remark that
µg(r) = max

n∈Z+

{rn

n!

}
= max

n∈Z+

{
nα rn

nαn!

}
≥ να

f (r)µf (r)

and νf (r) > r/2 = lnMg(r)/2, r → +∞. Therefore

µg(r) >
1

2α
Mf (r) ln

α Mg(r) >
1

2α
Mf (r) ln

α µg(r) >
1

2α
Mf (r) ln

α µf (r).

Finally, almost surely in K(f, Z) we get

Mf (r, t) > Cµg(r) ln
1/4 µg(r) > C1Mf (r) ln

α µf (r) ln
1/4(Mf (r) ln

α µf (r)) >

> C1µf (r) ln
1/4+α µf (r).
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