УДК 517.5

A. KURYLIAK

SUBNORMAL INDEPENDENT RANDOM VARIABLES AND LEVY'S PHENOMENON FOR ENTIRE FUNCTIONS

A. Kuryliak. Subnormal independent random variables and Levy's phenomenon for entire functions, Mat. Stud. 47 (2017), 10–19.

Suppose that (Z_n) is a sequence of real independent subnormal random variables, i.e. such that there exists D > 0 satisfying following inequality for expectation $\mathbf{E}(e^{\lambda_0 Z_k}) \leq e^{D\lambda_0^2}$ for any $k \in \mathbb{N}$ for all $\lambda_0 \in \mathbb{R}$. In this paper is proved that for random entire functions of the form $f(z, \omega) = \sum_{n=0}^{+\infty} Z_n(\omega) a_n z^n$ Levy's phenomenon holds.

1. Introduction. By the classical Wiman-Valiron theorem ([1]–[4]), for every non-constant entire function $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ and any $\varepsilon > 0$ there exist a set $E = E(f) \subset (1, +\infty)$ of finite logarithmic measure $(\int_E d \ln r < +\infty)$ such that for all $r \in [r_0(\varepsilon); +\infty) \setminus E$ the inequality (*Wiman's inequality*)

$$M_f(r) \le \mu_f(r) \ln^{1/2+\varepsilon} \mu_f(r) \tag{1}$$

holds, where $M_f(r) = \max\{|f(z)| : |z| = r\}, \mu_f(r) = \max\{|a_n|r^n : n \ge 0\}$. Note that the constant 1/2 cannot be replaced in general by a smaller number. Indeed, for entire function $f(z) = e^z$ we have ([3], p. 177) $M_f(r) \sim \sqrt{2\pi}\mu_f(r) \ln^{1/2}\mu_f(r) \ (r \to +\infty)$.

In the class of entire functions f represented by gap power series of the form

$$f(z) = \sum_{k=0}^{+\infty} a_k z^{n_k}, \quad n_k \in \mathbb{Z}_+,$$
(2)

inequality (1) can be improved (for example see [5, 6]). In particular, from one result ([5]) obtained for entire Dirichlet series it follows that under the condition

$$(\exists \Delta \in (0; +\infty)) (\exists \rho \in [1/2; 1]) (\exists D > 0) : |n(t) - \Delta t^{\rho}| \le D \quad (t \ge t_0),$$
(3)

(here $n(t) = \sum_{n_k \leq t} 1$ is counting function of the sequence (n_k)), the inequality

$$M_f(r) \le \mu_f(r) \ln^{(2\rho-1)/2+\varepsilon} \mu_f(r), \tag{4}$$

holds for any $\varepsilon > 0$ and all $r \in [r_0(\varepsilon); +\infty) \setminus E_1$, where E_1 is a set of finite logarithmic measure (for $\rho = 1$ from inequality (4) we get the classical Wiman's inequality). From other

²⁰¹⁰ Mathematics Subject Classification: 30B20, 30D20.

Keywords: entire function; Levy's phenomenon; subnormal random variables. doi:10.15330/ms.47.1.10-19

result ([6], see also [7]) obtained for entire Dirichlet series it follows that under condition (3) there exists an entire function f of the form (2) such that

$$\frac{M_f(r)}{\mu_f(r)\ln^{(2\rho-1)/2}\mu_f(r)} \to +\infty \quad (r \to +\infty).$$
(5)

From relation (5) for $\rho = 1$ it follows that there exists entire function $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ such that

$$\frac{M_f(r)}{\mu_f(r)\ln^{1/2}\mu_f(r)} \to +\infty \quad (r \to +\infty).$$

On the other hand (see, for example, [8]–[11]) almost surely (a.s.) on the Steinhaus probability space (Ω, \mathcal{A}, P) exponent 1/2 in inequality (1) can be replaced by 1/4, and in inequality (4) (see [7]) a.s. exponent $(2\rho - 1)/2$ can be replaced by $(2\rho - 1)/4$ (*Levy's phenomenon*). Here $\Omega = [0; 1]$, \mathcal{A} is the σ -algebra of Borel's subsets of [0; 1] and P is the Lebesque measure (see [12, p. 9]). Note, that similar results for random entire functions of two complex variables we find in [13]–[15], and for random entire functions of several variables in [16, 17].

Let $\mathcal{N} = (n_k)$ be a sequence integer numbers such that $n_0 = 0$, $n_k < n_{k+1}$ $(k \ge 0)$, power series of the form (2) be an entire function, and $(X_n(\omega))$ be a *multiplicative system* (MS), i.e. the sequence of real random variables on Steinhaus probability space such that

$$\mathbf{E}(X_{i_1}X_{i_2}\cdots X_{i_k})=0$$

for any $i_1 < i_2 < \ldots < i_k, \ k \ge 1$, where $\mathbf{E}\xi$ is the expectation of a random variable ξ , i.e. $\mathbf{E}\xi = \int_{\Omega} \xi(\omega) \mathbb{P}(d\omega)$. We denote

$$\mathcal{K}(f,\mathcal{Z},\mathcal{N}) = \left\{ f(z,t) = \sum_{k=0}^{+\infty} a_k Z_k(t) z^{n_k} \colon t \in [0,1] \right\},\tag{6}$$

where $\mathcal{Z} = (Z_k(t))$ is a sequence of complex-valued random variables.

In [7] we find the following theorem.

Theorem 1 ([7]). Let a sequence $\mathcal{N} = (n_k)$ satisfy condition (3), f be a non-constant entire function of the form (2), a sequence complex valued variables $\mathcal{Z} = (Z_k)$ be such that $(\operatorname{Re} Z_k(t)) \in MS$, $(\operatorname{Im} Z_k(t)) \in MS$ and $|Z_k(t)| = 1$ a.s. $(k \ge 0)$. Then for every $\varepsilon > 0$ a.s. in $\mathcal{K}(f, \mathcal{Z}, \mathcal{N})$ there exists a set $E := E(\varepsilon, t, f) \subset [1, +\infty)$ of finite logarithmic measure such that the inequality

$$M_f(r,t) := \max\{|f(z,t)|: |z| = r\} \le \mu_f(r) (\ln \mu_f(r))^{(2\rho-1)/4+\varepsilon}$$
(7)

holds for $r \in [1; +\infty) \setminus E$.

In the case $n_k \equiv k$ (i.e. $\mathcal{N} = \mathbb{Z}_+ := \mathbb{N} \cup \{0\}$) Theorem 1 implies corresponding result from paper [10] (see also [11]), and when in addition we suppose that $\mathcal{Z} = \mathcal{R}$, $\mathcal{Z} = \mathcal{H}$ or $\mathcal{Z} = \mathcal{S}$, then we obtain corresponding results from [8], [9] and [18] (see also [19]), respectively, where $\mathcal{R} = (R_k(t))$ is the *Rademacher sequence*, i.e. a sequence of independent random variables, such that $\mathbb{P}\{t: R_k(t) = -1\} = \mathbb{P}\{t: R_k(t) = 1\} = 0, 5 \ (k \in \mathbb{N}), \text{ and } \mathcal{H} = (H_k(t)) \text{ is the}$ *Steinhaus sequence*, i.e. a sequence independent random variables $H_k(t) = \exp\{2\pi i \eta_k(t)\}$, where $\{\eta_k(t)\}$ is a sequence independent uniformly distributed on [0; 1] random variables,

A. KURYLIAK

 $S = (\exp\{2\pi i\theta_k \cdot t\})$, where (θ_k) is the sequence of integers numbers such that $\theta_{k+1}/\theta_k \ge q > 2, k \ge 0$. We remark that $(\cos(2\pi\theta_k t)) \in MS, (\sin(2\pi\theta_k t)) \in MS$ in this case (in [18] q > 1).

In general, the exponent $(2\rho - 1)/4$ in inequality (7) cannot be replaced by a smaller number. It follows from such a statement.

Theorem 2 ([7]). If a sequence $\mathcal{N} = (n_k)$ satisfies condition (3), a sequence of complex valued variables $\mathcal{Z} = (Z_k) \in MS$ and $|Z_k(t)| = 1$ a.s. $(k \ge 0)$, then there exists an entire function f of the form (2) such that

$$\lim_{r \to +\infty} \frac{M_f(r,t)}{\mu_f(r)(\ln \mu_f(r))^{(2\rho-1)/4}} = +\infty$$

a.s. in $\mathcal{K}(f, \mathcal{Z}, \mathcal{N})$.

Note, that in the paper [9] it the following assertion is proved: For entire function $f(z) = e^z$ and every $\varepsilon > 0$ the relation

$$\lim_{r \to +\infty} \frac{M_f(r, t)}{\mu_f(r) \ln^{1/4-\varepsilon} \mu_f(r)} = +\infty$$
(8)

holds a.s. in $\mathcal{K}(f, \mathcal{R}, \mathbb{Z}_+)$ and in $\mathcal{K}(f, \mathcal{H}, \mathbb{Z}_+)$. Theorem 2 (for $\rho = 1$ in condition (3)) implies that there exists entire function f such that relation (8) holds with $\varepsilon = 0$.

Remark, that in statements cited above (Theorem 1 from [7] and others similarly results) the expectation of random variables is equal to zero. In connection with this prof. M. M. Sheremeta posed the following question: Can one obtain the sharper Wiman's inequality for classes of random entire functions of the form $f(z) = \sum_{k=0}^{+\infty} Z_k(t) a_k z^{n_k}$ and $\mathbf{E}Z_k = \alpha \neq 0$ $(k \geq 0)$? Negative answer to this question one can find in [10].

Also in these statements a sequence of random variables is almost surely uniformly bounded. In connection with this prof. O. B. Skaskiv posed the following **question**: *Does Levi's phenomenon hold in the case of unbounded random variables?*

In this paper we give partial positive answer for this question in the case of a sequence of independent subnormal random variables.

2. Auxiliary lemmas. For $r \ge 0$ and an entire function

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n \tag{9}$$

denote by $\nu_f(r) = \max\{n \colon |a_n|r^n = \mu_f(r)\}$ the central index,

$$\mathfrak{M}_f(r) = \sum_{n=0}^{+\infty} |a_n| r^n, \ S_f^2(r) = \sum_{n=0}^{+\infty} |a_n|^2 r^{2n}, \ S_N^2(r) = \sum_{n=0}^{N} |a_n|^2 r^{2n}, \ \ln_2 x = \ln \ln x.$$

We need the following elementary statement (see also [20, 21]).

Proposition 1. If a sequence of random variables $(Z_n(\omega))$ satisfies the condition

$$(\exists \alpha > 0) (\exists n_0 \in \mathbb{N}): \quad \sup\{\mathbf{E} | Z_n |^{\alpha}: n \ge n_0\} < +\infty,$$
(10)

then a.s.

$$(\exists N_1(\omega) \ge n_0)(\forall n > N_1(\omega)): |Z_n(\omega)| \le n^{1/\alpha} \ln^{2/\alpha} n$$

Indeed, by Markov's inequality and condition (10) we have

$$\sum_{n=n_0}^{+\infty} \mathbb{P}\{\omega \colon |Z_n(\omega)|^{\alpha} \ge n \ln^2 n\} \le \sum_{n=n_0}^{+\infty} \frac{\mathbf{E}|Z_n(\omega)|^{\alpha}}{n \ln^2 n} < +\infty.$$

Therefore, the First Lemma of Borel-Cantelli implies the statement of Proposition 1.

By condition (10) the radius of convergence of a series of form (6) $R(f_t) = +\infty$ a.s. Also we need the following statement.

Lemma 1 ([22]). For non-constant entire function f(z) and every $\delta > 0$ there exists a set $E(\delta) \subset (1, +\infty)$ of finite logarithmic measure such that for all $r \in (1; +\infty) \setminus E$ we have

$$\nu_f(r) \le \ln \mu_f(r) \ln_2^{1+\delta} \mu_f(r),$$
(11)

$$(\forall n \in \mathbb{Z}_{+}) \colon |a_{n}| r^{n} \leq \mu_{f}(r) \exp\left\{-\frac{k^{2}}{(|k| + \nu_{f}(r)) \ln^{1+\delta}(|k| + \nu_{f}(r))}\right\},$$
(12)

where $k = n - \nu_f(r)$.

Define

$$N(r) = \min\{n_0 \colon (\forall n \ge n_0 \ge \ln \mu_f(r)) | a_n | r^n < 1\},\$$
$$N_{\varepsilon}(r) = N(re^{\varepsilon}) = \min\{n_0 \colon (\forall n \ge n_0 \ge \ln \mu_f(re^{\varepsilon})) | a_n | r^n e^{n\varepsilon} < 1\} =$$
$$= \min\{n_0 \colon (\forall n \ge n_0 \ge \ln \mu_f(re^{\varepsilon})) | a_n | r^n < e^{-n\varepsilon}\}, \ \varepsilon = \frac{1}{N^{\gamma}(r)}, \ \gamma > 0.$$

Remark that by the definition of $N_{\varepsilon}(r)$ we have $N_{\varepsilon}(r) \ge \ln \mu_f(r)$. Similarly as in [23] one can prove such a statement.

Lemma 2. For every $\delta > 0$ there exists a set $E(\delta) \subset (1, +\infty)$ of finite logarithmic measure such that for all $r \in (1; +\infty) \setminus E$

$$N(r) < \ln^{\rho} \mu_f(r) \ln_2^{\rho+\delta} \mu_f(r).$$

Proof. Remark that if $n = k + \nu_f(r), k > 0$ then (12) implies that for some $\delta_0 > 0$ and $r \notin E$ we get

$$|a_n|r^n \le \mu_f(r) \exp\left\{-\frac{(n-\nu_f(r))^2}{n \ln^{1+\delta_0} n}\right\}.$$

Choose $n_0(r) = 4 \ln \mu_f(r) \ln_2^{1+\delta_0} \mu_f(r)$. Then

$$\ln(|a_{n_0}|r^{n_0}) \le \ln \mu_f(r) - \frac{9\ln^2 \mu_f(r) \ln_2^{2+2\delta_0} \mu_f(r)}{4\ln \mu_f(r) \ln_2^{1+\delta_0} \mu_f(r) \ln^{1+\delta_0} (4\ln \mu_f(r) \ln_2^{1+\delta_0} \mu_f(r))} \le \\ \le \ln \mu_f(r) - \frac{9}{8} \ln \mu_f(r) < 0.$$

Therefore for $n > n_0(r)$ we get $|a_n|r^n < 1$. Finally, for $\delta = 2\rho\delta_0$ and $r \notin E$ we obtain

$$N(r) < 2\Delta (4\ln\mu_f(r)\ln_2^{1+\delta_0}\mu_f(r))^{\rho} < \ln^{\rho}\mu_f(r)\ln_2^{\rho+\delta}\mu_f(r).$$

Lemma 3 ([24]). Suppose that L(r) is a positive increasing function of r for $r > r_0$. If $\gamma > 0$ and $|h| < L^{-\gamma}(r)$ then

$$|L(re^h) - L(r)| < \gamma L(r)$$

for all r outside some set of finite logarithmic measure.

Remark that function N(r) satisfies conditions of Lemma 2 and, therefore, for $r \to +\infty$ $(r \notin E)$ we get

$$N(r) \le N_{\varepsilon}(r) \le (1+\gamma)N(r) \le (1+\gamma)\ln^{\rho}\mu_{f}(r)\ln_{2}^{\rho+\delta}\mu_{f}(r) \le \ln^{\rho}\mu_{f}(r)\ln_{2}^{\rho+2\delta}\mu_{f}(r).$$
(13)

For an entire function f(z) and sequence of a random variables $Z_n(t)$ we denote

$$g_n = g_n(r,\theta) = a_n r^n e^{in\theta} = q_n(r,\theta) + ip_n(r,\theta),$$

$$G = G(r,\theta,t) = Q(r,\theta,t) + iP(r,\theta,t) = \sum_{n=0}^N Z_n(t)g_n(r,\theta),$$

$$\|G\|_{\infty} = \max_{0 \le \theta < 2\pi} |G(r, \theta, t)|, \ \|Q\|_{\infty} = \max_{0 \le \theta < 2\pi} |\operatorname{Re} G(r, \theta, t)|, \ \|P\|_{\infty} = \max_{0 \le \theta < 2\pi} |\operatorname{Im} G(r, \theta, t)|,$$

$$S_N = S_N(r) = \left(\sum_{n=0}^N |g_n(r,\theta)|^2\right)^{1/2} = \left(\sum_{n=0}^N |a_n|^2 r^{2n}\right)^{1/2}.$$

Lemma 4 ([12], p. 75). If $Q(\theta) = \sum_{n=0}^{N} b_n \cos(n\theta + \theta_n)$, $N \ge 2$, $\theta_n \in \mathbb{R}$, then there exists a segment I such that its measure is equal to $1/N^2$ and for $\theta \in I$ we have

$$|Q(\theta)| \ge \frac{1}{2} \max_{0 \le \theta < 2\pi} |Q(\theta)|.$$

The similar statement holds for $P(r, \theta) = \sum_{n=0}^{N} a_n r^n \sin(n\theta + \theta_n).$

Lemma 5. If $P(\theta) = \sum_{n=0}^{N} b_n \sin(n\theta + \theta_n)$, $N \ge 2$, $\theta_n \in \mathbb{R}$, then there exists a segment I such that its measure is equal to $1/N^2$ and for $\theta \in I$ we have

$$|P(\theta)| \ge \frac{1}{2} \max_{0 \le \theta < 2\pi} |P(\theta)|.$$

It is enough consider $\theta_n + \frac{\pi}{2}$ instead of θ_n . If $\theta_n = \theta'_n + \frac{\pi}{2}$, then $P(r, \theta) = \sum_{n=0}^N a_n r^n \cos(n\theta + \theta'_n)$. It remains to apply the inequality of Lemma 4.

Suppose that (Z_n) is a sequence of real independent subnormal random variables, i.e. such that there exists D > 0 such that for any $k \in \mathbb{N}$ and all $\lambda_0 \in \mathbb{R}$ we have

$$\mathbf{E}(e^{\lambda_0 Z_k}) \le e^{D\lambda_0^2}.$$
(14)

The class of such random variables is denoted by Ξ . Remark that any sequence of random variables $\{Z_n\} \in \Xi$ satisfies conditions of Proposition 1 with $\alpha = 2$ and random power series of form (6) is a. s. entire.

For $Z \in \Xi$ we have ([12, Exercise 7.8, p.81]) for any $k \in \mathbb{N}$: $\mathbf{E}(Z_k) = 0$ and

$$\sup_{k\in\mathbb{N}} \mathbf{E}(Z_k^2) = \sup_{k\in\mathbb{N}} \mathbf{D}(Z_k) \le 2D,$$
(15)

where $\mathbf{D}(Z_k) := \mathbf{E}(Z_k^2) - (\mathbf{E}Z_k)^2$ is the variance of random variable Z_k .

We prove the following analogue of the Salem-Zygmund theorem ([12], [25]).

Lemma 6. Let $Z \in \Xi$, $N = N_{\varepsilon}(r)$. Then there exist an absolute constant C > 0 and set E of finite logarithmic measure such that

$$\mathbb{P}\{\|G\|_{\infty} \ge CS_N \ln_2 S_N \sqrt{\ln N}\} \le \frac{2}{N^2}, \quad r \to +\infty \ (r \notin E).$$
(16)

Proof. Using condition (14) we get

$$\mathbf{E}(e^{\lambda Q(r,\theta,t)}) = \mathbf{E}\left(e^{\lambda \sum_{n=0}^{N} Z_n q_n(r,\theta)}\right) = \mathbf{E}\left(\prod_{n=0}^{N} e^{\lambda Z_n q_n(r,\theta)}\right) = \prod_{n=0}^{N} \mathbf{E}e^{\lambda Z_n q_n(r,\theta)}$$

By Lemma 3 there exists a set $I = I(\omega)$ such that $m(I) \ge \frac{1}{N^2}$ and for $\theta \in I$ we have either

$$Q(r,\theta) \ge \frac{\|Q\|_{\infty}}{2}$$
 or $-Q(r,\theta) \ge \frac{\|Q\|_{\infty}}{2}$.

Then

$$\mathbf{E}(e^{\lambda \|Q\|_{\infty}/2}) \leq N^{2} \mathbf{E} \left(\int_{I} (e^{\lambda Q(r,\theta)} + e^{-\lambda Q(r,\theta)}) d\theta \right) \leq N^{2} \mathbf{E} \left(\int_{0}^{2\pi} (e^{\lambda Q(r,\theta)} + e^{-\lambda Q(r,\theta)}) d\theta \right) \leq \\ \leq N^{2} \int_{0}^{2\pi} (\mathbf{E}(e^{\lambda Q(r,\theta)}) + \mathbf{E}(e^{-\lambda Q(r,\theta)})) d\theta \leq \\ \leq N^{2} \int_{0}^{2\pi} \left(\prod_{n=0}^{N} \mathbf{E} e^{\lambda Z_{n} q_{n}(r,\theta)} + \prod_{n=0}^{N} \mathbf{E} e^{-\lambda Z_{n} q_{n}(r,\theta)} \right) d\theta.$$
(17)

Let us choose $N = N_{\delta}(r)$ and

$$\lambda = \frac{3\sqrt{\ln N}}{\sqrt{2D}S_N \ln_2 S_N}.$$

For any $k \in \mathbb{N}$ there exists D > 0 such that for all $\lambda_0 \in \mathbb{R}$ we have $\mathbf{E}(e^{\lambda_0 Z_k}) \leq e^{D\lambda_0^2}$. Therefore, from (17) we obtain

$$\mathbf{E}(e^{\lambda \|Q\|_{\infty}/2}) \leq 2N^{2} \prod_{n=0}^{N} e^{D\lambda^{2}|q_{n}(r,\theta)|^{2}} = 2N^{2} \prod_{n=0}^{N} e^{D\lambda^{2}|a_{n}|^{2}r^{2n}} = 2N^{2} e^{D\lambda^{2}S_{N}^{2}},$$
$$\mathbf{E}(e^{\lambda \|Q\|_{\infty}/2 - D\lambda^{2}S_{N}^{2}}) \leq 2N^{4} \cdot \frac{1}{N^{2}},$$

i.e.

$$\mathbf{E}\left(\exp\left\{\frac{\lambda}{2}\left(\|Q\|_{\infty}-2D\lambda S_{N}^{2}-\frac{2}{\lambda}\ln(2N^{4})\right)\right\}\right)\leq\frac{1}{N^{2}}$$

From this inequality for $N \ge 4$ follows

$$\mathbf{E}\left(\exp\left\{\frac{\lambda}{2}\left(\|Q\|_{\infty}-2D\lambda S_{N}^{2}-\frac{9}{\lambda}\ln N\right)\right\}\right) \leq \frac{1}{N^{2}}.$$

By Markov's inequality

$$\mathbb{P}\Big\{\|Q\|_{\infty} \ge 2D\lambda S_N^2 + \frac{9}{\lambda}\ln N\Big\} = \mathbb{P}\Big\{\frac{\lambda}{2}\Big(\|Q\|_{\infty} - 2D\lambda S_N^2 - \frac{9}{\lambda}\ln N\Big) \ge 0\Big\} =$$

$$= \mathbb{P}\left\{\exp\left\{\frac{\lambda}{2}\left(\|Q\|_{\infty} - 2D\lambda S_{N}^{2} - \frac{9}{\lambda}\ln N\right)\right\} \ge 1\right\} \le$$
$$\le \mathbb{E}\left(\exp\left\{\frac{\lambda}{2}\left(\|Q\|_{\infty} - 2D\lambda S_{N}^{2} - \frac{9}{\lambda}\ln N\right)\right\}\right) \le \frac{1}{N^{2}}.$$

Finally,

$$\mathbb{P}\Big\{\|Q\|_{\infty} \ge 2D \frac{3\sqrt{\ln N}}{\sqrt{2D}S_N \ln_2 S_N} S_N^2 + \frac{9\sqrt{2D}S_N \ln_2 S_N}{3\sqrt{\ln N}} \ln N \Big\} \le \frac{1}{N^2},$$
$$\mathbb{P}\Big\{\|Q\|_{\infty} \ge 3\sqrt{2D} \frac{S_N}{\ln_2 S_N} + 3\sqrt{2D}S_N \ln_2 S_N \sqrt{\ln N} \Big\} \le \frac{1}{N^2},$$
$$\mathbb{P}\Big\{\|Q\|_{\infty} \ge 5\sqrt{D}S_N \ln_2 S_N \sqrt{\ln N} \Big\} \le \frac{1}{N^2}.$$

Similarly we obtain

$$\mathbb{P}\{\|P\|_{\infty} \ge 5\sqrt{D}S_N \ln_2 S_N \sqrt{\ln N}\} \le \frac{1}{N^2}$$

and

$$\mathbb{P}\{\|G\|_{\infty} \ge 10\sqrt{D}S_N \ln_2 S_N \sqrt{\ln N}\} \le \frac{2}{N^2}.$$

Lemma 7. Let $Z \in \Xi$, $N = N_{\varepsilon}(r)$. There exist an absolute constant C > 0 and a set E of finite logarithmic measure such that

$$\mathbb{P}\{t: M_f(r,t) \ge CS_N(r) \ln_2 S_N(r) \sqrt{\ln N}\} \le \frac{3}{N^2}, \quad r \to +\infty \ (r \notin E).$$
(18)

Proof. Let us choose $\varepsilon = \frac{1}{N(r)}$. For $n \in N_{\varepsilon}(r)$ we consider events $B_n = \{t : |Z_n(t)| \ge n^2\}$. Then probabilities of these events we can estimate using Markov's inequality and (15). We obtain

$$\mathbb{P}(B_n) = \mathbb{P}\{t \colon |Z_n(t)|^2 \ge n^4\} \le \frac{\mathbf{D}Z_n}{n^4} \le \frac{2D}{n^4},$$
$$\sum_{n=N_{\varepsilon}(r)}^{+\infty} \mathbb{P}(B_n) \le 2D \sum_{n=N_{\varepsilon}(r)}^{+\infty} \frac{1}{n^4} \le \frac{4D}{3N_{\varepsilon}^3(r)}, \ r \to +\infty.$$

Let $B = \bigcup_{n=N_{\varepsilon}(r)}^{+\infty} B_n$. Then $\mathbb{P}(B) \leq \frac{2D}{3N_{\varepsilon}^3(r)}, r \to +\infty$. For $t \notin B$ we have using (13)

$$\max_{0 \le \theta < 2\pi} \left| \sum_{n=N_{\varepsilon}(r)}^{+\infty} Z_n a_n r^n e^{in\theta} \right| \le \sum_{n=N_{\varepsilon}(r)}^{+\infty} |Z_n| |a_n| r^n \le \sum_{n=N_{\varepsilon}(r)}^{+\infty} n^4 e^{-n\varepsilon} \le \\
\le CN_{\varepsilon}^5(r) \le \ln^5 \mu_f(r) \ln_2^6 \mu_f(r) < \ln^6 \mu_f(r) < S_N(r), \ r \to +\infty, \ (r \notin E).$$

Therefore,

$$\mathbb{P}\Big\{t: \max_{0 \le \theta < 2\pi} \Big| \sum_{n=N}^{+\infty} Z_n a_n r^n e^{in\theta} \Big| \ge S_N \Big\} \le \frac{1}{N^2}, \ N = N_{\varepsilon}(r).$$

By (16) we have

$$\mathbb{P}\{\|G\|_{\infty} \ge CS_N \ln_2 S_N \sqrt{\ln N}\} \le \frac{2}{N^2}, \quad r \to +\infty \ (r \notin E).$$

From two previous inequalities we deduce that

$$\mathbb{P}\Big\{t: \max_{0 \le \theta < 2\pi} \Big| \sum_{n=0}^{+\infty} Z_n a_n r^n e^{in\theta} \Big| \ge 2CS_N \ln_2 S_N \sqrt{\ln N} \Big\} \le \frac{3}{N^2}, \ N = N_{\varepsilon}(r).$$

Also we need the following lemma.

Lemma 8 ([11], see also [10]). Let l(r) be a continuous increasing to $+\infty$ function on $(1; +\infty)$, $E \subset (1; +\infty)$ be a set such that its complement contains an unbounded open set. Then there is an infinite sequence $1 < r_1 \leq ... \leq r_n \to +\infty$ $(n \to +\infty)$ such that

- (1) $(\forall n \in \mathbb{N})$: $r_n \notin E$;
- (2) $(\forall n \in \mathbb{N})$: $\ln l(r_n) \ge \frac{n}{2}$;
- (3) if $(r_n; r_{n+1}) \cap E \neq (r_n, r_{n+1})$, then $l(r_{n+1}) \leq el(r_n)$;
- (4) the set of indices, for which (3) holds, is unbounded.

3. Main result.

Theorem 3. Let $Z \in \Xi$. Then there exists a set $E(\delta)$ of finite logarithmic measure such that for all $r \in (r_0(t), +\infty) \setminus E$ almost surely in $\mathcal{K}(f, \mathcal{Z})$ we have

$$M_f(r,t) \le \mu_f(r) \ln^{(2\rho-1)/4} \mu_f(r) \ln_2^{3/2+\delta} \mu_f(r).$$
(19)

Proof. Choose $k(r) = \mu_f(r)$, a set E and a sequence $\{r_k\}$ from Lemma 7. Let

$$F_k = \{t \colon M_f(r_k, t) \ge CS_{N_{\varepsilon}(r_k)}(r_k) \ln_2 S_{N_{\varepsilon}(r_k)}(r_k) \sqrt{\ln N_{\varepsilon}(r_k)} \}.$$

By Lemma 7 and by the definition of $N_{\varepsilon}(r)$ we get

$$\sum_{k=1}^{+\infty} P(F_k) \le \sum_{k=1}^{+\infty} \frac{1}{N_{\varepsilon}^2(r_k)} \le \sum_{k=1}^{+\infty} \frac{1}{\ln^2 \mu_f(r_k)} \le \sum_{k=1}^{+\infty} \frac{1}{k^2} < +\infty.$$

Then by Borel-Cantelli's lemma for almost all $t \in [0, 1]$ for $k \geq k_0(t)$ we obtain

$$M_f(r_k, t) < CS_{N_{\varepsilon}(r_k)}(r_k) \ln_2 S_{N_{\varepsilon}(r_k)}(r_k) \sqrt{\ln N_{\varepsilon}(r_k)}$$

Using inequalities $S_{N_{\varepsilon}(r)}(r) \leq \mathfrak{M}_{f}(r)\mu_{f}(r)$ and $N_{\varepsilon}(r) \leq \ln^{\rho}\mu_{f}(r)\ln_{2}^{\rho+\delta}\mu_{f}(r), (r \notin E)$ we get

$$M_{f}(r_{k},t) < C\sqrt{\mathfrak{M}_{f}(r_{k})\mu_{f}(r_{k})} \ln_{2}(\mathfrak{M}_{f}(r_{k})\mu_{f}(r_{k}))\sqrt{2\ln_{2}\mu_{f}(r_{k})} < < C\mu_{f}(r_{k})\ln^{(2\rho-1)/4}\mu_{f}(r_{k}) \cdot 3\ln_{2}\mu_{f}(r_{k})\sqrt{2\ln_{2}\mu_{f}(r_{k})} < < 5C\mu_{f}(r_{k})\ln^{(2\rho-1)/4}\mu_{f}(r_{k})\ln^{3/2}\mu_{f}(r_{k}).$$

Let $r \ge r_{k_0(t)}$ be an arbitrary number outside set the $E, r \in (r_p, r_{p+1})$. By Lemma 8 $\mu_f(r_{p+1}) \le e\mu_f(r_p) \le e\mu_f(r)$. Therefore for almost all $t \in [0, 1]$ and $r \ge r_0(t)$ outside a set of finite logarithmic measure E we have

$$M_f(r,t) \le M_f(r_{p+1},t) < 5C\mu_f(r_{p+1})\ln^{(2\rho-1)/4}\mu_f(r_{p+1})\ln_2^{3/2}\mu_f(r_{p+1}) < 5Ce\mu_f(r)\ln^{(2\rho-1)/4}(e\mu_f(r))\ln_2^{3/2}(e\mu_f(r)) < \mu_f(r)\ln^{(2\rho-1)/4}\mu_f(r)\ln_2^{3/2+\delta}\mu_f(r).$$

In the case of complex random variables we get such a statement.

Corollary 1. Let $\operatorname{Re} Z \in \Xi$, $\operatorname{Im} Z \in \Xi$. Then there exists a set $E(\delta)$ of finite logarithmic measure such that for all $r \in (r_0(t), +\infty) \setminus E$ almost surely in $\mathcal{K}(f, \mathcal{Z})$ we have

$$M_f(r,t) \le \mu_f(r) \ln^{(2\rho-1)/4} \mu_f(r) \ln_2^{3/2+\delta} \mu_f(r).$$
(20)

4. Some examples. There exists $Z \notin \Xi$ such that $\mathbf{E}Z_n = 0$, $\sup_n \mathbf{D}Z_n = +\infty$ and inequality (19) does not hold. It follows from the following statement.

Theorem 4. For any $\alpha > 0$ there exist a sequence of real independent random variables satisfying for all $n \in \mathbb{Z}_+$

$$\mathbf{E}Z_n = 0, \ \sup_n \mathbf{D}Z_n = +\infty,$$

entire function f(z) and a constant C > 0 such that almost surely in K(f, Z)

$$M_f(r,t) = \max\{|f(z,t)| \colon |z| = r\} \ge C\mu_f(r) \ln^{1/4+\alpha} \mu_f(r), \ r > r_0(t).$$

Proof. We choose

$$f(z) = \sum_{n=1}^{+\infty} \frac{z^n}{n^{\alpha} n!}, \ g(z) = e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

and a sequence of independent random variables (Z_n) such that

$$\mathbb{P}\lbrace t \colon Z_n(t) = -n^{\alpha}\rbrace = \mathbb{P}\lbrace t \colon Z_n(t) = n^{\alpha}\rbrace = \frac{1}{2}$$

Then

$$\mathbf{E}Z_n = -n^{\alpha}\frac{1}{2} + n^{\alpha}\frac{1}{2} = 0, \ \mathbf{D}Z_n = n^{2\alpha}\frac{1}{2} + n^{2\alpha}\frac{1}{2} = n^{2\alpha}, \ \sup_n \mathbf{D}Z_n = +\infty.$$

Denote

$$f(z,t) = \sum_{n=1}^{+\infty} Z_n(t) \frac{z^n}{n^{\alpha} n!} = \sum_{n=1}^{+\infty} R_n(t) \frac{z^n}{n!} = g(z,t),$$
$$M_f(r,t) = \max\{|f(z,t)| \colon |z| \le r\} = \max\{|g(z,t)| \colon |z| \le r\} = M_g(r,t),$$

where $\{R_n(t)\}\$ is a sequence of the Rademacher random variables. By Theorem 2 for $\rho = 1$ we conclude that for g(z,t) and some C > 0

$$M_f(r,t) = M_g(r,t) \ge C\mu_g(r) \ln^{1/4} \mu_g(r), \ r \to +\infty.$$

Remark that

$$\mu_g(r) = \max_{n \in \mathbb{Z}_+} \left\{ \frac{r^n}{n!} \right\} = \max_{n \in \mathbb{Z}_+} \left\{ n^\alpha \frac{r^n}{n^\alpha n!} \right\} \ge \nu_f^\alpha(r) \mu_f(r)$$

and $\nu_f(r) > r/2 = \ln M_g(r)/2, \ r \to +\infty$. Therefore

$$\mu_g(r) > \frac{1}{2^{\alpha}} M_f(r) \ln^{\alpha} M_g(r) > \frac{1}{2^{\alpha}} M_f(r) \ln^{\alpha} \mu_g(r) > \frac{1}{2^{\alpha}} M_f(r) \ln^{\alpha} \mu_f(r).$$

Finally, almost surely in K(f, Z) we get

$$M_f(r,t) > C\mu_g(r) \ln^{1/4} \mu_g(r) > C_1 M_f(r) \ln^{\alpha} \mu_f(r) \ln^{1/4} (M_f(r) \ln^{\alpha} \mu_f(r)) > C_1 \mu_f(r) \ln^{1/4+\alpha} \mu_f(r).$$

REFERENCES

- 1. G. Valiron, Fonctions analytiques. Paris: Press. Univer. de France, 1954.
- 2. H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.
- 3. G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, V.2. Berlin, Springer, 1925.
- O.B. Skaskiv, P.V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12 (1999), №1, 31–36. (in Ukrainian)
- 5. M.M. Sheremeta, Wiman-Valiron's method for entire functions, represented by Dirichlet series, Dokl. USSR Acad. Sci., **240** (1978), №5, 1036–1039. (in Russian)
- O.B. Skaskiv, On the classical Wiman's inequality for entire Dirichlet series, Visn. Lviv. Univer., ser. mekh.-mat., 54 (1999), 180–182. (in Ukrainian)
- O.B. Skaskiv, Random gap power series and Wiman's inequality, Mat. Stud. 30 (2008), №1, 101–106. (in Ukrainian)
- 8. P. Levy, Sur la croissante de fonctions entiere, Bull. Soc. Math. France, 58 (1930), 29–59; 127–149.
- 9. P. Erdős, A. Renyi On random entire functions, Zastos. Mat., 10 (1969), 47–55.
- P.V. Filevych, Correlation between the maximum modulus and maximal term of random entire functions, Mat. Stud., 7 (1997), №2, 157–166.
- O.B. Skaskiv, O.V. Zrum, On an exeptional set in the Wiman inequalities for entire functions, Mat. Stud., 21 (2004), №1, 13–24. (in Ukrainian)
- 12. J.P. Kahane, Some random series of functions, Cambridge University Press, 1985, 305 p.
- O.B. Skaskiv, O.V. Zrum, Refinemant of Fenton's inequality for entire functions of two complex variables, Mat. Visn. Nauk. Tov. Im. Shevchenka, 3 (2006), 56–68. (in Ukrainian)
- 14. O.B. Skaskiv, O.V. Zrum, Wiman-type inequalities for entire functions of two complex variables with rapidly oscillating coefficients, Mat. Metody Phys.-Mekh. Polya, 48 (2005), №4, 78–87. (in Ukrainian)
- O.V. Zrum, O.B. Skaskiv, On Wiman's inequality for random entire functions of two variables, Mat. Stud., 23 (2005), №2, 149–160. (in Ukrainian)
- A.O. Kuryliak, O.B. Skaskiv, O.V. Zrum, Levy's phenomenon for entire functions of several variables, Ufa Math. Journ., 6 (2014), №2, 118–127.
- 17. A.O. Kuryliak, L.O. Shapovalovska, Wiman's type inequality for entire functions of several complex variables with rapidly oscillating coefficients, Mat. Stud., 43 (2015), №1, 16–26.
- J.M. Steele, Wiman's inequality for entire functions with rapidly oscilating coefficients, J. Math. Anal. Appl., 123 (1987), 550–558.
- 19. P. Filevych, Some classes of entire functions in which the Wiman-Valiron inequality can be almost certainly improved, Mat. Stud., 6 (1996), 59–66. (in Ukrainian)
- 20. F. Tian, Growth of random Dirichlet series, Acta Math. Sc., 20B (2000), No.3, 390–396.
- L.O. Shapovalovska, O.B. Skaskiv, On the radius of convergence of random gap power series, Int. Journal of Math. Analysis, 9 (2015), №38, 1889–1893.
- 22. W.K. Hayman, Subharmonic functions, V.2, Academic Press, London, 1989.
- 23. A. Nishry, The hole probability for gaussian entire functions, arxiv:0909.12v3, 2009.
- W.K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), №3, 317–358.
- R. Salem, A. Zygmund, Some properties of trigonometric series whose terms have random sign, Acta. Math., 91 (1954), 245–301.

Ivan Franko National University of Lviv andriykuryliak@gmail.com

Received 20.09.2016