M. M. Sheremeta

ON THE l-INDEX BOUNDEDNESS OF SOME COMPOSITION OF FUNCTIONS

> M. M. Sheremeta. On the l-index boundedness of some composition of functions, Mat. Stud. $47(2017), 207-210$.
> It is suggested that for an entire function f the function $F(z)=f\left(\frac{q}{(1-z)^{n}}\right), n \in \mathbb{N}$, is of bounded l-index with $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$, if and only if f is of bounded index.

1. Introduction. Let $0<R \leq+\infty, \mathbb{D}_{R}=\{z:|z|<R\}$ and l be a positive continuous function on $[0, R)$, which satisfies

$$
\begin{equation*}
l(r)>\frac{\beta}{R-r}, \quad \beta=\text { const }>1 \tag{1}
\end{equation*}
$$

An analytic in \mathbb{D}_{R} function f is said ($[1, \mathrm{p} .67]$) to be of bounded l-index if there exists $N \in \mathbb{Z}_{+}$such that for all $n \in \mathbb{Z}_{+}$and $z \in \mathbb{D}_{R}$

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!l^{n}(|z|)} \leq \max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}(|z|)}: 0 \leq k \leq N\right\} \tag{2}
\end{equation*}
$$

The least such integer is called the l-index of f and is denoted by $N(l ; f)$. If $R=+\infty$ (i. e. f is an entire function) then the condition (1) is unnecessary. We remark also that if f is an entire function and $l(|z|) \equiv 1$ then f is said to be of bounded index.

A series of works is dedicated to the research of the l-index boundedness for different classes of analytic functions. For example, the l-index boundedness of entire functions represented by canonical products and Laguerre-Pólya functions is investigated in the papers [2-7]. The same problem is studied for analytic in the unit disc functions represented by Blaschke and Naftalevich-Tsuji products in [8-10].

In [11] it is proved that if f is an entire function and $F(z)=f\left(q z^{n}\right) n \geq 2$, then the function F is of bounded l-index with $l(|z|)=|z|^{n-1}$ for $|z| \geq 1$ if and only if f is of bounded index. The following question arises: whether it is possible in this statement replace $q z^{n}$ by $\frac{q}{(1-z)^{n}}$ and $l(|z|)=|z|^{n-1}$ by $l(|z|)=\frac{\beta}{\left(1-\left.|z|\right|^{n+1}\right.}, \beta>1$. Here we give some elementary functions for which such a replacement is possible.

We need some notations. Suppose that f is an analytic in $\mathbb{D}=\mathbb{D}_{1}$ function and $l(|z|)=$ $L\left(\frac{1}{1-|z|}\right), L(x) / x>\beta>1$ for $x \geq 1$. Then (2) is equivalent to

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!L^{n}(1 /(1-|z|))} \leq \max \left\{\frac{\left|f^{(k)}(z)\right|}{k!L^{k}(1 /(1-|z|))}: 0 \leq k \leq N\right\} . \tag{3}
\end{equation*}
$$

2010 Mathematics Subject Classification: 30B50.
Keywords: analytic function; index boundedness; composition of functions.
doi:10.15330/ms.47.2.207-210

For $r \in[0, \beta)$ we define

$$
\begin{aligned}
& \lambda_{1}(r)=\inf \left\{\frac{1}{L(x)} L\left(\frac{x}{1+t x / L(x)}\right):-r \leq t \leq r, x \geq 1\right\}, \\
& \lambda_{2}(r)=\sup \left\{\frac{1}{L(x)} L\left(\frac{x}{1+t x / L(x)}\right):-r \leq t \leq r, x \geq 1\right\} .
\end{aligned}
$$

By Q_{β} we denote the class of the continuous in $[0, \beta)$ functions L such that $L(x) / x>\beta>1$ for $x \geq 1$ and $0<\lambda_{1}(r) \leq \lambda_{2}(r)<+\infty$ for all $r \in[0, \beta)$. Then [12] (see also [1, p. 21]) the following statement is true.

Lemma 1. If $\beta>1$ and $L \in Q_{\beta}$ then (3) holds if and only if there exist numbers $p \in \mathbb{Z}_{+}$ and $C>0$ such that for each $z \in \mathbb{D}$

$$
\frac{\left|f^{(p+1)}(z)\right|}{L^{p+1}(1 /(1-|z|))} \leq C \max \left\{\frac{\left|f^{(k)}(z)\right|}{L^{k}(1 /(1-|z|))}: 0 \leq k \leq p\right\} .
$$

The function $L(x)=\beta x^{n+1}$ belongs to Q_{β}. Therefore, Lemma 1 implies the following lemma.

Lemma 2. If $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$, then an analytic function f in $\mathbb{D}=\mathbb{D}_{1}$ is of bounded l-index if and only if there exist numbers $p \in \mathbb{Z}_{+}$and $C>0$ such that for each $z \in \mathbb{D}$

$$
\begin{equation*}
\frac{\left|f^{(p+1)}(z)\right|}{l^{p+1}(|z|)} \leq C \max \left\{\frac{\left|f^{(k)}(z)\right|}{l^{k}(|z|)}: 0 \leq k \leq p\right\} . \tag{4}
\end{equation*}
$$

If $f(\xi)=e^{\xi}$ then $F(z)=\exp \left\{\frac{q}{(1-z)^{n}}\right\}, F^{\prime}(z)=\exp \left\{\frac{q}{(1-z)^{n}}\right\} \frac{q n}{(1-z)^{n+1}}$ and

$$
\begin{gathered}
F^{\prime \prime}(z)=\exp \left\{\frac{q}{(1-z)^{n}}\right\} \frac{q^{2} n^{2}}{(1-z)^{2 n+2}}+\exp \left\{\frac{q}{(1-z)^{n}}\right\} \frac{q n(n+1)}{(1-z)^{n+2}}= \\
=\frac{n+1}{1-z} F^{\prime}(z)+\frac{q^{2} n^{2}}{(1-z)^{2 n+2}} F(z)
\end{gathered}
$$

whence

$$
\begin{gathered}
\frac{\left|F^{\prime \prime}(z)\right|}{l^{2}(|z|)} \leq \frac{n+1}{(1-|z|) l(|z|)} \frac{\left|F^{\prime}(z)\right|}{l(|z|)}+\frac{|q|^{2} n^{2}}{(1-|z|)^{2 n+2} l^{2}(|z|)}|F(z)| \leq \\
\leq \frac{n+1}{\beta} \frac{\left|F^{\prime}(z)\right|}{l(|z|)}+\frac{|q|^{2} n^{2}}{\beta^{2}}|F(z)| \leq\left(\frac{n+1}{\beta}+\frac{|q|^{2} n^{2}}{\beta^{2}}\right) \max \left\{\frac{\left|F^{\prime}(z)\right|}{l(|z|)},|F(z)|\right\}
\end{gathered}
$$

that is (4) holds with $p=2$ and $C=\frac{n+1}{\beta}+\frac{|q|^{2} n^{2}}{\beta^{2}}$ and by Lemma 2 the function $F(z)=$ $\exp \left\{\frac{q}{(1-z)^{n}}\right\}$ is of bounded l-index with $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$.

It is easy to show that for the functions $f(\xi)=\operatorname{ch} \xi$ and $f(\xi)=\operatorname{sh} \xi$ the equality

$$
F^{\prime \prime}(z)=\frac{n+1}{1-z} F^{\prime}(z)+\frac{q^{2} n^{2}}{(1-z)^{2 n+2}} F(z),
$$

is correct and for the functions $f(\xi)=\cos \xi$ and $f(\xi)=\sin \xi$ we have

$$
F^{\prime \prime}(z)=\frac{n+1}{1-z} F^{\prime}(z)-\frac{q^{2} n^{2}}{(1-z)^{2 n+2}} F(z) .
$$

Therefore, as above we get that the functions $F(z)=\operatorname{ch}\left\{\frac{q}{(1-z)^{n}}\right\}, F(z)=\operatorname{sh}\left\{\frac{q}{(1-z)^{n}}\right\} F(z)=$ $\cos \left\{\frac{q}{(1-z)^{n}}\right\}$ and $F(z)=\sin \left\{\frac{q}{(1-z)^{n}}\right\}$ are of bounded l-index with $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$.

We remark that the entire functions $e^{z}, \operatorname{ch} z, \operatorname{ch} z, \cos z$ and $\sin z$ are of bounded index and satisfy a differential equation of the form $w^{\prime \prime}+a w=0$. S.M. Shah ([13]) considered a more general differential equation

$$
\begin{equation*}
z^{2} w^{\prime \prime}+\left(\beta_{0} z^{2}+\beta_{1} z\right) w^{\prime}+\left(\gamma_{0} z^{2}+\gamma_{1} z+\gamma_{2}\right) w=0 \tag{5}
\end{equation*}
$$

where $\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \gamma_{2}$ are constant parameters, and investigated the close-to-convexity of its solutions.

Suppose that an entire function $f(\xi)$ satisfies (5), that is

$$
\begin{equation*}
\xi^{2} f^{\prime \prime}(\xi)+\left(\beta_{0} \xi^{2}+\beta_{1} \xi\right) f^{\prime}(\xi)+\left(\gamma_{0} \xi^{2}+\gamma_{1} \xi+\gamma_{2}\right) f(\xi) \equiv 0 \tag{6}
\end{equation*}
$$

Let $F(z)=f\left\{\frac{q}{(1-z)^{n}}\right\}$. Since
$f^{\prime}\left\{\frac{q}{(1-z)^{n}}\right\}=\frac{(1-z)^{n+1}}{q n} F^{\prime}(z), f^{\prime \prime}\left\{\frac{q}{(1-z)^{n}}\right\}=\frac{(1-z)^{2 n+2}}{q^{2} n^{2}} F^{\prime \prime}(z)-\frac{(n+1)(1-z)^{n+1}}{q^{2} n^{2}} F^{\prime}(z)$, from (6) we have

$$
\begin{gathered}
\frac{q^{2}}{(1-z)^{2 n}}\left(\frac{(1-z)^{2 n+2}}{q^{2} n^{2}} F^{\prime \prime}(z)-\frac{(n+1)(1-z)^{n+1}}{q^{2} n^{2}} F^{\prime}(z)\right)+ \\
+\left(\beta_{0} \frac{q^{2}}{(1-z)^{2 n}}+\beta_{1} \frac{q}{(1-z)^{n}}\right) \frac{(1-z)^{n+1}}{q n} F^{\prime}(z)+ \\
\quad+\left(\gamma_{0} \frac{q^{2}}{(1-z)^{2 n}}+\gamma_{1} \frac{q}{(1-z)^{n}}+\gamma_{2}\right) F(z) \equiv 0,
\end{gathered}
$$

that is

$$
\begin{gathered}
F^{\prime \prime}(z)+\left(\frac{\beta_{0} n q-(n+1)}{(1-z)^{n+1}}+\frac{\beta_{1} n}{(1-z)}\right) F^{\prime}(z)+ \\
+n^{2}\left(\gamma_{0} \frac{q^{2}}{(1-z)^{2 n+2}}+\gamma_{1} \frac{q}{(1-z)^{n+2}}+\frac{\gamma_{2}}{(1-z)^{2}}\right) F(z) \equiv 0 .
\end{gathered}
$$

If $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$, hence we obtain

$$
\begin{aligned}
& \frac{\left|F^{\prime \prime}(z)\right|}{l^{2}(|z|)} \leq \frac{\left|n q \beta_{0}-n-1\right|+n\left|\beta_{1}\right|}{(1-|z|)^{n+1} l(|z|)} \frac{\left|F^{\prime}(z)\right|}{l(|z|)}+n^{2} \frac{\left|\gamma_{0} q^{2}\right|+\left|\gamma_{1} q\right|+\left|\gamma_{2}\right|}{(1-|z|)^{2 n+2} l^{2}(|z|)}|F(z)| \leq \\
\leq & \left(\frac{\left|n q \beta_{0}-n-1\right|+n\left|\beta_{1}\right|}{\beta}+\frac{n^{2}\left(\left|\gamma_{0} q^{2}\right|+\left|\gamma_{1} q\right|+\left|\gamma_{2}\right|\right)}{\beta^{2}}\right) \max \left\{\frac{\left|F^{\prime}(z)\right|}{l(|z|)},|F(z)|\right\}
\end{aligned}
$$

that is by Lemma $2 F$ is of bounded l-index. We remark also that from (6) it follows that f is of bounded index. Indeed, for $|\xi| \geq 1$

$$
\begin{gathered}
\left|f^{\prime \prime}(\xi)\right| \leq\left(\left|\beta_{0}\right|+\left|\beta_{1}\right|\right)\left|f^{\prime}(\xi)\right|+\left(\left|\gamma_{0}\right|+\left|\gamma_{1}\right|+\left|\gamma_{2}\right|\right)|f(\xi)| \leq \\
\leq\left(\left|\beta_{0}\right|+\left|\beta_{1}\right|+\left|\gamma_{0}\right|+\left|\gamma_{1}\right|+\left|\gamma_{2}\right|\right) \max \left\{\left|f^{\prime}(\xi)\right|,|f(\xi)|\right\},
\end{gathered}
$$

that is by Hayman's theorem [14] (see also Theorem 1.5 from [1] with $l(|z|) \equiv 1) f$ is of bounded index in $\mathbb{C} \backslash \mathbb{D}$ and, thus $[1, \mathrm{p} .32], f$ is of bounded index.

In view of the results given above we can propound following conjecture.

Conjecture 1. For an entire function f the function $F(z)=f\left(\frac{q}{(1-z)^{n}}\right), n \in \mathbb{N}$, is of bounded l-index with $l(|z|)=\frac{\beta}{(1-|z|)^{n+1}}, \beta>1$, if and only if f is of bounded index.

Finally, we remark that there is a number of works [15-17] devoted to entire solutions of the differential equation (5). Their main results are estimates of the index with additional conditions on the parameters.

REFERENCES

1. Sheremeta M.M. Analytic functions of bounded index. - Lviv: VNTL Publishes, 1999.
2. Goldberg A.A., Sheremeta M.N. Existence of an entire transcendental function of bounded l-index// Mat. Zametki. - 1995. - V.57, no. 1 - P. 125-129 (in Russian); Engl. transl. Math Notes. - 1995. - V.57, no.1. - P. 88-90.
3. Sheremeta M.M., Bordulyak M.T. On the existence of entire functions of bounded l-index and l-regular growth// Ukrainian Math. Zh. - 1996. - V.48, no.9. - P. 1166-1182 (in Russian); Engl. transl.: Ukrainian Math. J. - 1996. - V.48, no.9. - P. 1322-1340.
4. Chyzhykov I.E., Sheremeta M.M. Boundedness of l-index for entire functions of zero genus// Mat. Stud. - 2001. - V.16, no.2. - P. 124-130.
5. Sheremeta M.M., Bordulyak M.T. Boundedness of the l-index of Laguerre-Pólya entire functions// Ukrainian Math. Zh. - 2003. - V.55, no.1. - P. 91-99 (in Ukrainian); Engl. transl.: Ukrainian Math. J. - 2003. - V.55, no.1, 112-125.
6. Chyzhykov I.E., Sheremeta M.M. On the boundedness of l-index for entire functions of zero genus// Dopovidi NAN Ukraine. - 2003. - V.7. - P. 33-39. (in Ukrainian)
7. Goldberg A.A., Sheremeta M.M. On the boundedness of the l-index of canonical products// Ukr. Mat. Visn. - 2005. - V.2, no.1. - P. 52-64 (in Ukrainian); Eng. transl.: Ukr. Math. Bull. - 2005. - V.2, no.1. - P. 53-65.
8. Trukhan Yu.S., Sheremeta M.M. Boundedness of l-index of Blaschke product// Mat. Stud. - 2002. V.17, no.2. - P. 127-137. (in Ukrainian)
9. Trukhan Yu.S., Sheremeta M.M. On l-index boundedness of the Blaschke product// Mat. Stud. - 2003. - V.19, no.1. - P. 106-112.
10. Sheremeta M.M., Trukhan Yu.S. Boundedness of the l-index of the Naftalevich-Tsuji product// Ukrainian Math. Zh. - 2004. - V.56, no.2. - P. 247-256 (in Ukrainian); Engl. transl.: Ukrainian Math. J. - 2004. - V.56, no.2. - P. 305-317.
11. Sheremeta M.N. Entire functions and Dirichlet series of bounded l-index// Izv. Vyssh. Uchebn. Zaved. Mat. - 1992. - V.9. - P. 81-87. (in Russian). Engl. transl.: Russian Math. (Iz. VUZ). - 1992. - V.36, no.9. - P. 76-82.
12. Strochyk S.M., Sheremeta M.M. Analytic in the unit disc functions of bounded index// Dopov. Akad. Nauk Ukr. - 1993. - no.1. - P. 19-22. (in Ukrainian)
13. Shah S.M. Univalence of a function f and its successive derivative when f satisfies a differential equation, II// J. Math. Anal. and Appl. - 1989. - V.142. - P. 422-430.
14. Hayman W.K. Differential inequalities and local valency// Pacific J. Math. - 1973. - V.44. - P. 117-137.
15. Sheremeta Z.M. Properties of derivatives of an entire solution of a differential equation// Mat. method. and fiz.-mech. polya. - 2006. - V.49, no.2. - P. 80-85. (in Ukrainian)
16. Sheremeta Z.M., Sheremeta M.M. Properties of entire solutions of differential equations// Ukrainian Math. Zh. - 2006. - V.58, no.12. - P. 1693-1703 (in Ukrainian); Engl. transl.: Ukrainian Math. J. 2006. - V.56, no.12. - P. 1924-1934.
17. Sheremeta Z.M., Sheremeta M.M. On the l-index boundedness of entire solutions of a differential equation// Dopovidi NAN Ukraine. - 2007. - V.56, no.2. - P. 31-36. (in Ukrainian)

Ivan Franko National University of Lviv
m_m_sheremeta@gmail.com

