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It is suggested that for an entire function f the function F (z) = f( q
(1−z)n ), n ∈ N, is of

bounded l-index with l(|z|) = β
(1−|z|)n+1 , β > 1, if and only if f is of bounded index.

1. Introduction. Let 0 < R ≤ +∞, DR = {z : |z| < R} and l be a positive continuous
function on [0, R), which satisfies

l(r) >
β

R− r
, β = const > 1. (1)

An analytic in DR function f is said ([1, p. 67]) to be of bounded l-index if there exists
N ∈ Z+ such that for all n ∈ Z+ and z ∈ DR

|f (n)(z)|
n!ln(|z|)

≤ max

{
|f (k)(z)|
k!lk(|z|)

: 0 ≤ k ≤ N

}
. (2)

The least such integer is called the l-index of f and is denoted by N(l; f). If R = +∞
(i. e. f is an entire function) then the condition (1) is unnecessary. We remark also that if
f is an entire function and l(|z|) ≡ 1 then f is said to be of bounded index.

A series of works is dedicated to the research of the l-index boundedness for different
classes of analytic functions. For example, the l-index boundedness of entire functions rep-
resented by canonical products and Laguerre-Pólya functions is investigated in the papers
[2-7]. The same problem is studied for analytic in the unit disc functions represented by
Blaschke and Naftalevich-Tsuji products in [8–10].

In [11] it is proved that if f is an entire function and F (z) = f(qzn) n ≥ 2, then the
function F is of bounded l-index with l(|z|) = |z|n−1 for |z| ≥ 1 if and only if f is of bounded
index. The following question arises: whether it is possible in this statement replace qzn

by q
(1−z)n

and l(|z|) = |z|n−1 by l(|z|) = β
(1−|z|)n+1 , β > 1. Here we give some elementary

functions for which such a replacement is possible.
We need some notations. Suppose that f is an analytic in D = D1 function and l(|z|) =

L( 1
1−|z|), L(x)/x > β > 1 for x ≥ 1. Then (2) is equivalent to

|f (n)(z)|
n!Ln(1/(1− |z|))

≤ max

{
|f (k)(z)|

k!Lk(1/(1− |z|))
: 0 ≤ k ≤ N

}
. (3)
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For r ∈ [0, β) we define

λ1(r) = inf

{
1

L(x)
L

(
x

1 + tx/L(x)

)
: − r ≤ t ≤ r, x ≥ 1

}
,

λ2(r) = sup

{
1

L(x)
L

(
x

1 + tx/L(x)

)
: − r ≤ t ≤ r, x ≥ 1

}
.

By Qβ we denote the class of the continuous in [0, β) functions L such that L(x)/x > β > 1
for x ≥ 1 and 0 < λ1(r) ≤ λ2(r) < +∞ for all r ∈ [0, β). Then [12] (see also [1, p. 21]) the
following statement is true.

Lemma 1. If β > 1 and L ∈ Qβ then (3) holds if and only if there exist numbers p ∈ Z+

and C > 0 such that for each z ∈ D

|f (p+1)(z)|
Lp+1(1/(1− |z|))

≤ Cmax

{
|f (k)(z)|

Lk(1/(1− |z|))
: 0 ≤ k ≤ p

}
.

The function L(x) = βxn+1 belongs to Qβ. Therefore, Lemma 1 implies the following
lemma.

Lemma 2. If l(|z|) = β
(1−|z|)n+1 , β > 1, then an analytic function f in D = D1 is of bounded

l-index if and only if there exist numbers p ∈ Z+ and C > 0 such that for each z ∈ D

|f (p+1)(z)|
lp+1(|z|)

≤ Cmax

{
|f (k)(z)|
lk(|z|)

: 0 ≤ k ≤ p

}
. (4)

If f(ξ) = eξ then F (z) = exp{ q
(1−z)n

}, F ′(z) = exp{ q
(1−z)n

} qn
(1−z)n+1 and

F ′′(z) = exp

{
q

(1− z)n

}
q2n2

(1− z)2n+2
+ exp

{
q

(1− z)n

}
qn(n+ 1)

(1− z)n+2
=

=
n+ 1

1− z
F ′(z) +

q2n2

(1− z)2n+2
F (z),

whence

|F ′′(z)|
l2(|z|)

≤ n+ 1

(1− |z|)l(|z|)
|F ′(z)|
l(|z|)

+
|q|2n2

(1− |z|)2n+2l2(|z|)
|F (z)| ≤

≤ n+ 1

β

|F ′(z)|
l(|z|)

+
|q|2n2

β2
|F (z)| ≤

(
n+ 1

β
+

|q|2n2

β2

)
max

{
|F ′(z)|
l(|z|)

, |F (z)|
}

that is (4) holds with p = 2 and C = n+1
β

+ |q|2n2

β2 and by Lemma 2 the function F (z) =

exp{ q
(1−z)n

} is of bounded l-index with l(|z|) = β
(1−|z|)n+1 , β > 1.

It is easy to show that for the functions f(ξ) = ch ξ and f(ξ) = sh ξ the equality

F ′′(z) =
n+ 1

1− z
F ′(z) +

q2n2

(1− z)2n+2
F (z),

is correct and for the functions f(ξ) = cos ξ and f(ξ) = sin ξ we have

F ′′(z) =
n+ 1

1− z
F ′(z)− q2n2

(1− z)2n+2
F (z).
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Therefore, as above we get that the functions F (z) = ch{ q
(1−z)n

}, F (z) = sh{ q
(1−z)n

} F (z) =

cos{ q
(1−z)n

} and F (z) = sin{ q
(1−z)n

} are of bounded l-index with l(|z|) = β
(1−|z|)n+1 , β > 1.

We remark that the entire functions ez, ch z, ch z, cos z and sin z are of bounded index
and satisfy a differential equation of the form w′′ + aw = 0. S.M. Shah ([13]) considered
a more general differential equation

z2w′′ + (β0z
2 + β1z)w

′ + (γ0z
2 + γ1z + γ2)w = 0, (5)

where β0, β1, γ0, γ1, γ2 are constant parameters, and investigated the close-to-convexity of
its solutions.

Suppose that an entire function f(ξ) satisfies (5), that is

ξ2f ′′(ξ) + (β0ξ
2 + β1ξ)f

′(ξ) + (γ0ξ
2 + γ1ξ + γ2)f(ξ) ≡ 0. (6)

Let F (z) = f{ q
(1−z)n

}. Since

f ′
{ q

(1− z)n

}
=
(1− z)n+1

qn
F ′(z), f ′′

{ q

(1− z)n

}
=
(1− z)2n+2

q2n2
F ′′(z)− (n+ 1)(1− z)n+1

q2n2
F ′(z),

from (6) we have

q2

(1− z)2n

(
(1− z)2n+2

q2n2
F ′′(z)− (n+ 1)(1− z)n+1

q2n2
F ′(z)

)
+

+

(
β0

q2

(1− z)2n
+ β1

q

(1− z)n

)
(1− z)n+1

qn
F ′(z)+

+

(
γ0

q2

(1− z)2n
+ γ1

q

(1− z)n
+ γ2

)
F (z) ≡ 0,

that is

F ′′(z) +

(
β0nq − (n+ 1)

(1− z)n+1
+

β1n

(1− z)

)
F ′(z)+

+n2

(
γ0

q2

(1− z)2n+2
+ γ1

q

(1− z)n+2
+

γ2
(1− z)2

)
F (z) ≡ 0.

If l(|z|) = β
(1−|z|)n+1 , β > 1, hence we obtain

|F ′′(z)|
l2(|z|)

≤ |nqβ0 − n− 1|+ n|β1|
(1− |z|)n+1l(|z|)

|F ′(z)|
l(|z|)

+ n2 |γ0q2|+ |γ1q|+ |γ2|
(1− |z|)2n+2l2(|z|)

|F (z)| ≤

≤
(
|nqβ0 − n− 1|+ n|β1|

β
+

n2(|γ0q2|+ |γ1q|+ |γ2|)
β2

)
max

{
|F ′(z)|
l(|z|)

, |F (z)|
}

that is by Lemma 2 F is of bounded l-index. We remark also that from (6) it follows that
f is of bounded index. Indeed, for |ξ| ≥ 1

|f ′′(ξ)| ≤ (|β0|+ |β1|)|f ′(ξ)|+ (|γ0|+ |γ1|+ |γ2|)|f(ξ)| ≤
≤ (|β0|+ |β1|+ |γ0|+ |γ1|+ |γ2|)max{|f ′(ξ)|, |f(ξ)|},

that is by Hayman’s theorem [14] (see also Theorem 1.5 from [1] with l(|z|) ≡ 1) f is of
bounded index in C \ D and, thus [1, p. 32], f is of bounded index.

In view of the results given above we can propound following conjecture.
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Conjecture 1. For an entire function f the function F (z) = f( q
(1−z)n

), n ∈ N, is of bounded
l-index with l(|z|) = β

(1−|z|)n+1 , β > 1, if and only if f is of bounded index.

Finally, we remark that there is a number of works [15-17] devoted to entire solutions of
the differential equation (5). Their main results are estimates of the index with additional
conditions on the parameters.
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