T. Banakh, I. Protasov, K. Protasova

RAMSEY-PRODUCT SUBSETS OF A GROUP

T. Banakh, I. Protasov, K. Protasova. Ramsey-product subsets of a group, Mat. Stud. 47 (2017), 145-149.

Given an infinite group G and a number vector $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ of finite length k, we say that a subset A of G is a Ramsey \vec{m}-product set if every infinite subset $X \subset G$ contains distinct elements $x_{1}, \ldots, x_{k} \in X$ such that $x_{\sigma(1)}^{m_{1}} \ldots x_{\sigma(k)}^{m_{k}} \in A$ for any permutation $\sigma \in S_{k}$. We use these subsets to characterize combinatorially some algebraically defined subsets of the Stone-Čech compactification βG of G.

All groups under consideration are supposed to be infinite; a countable set means a countably infinite set.

Let G be a group and let $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ be a number vector of length $k \in \mathbb{N}$. We say that a subset A of a group G is a Ramsey \vec{m}-product subset if every infinite subset X of G contains pairwise distinct elements $x_{1}, \ldots, x_{k} \in X$ such that

$$
x_{\sigma(1)}^{m_{1}} x_{\sigma(2)}^{m_{2}} \ldots x_{\sigma(k)}^{m_{k}} \in A
$$

for every permutation $\sigma \in S_{k}$.
Why Ramsey? The answer follows from the proof of (i) in
Proposition 1. For a group G and a number vector $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ the following statements hold:
(i) a subset A of G is a Ramsey \vec{m}-product subset if and only if for every infinite subset X contains a countable subset Y such that $y_{1}^{m_{1}} \ldots y_{k}^{m_{k}} \in A$ for any distinct elements $y_{1}, \ldots, y_{k} \in Y$;
(ii) the family $\varphi_{\vec{m}}$ of all Ramsey \vec{m}-product subsets of G is a filter.

Proof. (i) The "if" part is trivial. To prove the "only if" part, assume that A is a Ramsey \vec{m}-product subset in G and $X \subset G$ is an infinite set. Define the coloring $\chi:[X]^{k} \longrightarrow\{0,1\}$ of the set $[X]^{k}=\{K \subset X:|K|=k\}$ by the rule: $\chi\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)=1$ if and only if $x_{\sigma(1)}^{m_{1}} \ldots x_{\sigma(k)}^{m_{k}} \in A$ for every $\sigma \in S_{k}$.

By the classical Ramsey theorem, there exists a countable subset Y of X such that the set $[Y]^{k}$ is χ-monochrome. Since A is a Ramsey \vec{m}-product subset, by the definition of χ, there exists $K \in[Y]^{k}$ such that $\chi(K)=1$, which implies that $\chi\left([Y]^{k}\right)=\{1\}$.
(ii) We take $A, B \in \varphi_{\vec{m}}$ and prove that $A \cap B \in \varphi_{\vec{m}}$. For an infinite subset X, we choose Y given by (i). For B and Y, we choose corresponding $Z \subset Y$ and take distinct $z_{1}, \ldots, z_{k} \in Z$. Then $z_{\sigma(1)}^{m_{1}} \ldots z_{\sigma(k)}^{m_{k}} \in A \cap B$ for any $\sigma \in S_{n}$.

2010 Mathematics Subject Classification: 05D10.
Keywords: Stone-Čech compactification; product of ultrafilters; Ramsey product subset. doi:10.15330/ms.47.2.145-149

For some specific number vectors, Ramsey \vec{m}-product sets have been studied in the literature. In particular, Ramsey $(-1,1)$-product sets are exactly Δ_{ω} sets from [6], Ramsey $(-1,1)$-product sets containing the unit of the group are exactly ω-fat sets of Sipacheva [7]; Ramsey $(-1,1)$-product sets are similar to Δ^{*}-sets, studied in [1] (see [7, p.6]).

Now we present some examples and establish some topological properties of Ramsey \vec{m}-product sets.

Proposition 2. For any totally bounded topological group G, any neighborhood $U \subset G$ of the unit e of G is a Ramsey \vec{m}-product set for any number vector $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ with $m_{1}+\cdots+m_{k}=0$.

Proof. By the continuity of the group operation, there exists an open neighborhood $V \subset G$ of e such that $V^{m_{1}} \cdots V^{m_{k}} \subset U$. Since the topological group G is totally bounded, we can additionally assume that the neighborhood V is invariant in the sense that $z V=V z$ for any $z \in G$. By the total boundedness of G, there exists a finite set $F \subset G$ such that $G=F V$.

To prove that U is a Ramsey \vec{m}-product set, take any infinite set $A \subset G=F V$. By the Pigeonhole Principle, for some $z \in F$ the set $A \cap z V$ is infinite. We claim that $x_{1}^{m_{1}} \cdots x_{k}^{m_{k}} \in U$ for any points $x_{1}, \ldots, x_{k} \in A \cap z V$. Taking into account that the set V is invariant, we conclude that

$$
x_{1}^{m_{1}} \cdots x_{k}^{m_{k}} \in(z V)^{m_{1}} \cdots(z V)^{m_{k}}=z^{m_{1}+\cdots+m_{k}} V^{m_{1}} \cdots V^{m_{k}} \subset z^{0} U=U
$$

For the vector $\vec{m}=(-1,1)$, Proposition 2 can be complemented by the following proposition proved in [6, Proposition 5]. We recall that a quasi-topological group is a group G endowed with a topology such that for any $a, b \in G$ and $\varepsilon \in\{-1,1\}$ the map $G \rightarrow G$, $x \mapsto a x^{\varepsilon} b$, is continuous.

Proposition 3. The closure \bar{A} of any Ramsey ($-1,1$)-product set A in a quasi-topological group G is a neighborhood of the unit.

On the other hand, Ramsey \vec{m}-product sets have the following density property.
Proposition 4. Let $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ be a number vector and $s=m_{1}+\cdots+m_{k}$. For any Ramsey \vec{m}-product subset A of a group G, the set $\left\{x^{s}: x \in G\right\}$ is contained in the closure of A in any non-discrete group topology on G.

Proof. To derive a contradiction, assume that for some non-discrete group topology τ on G, the closure \bar{A} of A does not contain the power x^{s} of some element $x \in G$. By the continuity of the group operations, the element x has a neighborhood $U_{x} \in \tau$ such that $U_{x}^{s} \cap A=\varnothing$. Since the topology τ is not discrete, the set U_{x} is infinite. Moreover, the choice of U_{x} ensures that $x_{1}^{m_{1}} \cdots x_{k}^{m_{k}} \notin A$ for any elements $x_{1}, \ldots, x_{k} \in U_{x}$, which means that A is not Ramsey \vec{m}-product.

A group G is defined to be s-divisible for $s \in \mathbb{Z}$ if for every $g \in G$ there exists $x \in G$ such that $x^{s}=g$.

Corollary 1. Let $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$ be a number vector and G be an s-divisible group for $s=m_{1}+\cdots+m_{k}$. Then any Ramsey \vec{m}-product set $A \subset G$ is dense in any non-discrete group topology τ on G.

Proposition 2 cannot be reversed as shown by the following example. We recall that a subset S of a group G is called syndetic if $G=F S$ for some finite subset $F \subset G$. A topological group G is totally bounded if and only if each neighborhood of the unit is syndetic.

Example 1. Let G be the Boolean group of all finite subsets of \mathbb{Z}, endowed with the group operation of symmetric difference (of finite sets). The set

$$
A=G \backslash\left\{\{x, y\}: x, y \in \mathbb{Z}, 0 \neq x-y \in\left\{z^{3}: z \in \mathbb{Z}\right\}\right\}
$$

has the following properties:

1. A is a Ramsey \vec{m}-product set for any vector $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in(2 \mathbb{Z}+1)^{k}$ of length $k \geq 2$;
2. A does not contain the difference $B B^{-1}$ of any syndetic set $B \subset G$;
3. A is not a neighborhood of zero in a totally bounded group topology of G.

Proof. 1. Given an infinite set $B \subset G$ and $k \geq 2$, we should find distinct elements $x_{1}, \ldots, x_{k} \in B$ such that $x_{\sigma(1)}^{m_{1}} \ldots x_{\sigma(k)}^{m_{k}} \in A$ for any permutation $\sigma \in S_{k}$. Taking into account that the group G is Boolean and $\left(m_{1}, \ldots, m_{k}\right) \in(2 \mathbb{Z}+1)^{k}$, we conclude that $x_{\sigma(1)}^{m_{1}} \ldots x_{\sigma(k)}^{m_{k}}=x_{1} \cdots x_{k}$ for any points $x_{1}, \ldots, x_{k} \in G$ and any permutation $\sigma \in S_{k}$. So, it suffices to find distinct points $x_{1}, \ldots, x_{k} \in B$ such that $x_{1} \cdots x_{k} \in A$.

For an element $b \in B$ by $|b|$ we denote the cardinality of b (as a finite subset of \mathbb{Z}). Two cases are possible: if the set $\{|b|: b \in B\}$ is infinite, then we can fix any distinct elements $x_{1}, \ldots, x_{k-1} \in B$ and then choose an element $x_{k} \in B \backslash\left\{x_{1}, \ldots, x_{k-1}\right\}$ such that $\left|x_{k}\right|>3+\left|x_{1} \cdots x_{i-1}\right|$. Then the set $x:=x_{1} \cdots x_{k}$ has cardinality $|x| \geq\left|x_{k}\right|-\left|x_{1} \cdots x_{k-1}\right| \geq 3$ and hence $x \in A$.

If the set $\{|b|: b \in B\}$ is finite, then by the classical Sunflower System Lemma [2] of Erdős and Rado, there exist a set $z \in G$ and a sequence x_{0}, \ldots, x_{k} of pairwise distinct elements of B such that $x_{i} \cap x_{j}=z \neq x_{i}$ for any distinct indices $i, j \leq k$. Then the set $x:=x_{1} \cdots x_{k}$ contains the union $\bigcup_{i=1}^{k}\left(x_{k} \backslash z\right)$ and hence has cardinality $\geq k$. If $k \geq 3$, then $x \in A$.

If $k=2$, then we shall show that at least one of the sets $x_{0} x_{1}, x_{0}, x_{2}$ or $x_{1} x_{2}$ belongs to A. Assuming that these three sets do not belong to A, we conclude that $x_{0}=z \cup\{a\}$, $x_{1}=z \cup\{b\}$ and $x_{2}=z \cup\{c\}$ where a, b, c are distinct integer numbers such that $a-b$, $b-c$ and $a-c$ belong to the set $\left\{n^{3}: n \in \mathbb{Z} \backslash\{0\}\right\}$. Since $(a-b)+(b-c)=a-c$, this contradicts the Fermat Theorem (saying that the equality $x^{3}+y^{3}=z^{3}$ has no solutuions in non-zero integer numbers).

2,3. The second statement is proved in Example 4 of [7] and the third statement trivially follows from the second statement.

Now we endow G with the discrete topology and identify the Stone-Čech compactification βG of G with the set of all ultrafilters on G. The family $\{\bar{A}: A \subseteq G\}$, where $\bar{A}=\{p \in$ $\beta G: A \in p\}$, forms the base for the topology of βG. Given a filter φ on G, we denote $\bar{\varphi}=\bigcap\{\bar{A}: A \in \varphi\}$, so φ defines the closed subset $\bar{\varphi}$ of βG, and every non-empty closed subset of βG can be defined in this way.

We use the standard extension [4, Section 4.1] of the multiplication on G to the semigroup multiplication on βG. Given two ultrafilters $p, q \in \beta G$, we choose $P \in p$ and, for each $x \in P$, pick $Q_{x} \in q$. Then $\bigcup_{x \in P} x Q_{x} \in p q$ and the family of all these subsets forms a base of the product $p q$. We note that the set $G^{*}, G^{*}=\beta G \backslash G$ of all free ultrafilters is a closed subsemigroup of βG.

For $t \in \mathbb{Z}$ and $q \in G^{*}$ we denote by $q^{\wedge} t$ the ultrafilter with the base $\left\{x^{t}: x \in Q\right\}, Q \in q$. Warning: $q^{\wedge} t$ and q^{t} are different things. Certainly, $q^{\wedge} t=q^{t}$ only if $t \in\{-1,0,1\}$.

In notations of Proposition 1, we state
Proposition 5. An ultrafilter $p \in G^{*}$ belongs to the set $\operatorname{cl}\left\{\left(q^{\wedge} m_{1}\right) \ldots\left(q^{\wedge} m_{k}\right): q \in G^{*}\right\}$ if and only if for every $P \in p$ there exists an injective sequence $\left(x_{n}\right)_{n \in \omega}$ in G such that

$$
\left\{x_{n_{1}}^{m_{1}} x_{n_{2}}^{m_{2}} \cdots x_{n_{k}}^{m_{k}}: n_{1}<n_{2}<\ldots<n_{k}<\omega\right\} \subseteq P .
$$

Proof. The "if" part follows directly from the definition of multiplication of the ultrafilters: take an arbitrary $q \in G^{*}$ such that $\left\{x_{n}: n \in \omega\right\} \in q$.

The "only if" part is evident for $k=1$. We prove it only for $k=2$. We take $q \in G^{*}$ such that $P \in\left(q^{\wedge} m_{1}\right)\left(q^{\wedge} m_{2}\right)$, and choose $Q \in q, \quad\left\{Q_{x}: Q_{x} \in q, x \in Q\right\}$ such that

$$
x^{m_{1}} \cdot\left\{y^{m_{2}}: y \in Q_{x}\right\} \subseteq P
$$

for each $x \in Q$. Then the desired sequence $\left(x_{n}\right)_{n \in \omega}$ can be chosen inductively from elements of Q.

In the case $k=2, \vec{m}=(-1,1)$, the following theorem were proved in [6].
Theorem 1. For every group G and any number vector $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$, we have

$$
\bar{\varphi}_{\vec{m}}=\operatorname{cl}\left\{\left(q^{\wedge} m_{1}\right) \cdots\left(q^{\wedge} m_{k}\right): q \in G^{*}\right\} .
$$

Proof. We assume that there is $p \in \operatorname{cl}\left\{\left(q^{\wedge} m_{1}\right) \cdots\left(q^{\wedge} m_{k}\right): q \in G^{*}\right\}$ such that $p \notin \varphi_{\vec{m}}$, choose $P \in p$ such that $G \backslash P \in \varphi_{\vec{m}}$ and let $\left(x_{n}\right)_{n \in \omega}$ be the sequence given for P by Proposition 2. We put $X=\left\{x_{n}: n \in \omega\right\}$ and note that every infinite subset Y of X contradicts Proposition 1.

On the other hand, we take an arbitrary $A \in \varphi_{\vec{m}}$ and an infinite X, use Proposition 1(i) to choose corresponding Y and apply Proposition 4.

Question 1. Let G be a group and $\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}, \vec{n}=\left(n_{1}, \ldots, n_{l}\right) \in \mathbb{Z}^{l}$ be two number vectors. How one can detect whether
(1) $\operatorname{cl}\left\{\left(q^{\wedge} m_{1}\right) \cdots\left(q^{\wedge} m_{k}\right): q \in G^{*}\right\} \cap \operatorname{cl}\left\{\left(r^{\wedge} n_{1}\right) \cdots\left(r^{\wedge} n_{l}\right): r \in G^{*}\right\} \neq \varnothing$?

Evidently, (1) holds if the equation
(2) $\left(x^{\wedge} m_{1}\right) \cdots\left(x^{\wedge} m_{k}\right)=\left(y^{\wedge} n_{1}\right) \cdots\left(y^{\wedge} n_{l}\right)$
has solutions $x, y \in G^{*}$. In the case of Abelian groups (2) turns into the equality
(3) $m_{1} x+\cdots+m_{k} x=n_{1} y+\cdots+n_{l} y$.

The equations (3) were studied in many paper with combinatorial, topological or purely aesthetic motivations, we mention only [3], [5].

REFERENCES

1. V. Bergelson, N. Hindman, R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, Topology Proc., 23 (1998), 23-60.
2. P. Erdős, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc., 35 (1960), 85-90.
3. N. Hindman, A. Maleki, D. Strauss, Linear equations in the Stone-Čech compactification of \mathbb{N}, Integers: Electronic Journal of Combinatorial Number Theory, $\mathbf{0}$ (2000), $\sharp A 02,1-20$.
4. N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, 1998.
5. I. Protasov, Equations in βG and resolvability of Abelian groups, Math. Notes, 6 (1999), 787-789.
6. I. Protasov, K. Protasova, On reccurence in G-spaces, Algebra Discrete Math., 23 (2017), no.2, 279-284.
7. O. Sipacheva, Large sets in Boolean and non-Boolean groups and topology, preprint (https://arxiv.org/abs/1709.02027).

Ivan Franko National University of L'viv
t.o.banakh@gmail.com

Faculty of Computer Science and Cybernetics, Kyiv University
i.v.protasov@gmail.com, ksuha@freenet.com.ua

