УДК 519.4

T. BANAKH, I. PROTASOV, K. PROTASOVA

RAMSEY-PRODUCT SUBSETS OF A GROUP

T. Banakh, I. Protasov, K. Protasova. Ramsey-product subsets of a group, Mat. Stud. 47 (2017), 145–149.

Given an infinite group G and a number vector $\overrightarrow{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ of finite length k, we say that a subset A of G is a *Ramsey* \overrightarrow{m} -product set if every infinite subset $X \subset G$ contains distinct elements $x_1, \ldots, x_k \in X$ such that $x_{\sigma(1)}^{m_1} \ldots x_{\sigma(k)}^{m_k} \in A$ for any permutation $\sigma \in S_k$. We use these subsets to characterize combinatorially some algebraically defined subsets of the Stone-Čech compactification βG of G.

All groups under consideration are supposed to be infinite; a countable set means a countably infinite set.

Let G be a group and let $\overrightarrow{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ be a number vector of length $k \in \mathbb{N}$. We say that a subset A of a group G is a Ramsey \overrightarrow{m} -product subset if every infinite subset X of G contains pairwise distinct elements $x_1, \ldots, x_k \in X$ such that

$$x_{\sigma(1)}^{m_1} x_{\sigma(2)}^{m_2} \dots x_{\sigma(k)}^{m_k} \in A$$

for every permutation $\sigma \in S_k$.

Why Ramsey? The answer follows from the proof of (i) in

Proposition 1. For a group G and a number vector $\overrightarrow{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ the following statements hold:

- (i) a subset A of G is a Ramsey \overrightarrow{m} -product subset if and only if for every infinite subset X contains a countable subset Y such that $y_1^{m_1} \dots y_k^{m_k} \in A$ for any distinct elements $y_1, \dots, y_k \in Y$;
- (ii) the family $\varphi_{\overrightarrow{m}}$ of all Ramsey \overrightarrow{m} -product subsets of G is a filter.

Proof. (i) The "if" part is trivial. To prove the "only if" part, assume that A is a Ramsey \overrightarrow{m} -product subset in G and $X \subset G$ is an infinite set. Define the coloring $\chi : [X]^k \longrightarrow \{0,1\}$ of the set $[X]^k = \{K \subset X : |K| = k\}$ by the rule: $\chi(\{x_1, \ldots, x_k\}) = 1$ if and only if $x_{\sigma(1)}^{m_1} \ldots x_{\sigma(k)}^{m_k} \in A$ for every $\sigma \in S_k$.

 $x_{\sigma(1)}^{m_1} \dots x_{\sigma(k)}^{m_k} \in A$ for every $\sigma \in S_k$. By the classical Ramsey theorem, there exists a countable subset Y of X such that the set $[Y]^k$ is χ -monochrome. Since A is a Ramsey \overrightarrow{m} -product subset, by the definition of χ , there exists $K \in [Y]^k$ such that $\chi(K) = 1$, which implies that $\chi([Y]^k) = \{1\}$.

(*ii*) We take $A, B \in \varphi_{\overrightarrow{m}}$ and prove that $A \cap B \in \varphi_{\overrightarrow{m}}$. For an infinite subset X, we choose Y given by (*i*). For B and Y, we choose corresponding $Z \subset Y$ and take distinct $z_1, \ldots, z_k \in Z$. Then $z_{\sigma(1)}^{m_1} \ldots z_{\sigma(k)}^{m_k} \in A \cap B$ for any $\sigma \in S_n$.

Keywords: Stone-Čech compactification; product of ultrafilters; Ramsey product subset. doi:10.15330/ms.47.2.145-149

© T. Banakh, I. Protasov, K. Protasova, 2017

 $^{2010\} Mathematics\ Subject\ Classification: 05 D10.$

For some specific number vectors, Ramsey \vec{m} -product sets have been studied in the literature. In particular, Ramsey (-1, 1)-product sets are exactly Δ_{ω} sets from [6], Ramsey (-1, 1)-product sets containing the unit of the group are exactly ω -fat sets of Sipacheva [7]; Ramsey (-1, 1)-product sets are similar to Δ^* -sets, studied in [1] (see [7, p.6]).

Now we present some examples and establish some topological properties of Ramsey \vec{m} -product sets.

Proposition 2. For any totally bounded topological group G, any neighborhood $U \subset G$ of the unit e of G is a Ramsey \vec{m} -product set for any number vector $\vec{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ with $m_1 + \cdots + m_k = 0$.

Proof. By the continuity of the group operation, there exists an open neighborhood $V \subset G$ of e such that $V^{m_1} \cdots V^{m_k} \subset U$. Since the topological group G is totally bounded, we can additionally assume that the neighborhood V is invariant in the sense that zV = Vz for any $z \in G$. By the total boundedness of G, there exists a finite set $F \subset G$ such that G = FV.

To prove that U is a Ramsey \vec{m} -product set, take any infinite set $A \subset G = FV$. By the Pigeonhole Principle, for some $z \in F$ the set $A \cap zV$ is infinite. We claim that $x_1^{m_1} \cdots x_k^{m_k} \in U$ for any points $x_1, \ldots, x_k \in A \cap zV$. Taking into account that the set V is invariant, we conclude that

$$x_1^{m_1} \cdots x_k^{m_k} \in (zV)^{m_1} \cdots (zV)^{m_k} = z^{m_1 + \dots + m_k} V^{m_1} \cdots V^{m_k} \subset z^0 U = U.$$

For the vector $\vec{m} = (-1, 1)$, Proposition 2 can be complemented by the following proposition proved in [6, Proposition 5]. We recall that a *quasi-topological group* is a group G endowed with a topology such that for any $a, b \in G$ and $\varepsilon \in \{-1, 1\}$ the map $G \to G$, $x \mapsto ax^{\varepsilon}b$, is continuous.

Proposition 3. The closure \overline{A} of any Ramsey (-1, 1)-product set A in a quasi-topological group G is a neighborhood of the unit.

On the other hand, Ramsey \vec{m} -product sets have the following density property.

Proposition 4. Let $\vec{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ be a number vector and $s = m_1 + \cdots + m_k$. For any Ramsey \vec{m} -product subset A of a group G, the set $\{x^s : x \in G\}$ is contained in the closure of A in any non-discrete group topology on G.

Proof. To derive a contradiction, assume that for some non-discrete group topology τ on G, the closure \overline{A} of A does not contain the power x^s of some element $x \in G$. By the continuity of the group operations, the element x has a neighborhood $U_x \in \tau$ such that $U_x^s \cap A = \emptyset$. Since the topology τ is not discrete, the set U_x is infinite. Moreover, the choice of U_x ensures that $x_1^{m_1} \cdots x_k^{m_k} \notin A$ for any elements $x_1, \ldots, x_k \in U_x$, which means that A is not Ramsey \vec{m} -product.

A group G is defined to be s-divisible for $s \in \mathbb{Z}$ if for every $g \in G$ there exists $x \in G$ such that $x^s = g$.

Corollary 1. Let $\vec{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$ be a number vector and G be an s-divisible group for $s = m_1 + \cdots + m_k$. Then any Ramsey \vec{m} -product set $A \subset G$ is dense in any non-discrete group topology τ on G. Proposition 2 cannot be reversed as shown by the following example. We recall that a subset S of a group G is called *syndetic* if G = FS for some finite subset $F \subset G$. A topological group G is totally bounded if and only if each neighborhood of the unit is syndetic.

Example 1. Let G be the Boolean group of all finite subsets of \mathbb{Z} , endowed with the group operation of symmetric difference (of finite sets). The set

$$A = G \setminus \left\{ \{x, y\} \colon x, y \in \mathbb{Z}, \ 0 \neq x - y \in \{z^3 \colon z \in \mathbb{Z}\} \right\}$$

has the following properties:

- 1. A is a Ramsey \vec{m} -product set for any vector $\vec{m} = (m_1, \ldots, m_k) \in (2\mathbb{Z} + 1)^k$ of length $k \geq 2$;
- 2. A does not contain the difference BB^{-1} of any syndetic set $B \subset G$;
- 3. A is not a neighborhood of zero in a totally bounded group topology of G.

Proof. 1. Given an infinite set $B \subset G$ and $k \geq 2$, we should find distinct elements $x_1, \ldots, x_k \in B$ such that $x_{\sigma(1)}^{m_1} \ldots x_{\sigma(k)}^{m_k} \in A$ for any permutation $\sigma \in S_k$. Taking into account that the group G is Boolean and $(m_1, \ldots, m_k) \in (2\mathbb{Z} + 1)^k$, we conclude that $x_{\sigma(1)}^{m_1} \ldots x_{\sigma(k)}^{m_k} = x_1 \cdots x_k$ for any points $x_1, \ldots, x_k \in G$ and any permutation $\sigma \in S_k$. So, it suffices to find distinct points $x_1, \ldots, x_k \in B$ such that $x_1 \cdots x_k \in A$.

For an element $b \in B$ by |b| we denote the cardinality of b (as a finite subset of \mathbb{Z}). Two cases are possible: if the set $\{|b|: b \in B\}$ is infinite, then we can fix any distinct elements $x_1, \ldots, x_{k-1} \in B$ and then choose an element $x_k \in B \setminus \{x_1, \ldots, x_{k-1}\}$ such that $|x_k| > 3 + |x_1 \cdots x_{i-1}|$. Then the set $x := x_1 \cdots x_k$ has cardinality $|x| \ge |x_k| - |x_1 \cdots x_{k-1}| \ge 3$ and hence $x \in A$.

If the set $\{|b|: b \in B\}$ is finite, then by the classical Sunflower System Lemma [2] of Erdős and Rado, there exist a set $z \in G$ and a sequence x_0, \ldots, x_k of pairwise distinct elements of B such that $x_i \cap x_j = z \neq x_i$ for any distinct indices $i, j \leq k$. Then the set $x := x_1 \cdots x_k$ contains the union $\bigcup_{i=1}^k (x_k \setminus z)$ and hence has cardinality $\geq k$. If $k \geq 3$, then $x \in A$.

If k = 2, then we shall show that at least one of the sets x_0x_1 , x_0, x_2 or x_1x_2 belongs to A. Assuming that these three sets do not belong to A, we conclude that $x_0 = z \cup \{a\}$, $x_1 = z \cup \{b\}$ and $x_2 = z \cup \{c\}$ where a, b, c are distinct integer numbers such that a - b, b - c and a - c belong to the set $\{n^3 : n \in \mathbb{Z} \setminus \{0\}\}$. Since (a - b) + (b - c) = a - c, this contradicts the Fermat Theorem (saying that the equality $x^3 + y^3 = z^3$ has no solutions in non-zero integer numbers).

2,3. The second statement is proved in Example 4 of [7] and the third statement trivially follows from the second statement. \Box

Now we endow G with the discrete topology and identify the Stone-Čech compactification βG of G with the set of all ultrafilters on G. The family $\{\bar{A}: A \subseteq G\}$, where $\bar{A} = \{p \in \beta G: A \in p\}$, forms the base for the topology of βG . Given a filter φ on G, we denote $\bar{\varphi} = \bigcap \{\bar{A}: A \in \varphi\}$, so φ defines the closed subset $\bar{\varphi}$ of βG , and every non-empty closed subset of βG can be defined in this way.

We use the standard extension [4, Section 4.1] of the multiplication on G to the semigroup multiplication on βG . Given two ultrafilters $p, q \in \beta G$, we choose $P \in p$ and, for each $x \in P$, pick $Q_x \in q$. Then $\bigcup_{x \in P} xQ_x \in pq$ and the family of all these subsets forms a base of the product pq. We note that the set G^* , $G^* = \beta G \setminus G$ of all free ultrafilters is a closed subsemigroup of βG . For $t \in \mathbb{Z}$ and $q \in G^*$ we denote by $q^{\wedge}t$ the ultrafilter with the base $\{x^t : x \in Q\}, Q \in q$. Warning: $q^{\wedge}t$ and q^t are different things. Certainly, $q^{\wedge}t = q^t$ only if $t \in \{-1, 0, 1\}$.

In notations of Proposition 1, we state

Proposition 5. An ultrafilter $p \in G^*$ belongs to the set $cl\{(q^{\wedge}m_1) \dots (q^{\wedge}m_k): q \in G^*\}$ if and only if for every $P \in p$ there exists an injective sequence $(x_n)_{n \in \omega}$ in G such that

$$\{x_{n_1}^{m_1} x_{n_2}^{m_2} \cdots x_{n_k}^{m_k} \colon n_1 < n_2 < \ldots < n_k < \omega\} \subseteq P.$$

Proof. The "if" part follows directly from the definition of multiplication of the ultrafilters: take an arbitrary $q \in G^*$ such that $\{x_n : n \in \omega\} \in q$.

The "only if" part is evident for k = 1. We prove it only for k = 2. We take $q \in G^*$ such that $P \in (q^{\wedge}m_1)(q^{\wedge}m_2)$, and choose $Q \in q$, $\{Q_x : Q_x \in q, x \in Q\}$ such that

$$x^{m_1} \cdot \{y^{m_2} : y \in Q_x\} \subseteq P$$

for each $x \in Q$. Then the desired sequence $(x_n)_{n \in \omega}$ can be chosen inductively from elements of Q.

In the case k = 2, $\overrightarrow{m} = (-1, 1)$, the following theorem were proved in [6].

Theorem 1. For every group G and any number vector $\overrightarrow{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$, we have

$$\overline{\varphi}_{\overrightarrow{m}} = cl\{(q^{\wedge}m_1) \cdots (q^{\wedge}m_k): q \in G^*\}.$$

Proof. We assume that there is $p \in cl\{(q^{\wedge}m_1) \cdots (q^{\wedge}m_k): q \in G^*\}$ such that $p \notin \varphi_{\overrightarrow{m}}$, choose $P \in p$ such that $G \setminus P \in \varphi_{\overrightarrow{m}}$ and let $(x_n)_{n \in \omega}$ be the sequence given for P by Proposition 2. We put $X = \{x_n : n \in \omega\}$ and note that every infinite subset Y of X contradicts Proposition 1.

On the other hand, we take an arbitrary $A \in \varphi_{\overrightarrow{m}}$ and an infinite X, use Proposition 1(i) to choose corresponding Y and apply Proposition 4.

Question 1. Let G be a group and $\overrightarrow{m} = (m_1, \ldots, m_k) \in \mathbb{Z}^k$, $\overrightarrow{n} = (n_1, \ldots, n_l) \in \mathbb{Z}^l$ be two number vectors. How one can detect whether

(1) $cl\{(q^{\wedge}m_1) \cdots (q^{\wedge}m_k): q \in G^*\} \cap cl\{(r^{\wedge}n_1) \cdots (r^{\wedge}n_l): r \in G^*\} \neq \emptyset$?

Evidently, (1) holds if the equation

(2) $(x^{\wedge}m_1) \cdots (x^{\wedge}m_k) = (y^{\wedge}n_1) \cdots (y^{\wedge}n_l)$

has solutions $x, y \in G^*$. In the case of Abelian groups (2) turns into the equality

(3) $m_1 x + \cdots + m_k x = n_1 y + \cdots + n_l y.$

The equations (3) were studied in many paper with combinatorial, topological or purely aesthetic motivations, we mention only [3], [5].

REFERENCES

 V. Bergelson, N. Hindman, R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, Topology Proc., 23 (1998), 23–60.

- 2. P. Erdős, R. Rado, Intersection theorems for systems of sets, J. London Math. Soc., 35 (1960), 85–90.
- N. Hindman, A. Maleki, D. Strauss, *Linear equations in the Stone-Čech compactification of* N, Integers: Electronic Journal of Combinatorial Number Theory, **0** (2000), *♯A*02, 1–20.
- 4. N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, 1998.
- 5. I. Protasov, Equations in βG and resolvability of Abelian groups, Math. Notes, 6 (1999), 787–789.
- 6. I. Protasov, K. Protasova, On reccurence in G-spaces, Algebra Discrete Math., 23 (2017), no.2, 279–284.
- 7. O. Sipacheva, Large sets in Boolean and non-Boolean groups and topology, preprint (https://arxiv.org/abs/1709.02027).

Ivan Franko National University of L'viv t.o.banakh@gmail.com Faculty of Computer Science and Cybernetics, Kyiv University i.v.protasov@gmail.com, ksuha@freenet.com.ua

Received 5.04.2017