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Without a priori assumptions on zero distribution we prove that if an entire function f of
noninteger order ρ has an asymptotic of the form log |f(reiθ)| = rρhf (θ)+O( rρ

δ(r) ), E ̸∋ reiθ →
∞, where h is the indicator of f , δ is an unbounded regularly growing function, and E is an
appropriate exceptional set, then the counting function of zeros and the integrated counting
function of zeros in the angle {z : α < arg z < β} have similar asymptotic for almost all α < β.
It complements results on functions of completely regular growth due to P. Agranovich and
V. Logvinenko, B. Vynnyts’kyi and R. Khats’.

1. Introduction and the main result. A function V : (0,∞) → (0,∞) is called regularly
varying with the exponent ρ ≥ 0 ([8]) if V (cr) ∼ cρV (r) (r → ∞), c ∈ (0,∞). If ρ(r) is
a proximate order ([11]), ρ(r) → ρ, r → ∞, the function V (r) = rρ(r) is increasing and
regularly varying with the exponent ρ. Conversely, given a regularly varying function V
satisfying V (r) → ∞ as r → ∞, there exists a proximate order ρ(r) such that V (r) ∼ rρ(r)

as r → ∞. We denote D(z, r) = {ζ : |ζ − z| < r}.
Let f be an entire function of proximate order ρ. The function

hf (θ) = lim sup
r→∞

log |f(reiθ)|
rρ(r)

is called the indicator of f . The indicator is a ρ-trigonometrically convex function (being
a constant for ρ = 0), see [11].

An entire function f is called an entire function of completely regular growth (CRG) ([11])
if

log |f(reiθ)| = hf (θ)r
ρ(r) + ε(reiθ)rρ(r),

where ε(reiθ) tends to 0 uniformly outside E as reiθ → ∞, and E is a C0-set, i.e.

E ⊂
∪
k

D(zk, rk), where
∑
|zk|≤r

rk = o(r), r → ∞.

A set E ⊂ C is called a Cα
0 -set, 0 < α ≤ 2 if

E ⊂
∪
k

D(zk, rk),
∑
|zk|≤r

rαk = o(rα), r → ∞.
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Let Zf = {z : f(z) = 0} be the zero set of f ,

n(r, α, β) = #{ck ∈ Zf : α < arg ck ≤ β, |ck| ≤ r}, 0 ≤ α < β ≤ 2π,

be the counting function of zeros Zf in the angle {z : α < arg z ≤ β, |z| ≤ r}.
The set Zf is said to have the angular density for the exponent ρ(r) if for all α < β,

except, perhaps, at most countable set there exists

∆(α, β) = lim
r→∞

n(r, α, β)

rρ(r)
.

Theorem A (Main theorem of the theory of CRG functions [11]). An entire function
f of proximate order ρ(r), ρ(r) → ρ ∈ (0,∞) \ N has completely regular growth if and only
if Zf has the angular density for the exponent ρ(r).

There is also a description of CRG functions of an integer order, those functions should
satisfy an additional Lindelöf’s condition ([11]). Here we restrict ourselves to the case of
noninteger ρ for simplicity.

Remark 1. V. Azarin obtained a counterpart of the theory of CRG functions for subharmonic
functions in C ([5]).

Remark 2. A. Kondratyuk generalized the theory of CRG functions for meromorphic functi-
ons in C ([10]).

P. Agranovich and V. Logvinenko considered the relation between the asymptotics for
zeros of the form

n(r, α, β) = ∆1(α, β)r
ρ1 +∆2(α, β)r

ρ2 + φ(r, α, β) (1)

and the asymptotics for log |f | of the form

log |f(reiθ)| = H1(θ)r
ρ1 +H2(θ)r

ρ2 + ψ(r, θ), (2)

where Hj is uniquely defined by ∆j.

Theorem B (Agranovich, Logvinenko, 1987). Let [ρ1] < ρ2 < ρ1 and (1) hold, where
for some q ≥ 1 and any T > 0∫ α+T

α

dβ

∫ 2r

r

|φ(t, α, β)|q dt = o(rρ2q+1), r → ∞.

Then (2) holds with ψ(r, θ) = o(rρ2) as reiθ → ∞ outside some C2
0 -set. And C2

0 -set cannot
be replaced by a C2−ε

0 -set, ε > 0.

Theorem C (Agranovich, Logvinenko, 1985). Let either

[ρ1] < ρ2 < ρ1 < [ρ1] +
1

2
or [ρ1] +

1

2
< ρ2 < ρ1.

If all zeros are positive and (2) holds for θ = 0, and for some q ≥ 1∫ 2r

r

|ψ(t, 0)|q dt = o(rρ2q+1), r → ∞, (3)
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then (1) holds and the reminder term φ(·, α, β) satisfies∫ 2r

r

|φ(t, α, β)|q dt = o(rρ2q+1), r → ∞,

uniformly in α and β for every q > 1.

Remark 3. ψ(t, θ) = o(tρ2) as teiθ → ∞ outside some exceptional set does not imply
φ(t, α, β) = o(tρ2) as t→ +∞.

Remark 4. Agranovich and Logvinenko relaxed slightly the restriction that zeros are located
on a ray in [4] (see also [1], [6].)

B. Vynnytskyi and R. Khats’ introduced the following concept ([13]).

Definition 1. An entire function f is said to be a function of refined regular growth ([13])
if for some ρ ∈ (0,∞) there exist ρ2 ∈ (0, ρ) and a set E ⊂

∪
kD(zk, rk) with

∑
k rk < ∞

such that
log |f(reiθ)| = rρhf (θ) + o(rρ2), E ̸∋ reiθ → ∞. (4)

Theorem D (Vynnyts’kyi, Khats’, 2005). Let f be an entire function of noninteger
order ρ with zeros on a ray (a finite system of rays). The function f is of refined regular
growth if and only if there exist ρ1 ∈ (0, ρ) and ∆ ≥ 0 such that

n(t) := n(t, 0, 2π) = ∆tρ + o(tρ1), t→ ∞. (5)

This result has the following disadvantages. Firstly, the restriction on zero location is
very strong. Secondly, it is not clear how ρ1 and ρ2 are connected, though one can try to
find this connection following the proof from [13].

One can consider equalities (4) and (5) as closeness of the subharmonic functions log |f(reiθ)|
and rρhf (θ) and the counting functions of their Riesz measures, respectively. Necessary and
sufficient conditions for the relation

u1(z)− u2(z) = O(|z|σ), σ ≥ 0, z ̸∈ E,

for subharmonic functions of order ρ and an exceptional set E were established by R. Yulmu-
khametov [14]. B. Khabibullin indicated ([9]) that for integer σ sufficiency of Yulmukhame-
tov’s theorem fails to hold and gave another sufficient conditions providing u1(z)− u2(z) =
O(|z|σ log |z|), σ ≥ 0, z ̸∈ E.

We note that exceptional sets in the results of Yulmukhametov, Khabibullin, Vynnyts’kyi
and Khats’ are essentially smaller than Cα

0 -sets, in general. To the best of our knowledge, the
first results stating that a function of completely regular growth has regular distribution of
zeros are due to A. Pfluger ([12]). We are interested in assertions of such type, that we shall
call Pfluger-type theorems, in the case where an entire function has an asymptotic stronger
than that of a function of completely regular growth. More precisely, the aim of this paper
is to relax the assumption that zeros are located on a finite system of rays. Also we try to
control the rate of the error term. Exceptional sets that appear in out result are similar to
Cα

0 -sets and related to magnitude of the error term.
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Theorem 1. Let f be an entire function of noninteger order ρ, f(0) ̸= 0, δ be an increasing
unbounded regularly varying function with the exponent τ ∈ [0,min{1, ρ}) and such that∑

k

1

δ(2k)
<∞. (6)

Suppose that there exists a set E ⊂
∪

kD(ak, sk) such that∑
|ak|≤r

sk = O
( r

δ(r)

)
,

and
log |f(reiθ)| = rρhf (θ) +O

( rρ

δ(r)

)
, E ̸∋ reiθ → ∞.

Then for almost all {α, β} ⊂ [0, 2π], α < β

N(r, α, β) :=

∫ r

0

n(t, α, β)

t
dt =

sf (α, β)

2πρ2
rρ +O

( rρ√
δ(r)

)
, (7)

n(r, α, β) =
sf (α, β)

2πρ
rρ +O

( rρ

4
√
δ(r)

)
, r → ∞, (8)

where

sf (α, β) := s̃(β)− s̃(α), s̃(θ) = h′+(θ) + ρ2
∫ θ

0

h(φ)dφ.

Remark 5. The condition (6) could be probably relaxed using the arguments similar to
that from [11]. It allows us to choose δ(r) = rσ, σ ∈ (0,min{1, ρ}), δ(r) = logs r, s > 1, but
not s ≤ 1.

Remark 6. Assumption (6) implies that the function δ(r) is unbounded.

2. Proof of the theorem.

Proof. Multiplying the function δ(r) by a constant if necessary, we may assume that∑
|ak|≤r

sk ≤
1

4

r

δ(r)
, r → +∞. (9)

Let F be the radial projection of E, i.e. F = {|z| : z ∈ E}. It follows from (9) and
properties of the function δ that for all r there exists r∗ ∈ [r, r + r

δ(r)
] \ F for r sufficiently

large. In fact, suppose on the contrary, that[
r, r +

r

δ(r)

]
⊂ F =

∪
k

[|ak| − sk, |ak|+ sk].

Note that [|ak|−sk, |ak|+sk]∩ [r, r+ r
δ(r)

] ̸= ∅ implies ak−sk ≤ r, and, in view of Remark 6,
|ak| ≤ r + sk = (1 + o(1))r (r → ∞). Therefore,

r

δ(r)
≤

∑
k:|ak|−sk≤r

2sk ≤
r(1 + o(1))

2δ(r(1 + o(1)))
<

r

δ(r)
, r → ∞.
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that is a contradiction.
Hence we can choose a sequence (rk) with the properties: rk ↑ ∞ (k → ∞),

rk ̸∈ F, rk+1 ≤ rk

(
1 +

1

δ(rk)

)
. (10)

Lemma 1. For almost all φ ∈ [0, 2π) one has

log |f(reiφ)| = rρh(φ) +O
( rρ

δ(r)

)
, r → ∞ (11)

uniformly in φ provided that (6) holds.

Proof of Lemma 1. It follows from (9) and (6) that

∞∑
k=1

∑
2k−1≤|aj |<2k

sj
|aj|

≤
∞∑
k=1

∑
2k−1≤|aj |<2k

2sj
2k

<
∞∑
k=1

1

2

1

δ(2k)
<∞.

Then, for arbitrary ε > 0 there exists R0 > 0 such that the angular measure circular
projection of E ∩ {z : |z| ≥ R0} is smaller than ε, i.e. for all θ there exists φ such that
|φ− θ| < ε/2 and E ∩ {reiφ : r ≥ R0} = ∅. Thus (11) holds on the ray {reiφ : r ≥ R0}.

Lemma 2. For all φ ∈ [0, 2π) one has

log |f(reiφ)| ≤ rρh(φ) +O
( rρ

δ(r)

)
, r → ∞,

uniformly in φ.

Proof of Lemma 2. By (9) for every z = reiθ there exist τ ∈ (0, r
δ(r)

) such that

∂D(z, τ) = {w : |w − z| = τ} ∩ E = ∅.

Choose w̃ satisfying |w̃−z| = τ and |f(w̃)| = max{|f(w)| : w ∈ ∂D(z, τ)}. By the maximum
modulus principle

ln |f(reiθ)| ≤ ln |f(w̃)| = |w̃|ρh(θ̃) +O
( |w̃|ρ

δ(|w̃|)

)
≤

≤
(
r +

r

δ(r)

)ρ

h(θ̃) +O
( rρ

δ(r)

)
≤ rρ

(
1 +

1

δ(r)

)ρ

h(θ̃) +O
( rρ

δ(r)

)
=

= rρh(θ) + rρ(h(θ̃)− h(θ)) +O
( rρ

δ(r)

)
, r → ∞.

By [10, Lemma 8.1], h satisfies the Lipschitz condition, thus |h(θ̃)− h(θ)| ≤ K
δ(r)

. Finally,

ln |f(reiθ)| ≤ rρh(θ) +O
( rρ

δ(r)

)
, r → ∞.
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Lemma 3. If f(0) ̸= 0, then for almost all α, β, α < β ≤ α+ 2π,

N(r, α, β) =
sf (α, β)

2πρ2
rρ +O

( rρ√
δ(r)

)
, r → ∞.

Proof of Lemma 3. Let R be the set of φ ∈ [0, 2π) such that (11) holds. It is known that
h′(θ) exists outside at most countable set, moreover the function

s(θ) = h′+(θ) + ρ2
∫ θ

θ0

h(φ) dφ

is nondecreasing for arbitrary fixed θ0. Therefore, there exists

s′(θ) = h′′(θ) + ρ2h(θ), θ ∈ [0, 2π) \ R0,

where mes(R0) = 0.
Let φ ∈ R \ R0, i.e. there exists h′′(φ) and the assertion of Lemma 1 holds. Note that

mes(R \R0) = 2π. We then follow the arguments from [11, Chapter III] (cf. [13]).
Let J t

f (φ) =
∫ t

0
ln |f(ueiφ)|

u
du. By the generalized Jensen formula ([11, Chap. III])

N(r, α, β) =
1

2π

[
d

dφ

∫ r

0

J t
f (φ)

dt

t

]
φ=β

− 1

2π

[
d

dφ

∫ r

0

J t
f (φ)

dt

t

]
φ=α

+

+
1

2π

∫ β

α

ln |f(reiφ)| dφ. (12)

It follows from Lemmas 1, 2, and properties of the function δ that uniformly in φ ∈ R

J t
f (φ) =

∫ t

0

ln |f(ueiφ)|
u

du =
tρ

ρ
h(φ) +O

(∫ t

0

uρ

δ(u)
du

)
=

=
tρ

ρ
h(φ) +O

( tρ

δ(t)

)
, t→ ∞. (13)

Following the proof of Theorem 3 ([11]) we integrate (12)

1

q1q2

∫ β+q1

β

∫ α+q2

α

N(r, α∗, β∗) dα∗dβ∗ =
1

2π

∫ r

0

J t
f (β + q1)− J t

f (β)

q1

dt

t
−

− 1

2π

∫ r

0

J t
f (α+ q2)− J t

f (α)

q1

dt

t
+

1

2πq1q2

∫ β+q1

β

∫ α+q2

α

∫ β∗

α∗
ln |f(reiφ)| dφ dα∗dβ∗. (14)

Assume that α, β ∈ R \ R0. Then

h(β + q) = h(β) + h′(β)q +
h′′(β)q2

2
+ o(q2), q → 0; (15)

the same holds for α instead of β. Correlations (13) and (15) imply∫ r

0

J t
f (β + q1)− J t

f (β)

q1

dt

t
=

∫ r

0

tρ

ρ

h(β + q1)− h(β)

q1

dt

t
+O

( rρ

q1δ(r)

)
=

=
rρ

ρ2
(h′(β) +O(q1)) +O

( rρ

q1δ(r)

)
, r → ∞, (16)
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and similarly∫ r

0

J t
f (α+ q2)− J t

f (α)

q2

dt

t
=
rρ

ρ2
(h′(α) +O(q2)) +O

( rρ

q2δ(r)

)
, r → ∞, (17)

For r = rk we have∫ β∗

α∗
ln |f(rkeiφ)| dφ = rρk

∫ β∗

α∗
h(φ) dφ+O

( rρk
δ(rk)

)
, k → ∞. (18)

Then

1

q1q2

∫ β+q1

β

∫ α+q2

α

∫ β∗

α∗
ln |f(rkeiφ)| dφ dα∗dβ∗ =

=
rρk
q1q2

∫ β+q1

β

∫ α+q2

α

∫ β∗

α∗
h(φ) dφ dα∗dβ∗ +O

( rρk
δ(rk)

)
=

=
rρk
q2

∫ α+q2

α

∫ β′

α∗
h(φ) dφ dα∗ +O

( rρk
δ(rk)

)
= rρk

∫ β′

α′
h(φ) dφ+O

( rρk
δ(rk)

)
for some α′ between α and α+ q2, β between β and β + q1. Since∣∣∣∣∫ α′

α

h(φ) dφ

∣∣∣∣ ≤ C|q2|,
∣∣∣∣∫ β′

β

h(φ) dφ

∣∣∣∣ ≤ C|q1|,

where C is defined by the indicator, we have

1

q1q2

∫ β+q1

β

∫ α+q2

α

∫ β∗

α∗
ln |f(rkeiφ)| dφdα∗dβ∗ =

= rρk

(∫ β

α

h(φ) dφ+O(q1) +O(q2)
)
+O

( rρk
δ(rk)

)
, k → ∞. (19)

Substituting (17)–(19) into (14) we obtain

1

q1q2

∫ β+q1

β

∫ α+q2

α

N(rk, α
∗, β∗) dα∗dβ∗ =

=
rρk

2πρ2

(
h′(β)− h′(α) + ρ2

∫ β

α

h(φ) dφ
)
+

+O
( rρk
q1δ(rk)

)
+O

( rρk
q2δ(rk)

)
+O

(
rρk(|q1|+ |q2|)

)
=

=
rρk
2πρ

(
s̃(β)− s̃(α) +O(q1) +O(q2) +O

( 1

q1δ(rk)

)
+O

( 1

q1δ(rk)

))
, k → ∞.

Choosing q2 = −q1 = (δ(rk))
−1/2 we deduce

N(rk, α, β) ≤ δ(rk)

β∫
β−(δ(rk))−1/2

α+(δ(rk))
−1/2∫

α

N(rk, α
∗, β∗) dα∗dβ∗ =
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=
rρk
2πρ

(
s(α, β) +O((δ(rk)

−1/2)
)
.

The choice −q2 = q1 = (δ(rk))
−1/2 yields the same lower estimate. Therefore

N(rk, α, β) =
s(α, β)rρk
2πρ2

+O
( rρk√

δ(rk)

)
, k → ∞.

Let r ∈ [rk, rk+1). Then

N(r, α, β) ≤ N(rk+1, α, β) ≤
s(α, β)

(
r
(
1 + 1

δ(r)

))ρ

2πρ2
+O

( rρ√
δ(r)

)
=

=
s(α, β)rρ

2πρ2
+O

( rρ√
δ(r)

)
.

Lemma 3 and (7) is proved.

We continue the proof of the theorem. Let n(r) = n(r, α, β), N(r) = N(r, α, β). We use
the following known estimate ([7])

n(r) log
R

r
≤ N(R)−N(r) ≤ n(R) log

R

r
, 1 < r < R. (20)

We choose R = r
(
1 + 1

4
√

δ(r)

)
. Then

n(r) ≤
N
(
r
(
1 + 1

4
√

δ(r)

))
−N(r)

log
(
1 + 1

4
√

δ(r)

) =

=
s(α, β)

2πρ2

rρ
(
1 + 1

4
√

δ(r)

)ρ

+O
(

Rρ√
δ(R)

)
− rρ +O

(
rρ√
δ(r)

)
1

4
√

δ(r)
+O

(
1√
δ(r)

) =

=

s(α,β)
2πρ2

(
ρ

4
√

δ(r)
rρ +O

(
rρ√
δ(r)

))
1

4
√

δ(r)
+O

(
1√
δ(r)

) =

s(α,β)rρ

2πρ

(
1 +O

(
1

4
√

δ(r)

))
1 +O

(
1

4
√

δ(r)

) =

=
s(α, β)rρ

2πρ

(
1 +O

( 1
4
√
δ(r)

))
, r → ∞.

Analogously,

n(R) ≥ N(R)−N(r)

log R
r

=
s(α, β)

2πρ2

Rρ +O
(

Rρ√
δ(R)

)
− Rρ

(1+ 1
4
√

δ(r)
)ρ

1
4
√

δ(r)
+O

(
1√
δ(r)

) =

=
s(α, β)

2πρ2

Rρ +O
(

Rρ√
δ(R)

)
−Rρ

(
1− ρ

4
√

δ(r)
+O

(
1√
δ(r)

))
1

4
√

δ(r)
+O

(
1√
δ(r)

) =
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=
s(α, β)Rρ

2πρ

1
4
√

δ(r)
+O

(
1√
δ(r)

)
+O

(
1√
δ(R)

)
1

4
√

δ(r)
+O

(
1√
δ(r)

) =

=
s(α, β)Rρ

2πρ

(
1 +O

( 1
4
√
δ(r)

))
=
s(α, β)Rρ

2πρ

(
1 +O

( 1
4
√
δ(R)

))
.

The latter estimates give the desired asymptotics for the n(r, α, β).

3. Further results. Theorem 1 allows the following generalizations.
1. One may assume that the asymptotic

log |f(reiφ)| = rρ(r)h(φ) +O
(rρ(r)
δ(r)

)
, r → ∞

holds for some proximate order ρ(r) instead of a constant function ρ, ρ(r) → ρ ∈ (0,∞) \N,
satisfying the additional hypothesis∫ r

0

tρ(t)−1 dt =
rρ(r)

ρ

(
1 +O

( 1√
δ(r)

))
, r → ∞

and
rρ(r(1+

1
δ(r)

)) = rρ(r)
(
1 +O

( 1√
δ(r)

))
, r → ∞,

which are needed in the proof of Lemma 3.
2. The assumption f(0) ̸= 0 is technical. If it is not fulfilled, then (7) holds with∫ r

0

n(t, α, β)− n(0, α, β)

t
dt+ n(0, α, β) log r

instead of N(r, α, β).
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