УДК 517.555

A. I. Bandura

COMPOSITION OF ENTIRE FUNCTIONS AND BOUNDED L-INDEX IN DIRECTION

A. I. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud. 47 (2017), 179–184.

In the present paper we give an answer to the following question: Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function of bounded l-index, $\Phi: \mathbb{C}^n \to \mathbb{C}$ be an entire function, $n \geq 2$, $l: \mathbb{C} \to \mathbb{R}_+$ be a continuous function. What are a positive continuous function $L: \mathbb{C}^n \to \mathbb{R}_+$ and a direction $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that the composite function $f(\Phi(z))$ has bounded L-index in the direction \mathbf{b} ?

1. Introduction. The present paper is devoted to the theory of entire functions of bounded L-index in direction. We need some notations and definitions. Let $L: \mathbb{C}^n \to \mathbb{R}_+$ be any fixed continuous function. An entire function F(z), $z \in \mathbb{C}^n$, is called a function of bounded L-index in a direction $\mathbf{b} = (b_1, \ldots, b_n) \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ ([1,3,4,7]), if there exists $m_0 \in \mathbb{Z}_+$ such that for every $m \in \mathbb{Z}_+$ and every $z \in \mathbb{C}^n$

$$\left| \frac{1}{m!L^m(z)} \left| \frac{\partial^m F(z)}{\partial \mathbf{b}^m} \right| \le \max \left\{ \frac{1}{k!L^k(z)} \left| \frac{\partial^k F(z)}{\partial \mathbf{b}^k} \right| : 0 \le k \le m_0 \right\}, \tag{1}$$

where $\frac{\partial^0 F(z)}{\partial \mathbf{b}^0} := F(z)$, $\frac{\partial F(z)}{\partial \mathbf{b}} := \sum_{j=1}^n \frac{\partial F(z)}{\partial z_j} b_j = \langle \mathbf{grad} F, \overline{\mathbf{b}} \rangle$, $\frac{\partial^k F(z)}{\partial \mathbf{b}^k} := \frac{\partial}{\partial \mathbf{b}} (\frac{\partial^{k-1} F(z)}{\partial \mathbf{b}^{k-1}})$, $k \geq 2$. In the case n = 1 and $\mathbf{b} = 1$ we obtain the definition of entire function of one variable of bounded l-index (see [14,17,18]); in the case n = 1, $\mathbf{b} = 1$ and $L(z) \equiv 1$ it is reduced to the definition of function of bounded index, supposed by B. Lepson ([15]).

Despite numerous papers about functions of bounded index (see bibliography in [4,18]), the index boundedness of composition of entire and analytic functions is only considered in four of them ([12,13,16,18]). In paper [16], there was investigated boundedness of l-index of the composition f(P(z)), where f is an entire function and P is a polynomial. In paper [12], there are found conditions, which provide boundedness of l-index of the function f(w(z)), where f is an analytic function in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, $w(z) = \frac{z-z_0}{1-z\overline{z}_0}e^{i\alpha}$, $z_0 \in \mathbb{D}$, $\alpha \in \mathbb{R}$. The most general result of such type is obtained in [13] for the composition of analytic functions in arbitrary domains from \mathbb{C} . Also M.M. Sheremeta ([18, p. 99]) proved that an entire function f(z) has bounded index if and only if the analytic function $f(\frac{1}{z})$ in $\mathbb{C} \setminus \{0\}$ has bounded l-index with $l(z) = \frac{1}{|z|^2}$.

However, the multidimensional case ([2]) is investigated only for the composite function $f(\sum_{j=1}^n z_j m_j)$, where $m = (m_1, \dots, m_n) \in \mathbb{C}^n$ is fixed. Thus, the following question arises:

Keywords: entire function; bounded L-index in direction; composite function; bounded l-index. doi:10.15330/ms.47.2.179-184

 $^{2010\} Mathematics\ Subject\ Classification; 32A15,\ 32A17,\ 30D20.$

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function of bounded l-index, $\Phi: \mathbb{C}^n \to \mathbb{C}$ be an entire function, $l: \mathbb{C} \to \mathbb{R}_+$ be a continuous function. What are a positive continuous function L and a direction $\mathbf{b} \in \mathbb{C}^n$ such that the composite function $f(\Phi(z))$ has bounded L-index in the direction \mathbf{b} ?

In the present paper, we give an answer to this question.

Note that the positivity and continuity of the function L are weak restrictions. Therefore, we impose additional restriction on the function L.

For $\eta > 0$, $z \in \mathbb{C}^n$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ and a positive continuous function $L \colon \mathbb{C}^n \to \mathbb{R}_+$ we define

$$\lambda(\eta) = \sup_{z \in \mathbb{C}^n} \sup_{t_1, t_2 \in \mathbb{C}} \left\{ \frac{L(z + t_1 \mathbf{b})}{L(z + t_2 \mathbf{b})} \colon |t_1 - t_2| \le \frac{\eta}{\min\{L(z + t_1 \mathbf{b}), L(z + t_2 \mathbf{b})\}} \right\}.$$

By $Q_{\mathbf{b}}^n$ we denote the class of functions L such that $\lambda(\eta)$ is finite for any $\eta > 0$. We also use notation $Q = Q_1^1$ for a class of positive continuous function l(z), when $z \in \mathbb{C}$, $\mathbf{b} = 1$, n = 1, $L \equiv l$.

Our main result is following

Theorem 1. Let $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$, f be an entire function in \mathbb{C} , Φ be an entire function in \mathbb{C}^n such that $\frac{\partial \Phi(z)}{\partial \mathbf{b}} \neq 0$ and

$$\left| \frac{\partial^{j} \Phi(z)}{\partial \mathbf{b}^{j}} \right| \le K \left| \frac{\partial \Phi(z)}{\partial \mathbf{b}} \right|^{j}, \quad K \equiv \text{const} > 0, \tag{2}$$

for all $z \in \mathbb{C}^n$ and every $j \leq p$, where p is defined in (3).

Let $l \in Q$, $l(w) \ge 1$, $w \in \mathbb{C}$ and $L \in Q^n_{\mathbf{b}}$, where $L(z) = \left|\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right| l(\Phi(z))$. The entire function f has bounded l-index if and only if $F(z) = f(\Phi(z))$ has bounded L-index in the direction \mathbf{b} .

In paper [13], there was obtained a similar proposition for analytic functions of one variable in an arbitrary domain in the complex plane.

2. Proof of Main Theorem. To prove the main theorem we need auxiliary propositions.

Theorem 2 ([1,4]). Let $\mathbf{b} \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ and $L \in Q_{\mathbf{b}}^n$. An entire function F(z) has bounded L-index in direction \mathbf{b} if and only if there exist numbers $p \in \mathbb{Z}_+$, R > 0 and C > 0 such that for each $z \in \mathbb{C}^n$, $|z| \geq R$,

$$\left| \frac{1}{L^{p+1}(z)} \frac{\partial^{p+1} F(z)}{\partial \mathbf{b}^{p+1}} \right| \le C \max \left\{ \left| \frac{1}{L^k(z)} \frac{\partial^k F(z)}{\partial \mathbf{b}^k} \right| : \ 0 \le k \le p \right\}.$$
 (3)

In previous investigations of bounded L-index in direction ([1, 3, 4, 7]) there was used another equivalent definition of class $Q_{\mathbf{b}}^n$. The presented definition appeared for the first time in [6]. For n=1 Theorem 2 is Sheremeta's result ([16]). W. K. Hayman [10] proved Theorem 2 for entire functions of bounded index. Analogs of the Hayman Theorem are also known for other classes of holomorphic functions of bounded index ([5,8,9,11]).

Proof of Theorem 1. At first, we prove that

$$\frac{\partial^k F(z)}{\partial \mathbf{b}^k} = f^{(k)}(\Phi(z)) \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^k + \sum_{j=1}^{k-1} f^{(j)}(\Phi(z)) Q_{j,k}(z), \tag{4}$$

where

$$Q_{j,k}(z) = \sum_{\substack{n_1+2n_2+\ldots+kn_k=k\\0 \le n_1 \le j-1}} c_{j,k,n_1,\ldots,n_k} \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{n_1} \left(\frac{\partial^2 \Phi(z)}{\partial \mathbf{b}^2}\right)^{n_2} \ldots \left(\frac{\partial^k \Phi(z)}{\partial \mathbf{b}^k}\right)^{n_k},$$

and c_{j,k,n_1,\dots,n_k} are some non-negative integer coefficients. We also deduce that

$$f^{(k)}(\Phi(z)) = \frac{\frac{\partial^k F(z)}{\partial \mathbf{b}^k}}{\left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^k} + \frac{1}{\left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{2k}} \sum_{j=1}^{k-1} \frac{\partial^j F(z)}{\partial \mathbf{b}^j} \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^j Q_{j,k}^*(z), \tag{5}$$

where

$$Q_{j,k}^*(z) = \sum_{m_1+2m_2+\ldots+km_k=2(k-j)} b_{j,k,m_1,\ldots,m_k} \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{m_1} \left(\frac{\partial^2 \Phi(z)}{\partial \mathbf{b}^2}\right)^{m_2} \ldots \left(\frac{\partial^k \Phi(z)}{\partial \mathbf{b}^k}\right)^{m_k},$$

and b_{j,k,m_1,\dots,m_k} are some integer coefficients.

The validity of (4) and (5) will be checked by the method of mathematical induction. Obviously, for k = 1 equalities (4) and (5) hold. Assume that they are true for k = s. Let us to prove them for k = s + 1. Evaluate directional derivative in (4)

$$\frac{\partial^{s+1} F(z)}{\partial \mathbf{b}^{s+1}} = f^{(s+1)}(\Phi(z)) \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{s+1} + s f^{(s)}(\Phi(z)) \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{s-1} \frac{\partial^2 \Phi(z)}{\partial \mathbf{b}^2} + \\
+ \sum_{j=1}^{s-1} \left(f^{(j+1)}(\Phi(z)) \frac{\partial \Phi(z)}{\partial \mathbf{b}} Q_{j,s}(z) + f^{(j)}(\Phi(z)) \frac{\partial Q_{j,s}(z)}{\partial \mathbf{b}}\right) = \\
= f^{(s+1)}(\Phi(z)) \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{s+1} + f^{(s)}(\Phi(z)) \left(s \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}}\right)^{s-1} \frac{\partial^2 \Phi(z)}{\partial \mathbf{b}^2} + \frac{\partial \Phi(z)}{\partial \mathbf{b}} Q_{s-1,s}(z)\right) + \\
+ \sum_{j=2}^{s-1} f^{(j)}(\Phi(z)) \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}} Q_{j-1,s}(z) + \frac{\partial Q_{j,s}(z)}{\partial \mathbf{b}}\right) + f'(\Phi(z)) \frac{\partial Q_{1,s}(z)}{\partial \mathbf{b}}.$$

Since

$$s\left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{s-1}\frac{\partial^{2}\Phi(z)}{\partial\mathbf{b}^{2}} + \\ + \sum_{\substack{n_{1}+2n_{2}+\ldots+sn_{s}=s\\0\leq n_{1}\leq s-2}} c_{s-1,s,n_{1},\ldots,n_{s}} \left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{n_{1}+1} \left(\frac{\partial^{2}\Phi(z)}{\partial\mathbf{b}^{2}}\right) \ldots \left(\frac{\partial^{s}\Phi(z)}{\partial\mathbf{b}^{s}}\right)^{n_{s}} = \\ = \sum_{\substack{m_{1}+2m_{2}+\ldots+sn_{s}=s\\0\leq m_{1}\leq s-1}} \tilde{c}_{s,s+1,m_{1},\ldots,m_{s}} \left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{m_{1}} \left(\frac{\partial^{2}\Phi(z)}{\partial\mathbf{b}^{2}}\right)^{m_{2}} \ldots \left(\frac{\partial^{s}\Phi(z)}{\partial\mathbf{b}^{s}}\right)^{m_{s}} = Q_{s,s+1}(z), \\ \frac{\partial Q_{1,s}(z)}{\partial\mathbf{b}} = \sum_{2n_{2}+\ldots+sn_{s}=s} c_{1,s,0,n_{2},\ldots,n_{s}} \left(n_{2} \left(\frac{\partial^{2}\Phi(z)}{\partial\mathbf{b}^{2}}\right)^{n_{2}-1} \left(\frac{\partial^{3}\Phi(z)}{\partial\mathbf{b}^{3}}\right)^{n_{3}+1} \ldots \left(\frac{\partial^{s}\Phi(z)}{\partial\mathbf{b}^{s}}\right)^{n_{s}} + \\ + \ldots + n_{s} \left(\frac{\partial^{2}\Phi(z)}{\partial\mathbf{b}^{2}}\right)^{n_{2}} \left(\frac{\partial^{3}\Phi(z)}{\partial\mathbf{b}^{3}}\right)^{n_{3}} \ldots \left(\frac{\partial^{s}\Phi(z)}{\partial\mathbf{b}^{s}}\right)^{n_{s}-1} \frac{\partial^{s+1}\Phi(z)}{\partial\mathbf{b}^{s+1}} =$$

$$=\sum_{2m_2+\ldots+(s+1)m_{s+1}=s+1}\tilde{c}_{1,s+1,0,m_2,\ldots,m_{s+1}}\left(\frac{\partial^2\Phi(z)}{\partial\mathbf{b}^2}\right)^{m_2}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^s}\right)^{m_s}\left(\frac{\partial^{s+1}\Phi(z)}{\partial\mathbf{b}^{s+1}}\right)^{m_{s+1}}=\\=Q_{1,s+1}(z),\\\frac{\partial\Phi(z)}{\partial\mathbf{b}}Q_{j-1,s}(z)+\frac{\partial Q_{j,s}(z)}{\partial\mathbf{b}}=\\=\sum_{\substack{n_1+2n_2+\ldots+sn_s=s\\0\leq n_1\leq j-2}}c_{j-1,s,n_1,\ldots,n_s}\left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{n_1+1}\left(\frac{\partial^2\Phi(z)}{\partial\mathbf{b}^2}\right)^{n_2}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^s}\right)^{n_s}+\\+\sum_{\substack{n_1+2n_2+\ldots+kn_s=s\\0\leq n_1\leq j-1}}c_{j,s,n_1,n_2,\ldots,n_s}\left(n_1\left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{n_1-1}\left(\frac{\partial^2\Phi(z)}{\partial\mathbf{b}^2}\right)^{n_2+1}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^s}\right)^{n_s}+\\+\ldots+n_s\left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{n_1}\left(\frac{\partial^2\Phi(z)}{\partial\mathbf{b}^2}\right)^{n_2}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^s}\right)^{n_2+1}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^{s+1}}\right)=\\=\sum_{\substack{m_1+2m_2+\ldots+(s+1)m_{s+1}=s+1\\0\leq m_s< i-1}}\tilde{c}_{j,s+1,m_1,\ldots,m_{s+1}}\left(\frac{\partial\Phi(z)}{\partial\mathbf{b}}\right)^{n_1}\ldots\left(\frac{\partial^s\Phi(z)}{\partial\mathbf{b}^s}\right)^{n_s}\left(\frac{\partial^{s+1}\Phi(z)}{\partial\mathbf{b}^{s+1}}\right)^{n_{s+1}}=Q_{j,s+1}(z),$$

we obtain (4) with s + 1 instead k.

By the mathematical induction as (4) it can be proved equality (5).

Let f be entire function of bounded l-index. By Theorem 2 inequality (3) is valid for n = 1, F = f, L = l, $\mathbf{b} = 1$. Taking into account (2) and (4), for k = p + 1 we have

$$\frac{1}{L^{p+1}(z)} \left| \frac{\partial^{p+1} F(z)}{\partial \mathbf{b}^{p+1}} \right| \leq \frac{|f^{(p+1)}(\Phi(z))|}{L^{p+1}(z)} \left| \frac{\partial \Phi(z)}{\partial \mathbf{b}} \right|^{p+1} + \sum_{j=1}^{p} \frac{|f^{(j)}(\Phi(z))||Q_{j,p+1}(z)|}{L^{p+1}(z)} \leq \\
\leq \max \left\{ \frac{|f^{(k)}(\Phi(z))|}{l^{k}(\Phi(z))} : 0 \leq k \leq p \right\} \left(C + \sum_{j=1}^{p} \frac{|Q_{j,p+1}(z)|}{l^{p+1-j}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{p+1}} \right) \leq \\
\leq \max \left\{ \frac{|f^{(k)}(\Phi(z))|}{l^{k}(\Phi(z))} : 0 \leq k \leq p \right\} \times \\
\times \left(C + \sum_{j=1}^{p} \sum_{\substack{n_1+2n_2+\ldots+(p+1)n_{p+1}=p+1\\0 \leq n_1 \leq j-1}} c_{j,p+1,n_1,\ldots,n_{p+1}} \frac{\left| \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}} \right)^{n_1} \left(\frac{\partial^2 \Phi(z)}{\partial \mathbf{b}^2} \right)^{n_2} \cdots \left(\frac{\partial^{p+1} \Phi(z)}{\partial \mathbf{b}^{p+1}} \right)^{n_{p+1}} \right|}{l^{p+1-j}(\Phi(z))} \right| \leq \\
\leq \max \left\{ \frac{|f^{(k)}(\Phi(z))|}{l^{k}(\Phi(z))} : 0 \leq k \leq p \right\} \left(C + \sum_{j=1}^{p} \sum_{\substack{n_1+2n_2+\ldots+(p+1)n_{p+1}=p+1\\0 \leq n_1 \leq j-1}} \frac{c_{j,p+1,n_1,\ldots,n_{p+1}}K^{p+1}}{l^{p+1-j}(\Phi(z))} \right) \leq \\
\leq C_1 \max \left\{ \frac{|f^{(k)}(\Phi(z))|}{l^{k}(\Phi(z))} : 0 \leq k \leq p \right\}.$$

Using equality (5), we can estimate the fraction $\frac{|f^{(k)}(\Phi(z))|}{l^k(\Phi(z))}$:

$$\frac{|f^{(k)}(\Phi(z))|}{l^k(\Phi(z))} \leq \frac{|\frac{\partial^k F(z)}{\partial \mathbf{b}^k}|}{l^k(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^k} + \sum_{j=1}^{k-1} \frac{|\frac{\partial^j F(z)}{\partial \mathbf{b}^j}||Q_{j,k}^*(z)|}{l^k(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{2k-j}} \leq$$

$$\leq \max \left\{ \frac{1}{L^{j}(z)} \left| \frac{\partial^{j} F(z)}{\partial \mathbf{b}^{j}} \right| : 1 \leq j \leq k \right\} \left(1 + \sum_{j=1}^{k-1} \frac{|Q_{j,k}^{*}(z)|}{l^{k-j}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{2(k-j)}} \right) \leq$$

$$\leq \max \left\{ \frac{1}{L^{j}(z)} \left| \frac{\partial^{j} F(z)}{\partial \mathbf{b}^{j}} \right| : 1 \leq j \leq k \right\} \times$$

$$\times \left(1 + \sum_{j=1}^{k-1} \sum_{m_{1}+2m_{2}+\ldots+km_{k}=2(k-j)} |b_{j,k,m_{1},\ldots,m_{k}}| \frac{\left| \left(\frac{\partial \Phi(z)}{\partial \mathbf{b}} \right)^{m_{1}} \left(\frac{\partial^{2} \Phi(z)}{\partial \mathbf{b}^{2}} \right)^{m_{2}} \ldots \left(\frac{\partial^{k} \Phi(z)}{\partial \mathbf{b}^{k}} \right)^{m_{k}} |}{l^{k-j}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{2(k-j)}} \right) \leq$$

$$\leq \max \left\{ \frac{1}{L^{j}(z)} \left| \frac{\partial^{j} F(z)}{\partial \mathbf{b}^{j}} \right| : 1 \leq j \leq k \right\} .$$

Hence, it follows that

$$\frac{1}{L^{p+1}(z)} \left| \frac{\partial^{p+1} F(z)}{\partial \mathbf{b}^{p+1}} \right| \le C_1 C_2 \max \left\{ \frac{1}{L^k(z)} \left| \frac{\partial^k F(z)}{\partial \mathbf{b}^k} \right| : 0 \le k \le p \right\}.$$
(6)

Therefore, by Theorem 2 inequality (6) means that the function F has bounded L-index in the direction \mathbf{b} .

Conversely, suppose that F is a function of bounded L-index in the direction **b**. Then it satisfies (3). In view of (2) and (5), we obtain

$$\frac{|f^{(p+1)}(\Phi(z))|}{l^{p+1}(\Phi(z))} \leq \frac{|\frac{\partial^{p+1}F(z)}{\partial \mathbf{b}^{p+1}}|}{l^{p+1}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{p+1}} + \sum_{j=1}^{p} \frac{|\frac{\partial^{j}F(z)}{\partial \mathbf{b}^{j}}||Q_{j,p+1}^{*}(z)|}{l^{p+1}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{2p+2-j}} \leq$$

$$\leq \max \left\{ \frac{1}{L^{k}(z)} \left| \frac{\partial^{k}F(z)}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq p \right\} \left(C + \sum_{j=1}^{p} \frac{|Q_{j,p+1}^{*}(z)|}{l^{p+1-j}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{2(p+1-j)}} \right) \leq$$

$$\leq \max \left\{ \frac{1}{L^{k}(z)} \left| \frac{\partial^{k}F(z)}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq p \right\} \times$$

$$\times \left(C + \sum_{j=1}^{p} \sum_{\substack{m_{1}+\ldots+(p+1)m_{p+1}=\\ =2(p+1-j)}} |b_{j,p+1,m_{1},\ldots,m_{p+1}}| \frac{\left| \frac{\partial \Phi(z)}{\partial \mathbf{b}} \right|^{m_{1}} \left(\frac{\partial^{2}\Phi(z)}{\partial \mathbf{b}^{2}} \right)^{m_{2}} \cdots \left(\frac{\partial^{p+1}\Phi(z)}{\partial \mathbf{b}^{p+1}} \right)^{m_{p+1}}}{l^{p+1-j}(\Phi(z)) \left| \frac{\partial \Phi(z)}{\partial \mathbf{b}} \right|^{2(p+1-j)}} \right) \leq$$

$$\leq \max \left\{ \frac{1}{L^{k}(z)} \left| \frac{\partial^{k}F(z)}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq p \right\} \left(C + \sum_{j=1}^{p} \sum_{\substack{m_{1}+\ldots+(p+1)m_{p+1}=\\ =2(p+1-j)}} \frac{|b_{j,p+1,m_{1},\ldots,m_{p+1}}|K^{2p+2-2j}}{l^{p+1-j}(\Phi(z))} \right) \leq$$

$$\leq C_{3} \max \left\{ \frac{1}{L^{k}(z)} \left| \frac{\partial^{k}F(z)}{\partial \mathbf{b}^{k}} \right| : 0 \leq k \leq p \right\}.$$

According to equality (4) we estimate

$$\frac{1}{L^{k}(z)} \left| \frac{\partial^{k} F(z)}{\partial \mathbf{b}^{k}} \right| \leq \frac{|f^{(k)}(\Phi(z))||\varphi'(z)|^{k}}{L^{k}(z)} + \sum_{j=1}^{k-1} \frac{|f^{(j)}(\Phi(z))||Q_{j,k}(z)|}{L^{k}(z)} \leq$$

$$\leq \max \left\{ \frac{|f^{(j)}(\Phi(z))|}{l^{j}(\Phi(z))} \colon 1 \leq j \leq k \right\} \left(1 + \sum_{j=1}^{k-1} \frac{|Q_{j,k}(z)|}{l^{k-j}(\Phi(z))|\frac{\partial \Phi(z)}{\partial \mathbf{b}}|^{k}} \right) \leq$$

$$\leq C_{4} \max \left\{ \frac{|f^{(j)}(\Phi(z))|}{l^{j}(\Phi(z))} \colon 1 \leq j \leq k \right\}.$$

It implies that $\frac{|f^{(p+1)}(\Phi(z))|}{l^{p+1}(\Phi(z))} \leq C_3C_4\max\left\{\frac{|f^{(j)}(\Phi(z))|}{l^{j}(\Phi(z))}: 0 \leq j \leq p\right\}$. Thus, by Theorem 2 $(n=1, F=f, L=l, \mathbf{b}=1)$ the function f has bounded l-index.

REFERENCES

- A.I. Bandura, O.B. Skaskiv, Entire functions of bounded L-index in direction, Mat. Stud., 27 (2007), $N_{2}1$, 30–52. (in Ukrainian)
- A.I. Bandura, O.B. Skaskiv, Boundedness of L-index in direction of functions of the form $f(\langle z, m \rangle)$ and existence theorems, Mat. Stud., **41** (2014), №1, 45–52.
- A.I. Bandura, O.B. Skaskiv, Open problems for entire functions of bounded index in direction, Mat. Stud., **43** (2015), №1, 103–109. doi:10.15330/ms.43.1.103–109
- A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index. Lviv: Publisher I. E. Chyzhykov, 2016, 128 p.
- A. Bandura, New criteria of boundedness of L-index in joint variables for entire functions, Math. Bull. Shevchenko Sci. Soc., **13** (2016), 58–67. (in Ukrainian)
- A.I. Bandura, O.B. Skaskiv, Directional logarithmic derivative and the distribution of zeros of an entire function of bounded L-index in direction, Ukrain. Mat. J., 69 (2017), №3, 500–508.
- A. Bandura, O. Skaskiv, P. Filevych, Properties of entire solutions of some linear PDE's, J. Appl. Math. Comput. Mech., **16** (2017), №2, 17–28. doi:10.17512/jamcm.2017.2.02
- A. Bandura, O. Skaskiv, Analytic function in the unit ball, Beau Bassin: LAP Lambert Academic Publishing, 2017, 100 p. https://arxiv.org/abs/1705.09568
- A.I. Bandura, N.V. Petrechko, O.B. Skaskiv, Maximum modulus of analytic in a bidisc functions of bounded L-index and analogue of Theorem of Hayman. Mathematica Bohemica (accepted for publication) https://arxiv.org/abs/1609.04190
- 10. W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), №1, 117–137.
- 11. V.O. Kushnir, Analogue of Hayman theorem for analytic functions of bounded l-index, Visn. Lviv Un-ty, Ser. Mekh.-Math., **53** (1999), 48–51. (in Ukrainian)
- 12. V.O. Kushnir, On analytic in a disc functions of bounded l-index, Visn. Lviv Un-ty, Ser. Mekh.-Math., **58** (2000), 21–24. (in Ukrainian)
- 13. V.O. Kushnir, Analytic function of bounded l-index: diss. ... Cand. Phys. and Math. Sciences, Ivan Franko National University of Lviv, Lviv, 2002, 132 p. (in Ukrainian)
- 14. A.D. Kuzyk, M.N. Sheremeta, Entire functions of bounded l-distribution of values, Mat. Zametki, 39 (1986), №1, 3–13. Engl. transl.: Math. Notes, **39** (1986), №1, 3–8. doi:10.1007/BF01647624
- 15. B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 2 (1968), 298–307.
- 16. M.N. Sheremeta, Entire functions and Dirichlet series of bounded l-index, Russian Math. (Iz. VUZ), 36 (1992), N 9, 76-82.
- 17. M.N. Sheremeta, A.D. Kuzyk, Logarithmic derivative and zeros of an entire function of bounded lindex, Sib. Mat. Zh., 33 (1992), №2, 142–150. Engl. transl.: Sib. Math. J., 33 (1992), №2, 304–312. doi:10.1007/BF00971102
- 18. M. Sheremeta, Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.

Ivano-Frankivsk National Technical University of Oil and Gas andriykopanytsia@gmail.com