Я. Б. Раєцька, Т. В. Іщук, О. М. Савчук, Л. І. Остапченко ННЦ "ІНСТИТУТ БІОЛОГІЇ" КИЇВСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ВІДТВОРЕННЯ ЕКСПЕРИМЕНТАЛЬНОЇ МОДЕЛІ ХІМІЧНОГО ОПІКУ СТРАВОХОДУ І СТУПЕНЯ В ЩУРІВ

В експерименті на щурах відтворено модель хімічного опіку стравоходу І ступеня. Змодельований стан є адекватною моделлю хімічного опіку стравоходу І ступеня, що підтверджено визначенням біохімічних показників крові тварин з моделлю хімічного опіку стравоходу. Даний підхід може бути використаний при дослідженні біохімічних та імунологічних механізмів патогенезу хімічного опіку в експерименті.

КЛЮЧОВІ СЛОВА: хімічний опік стравоходу, біохімічні показники.

ВСТУП. Хімічні опіки стравоходу (ХОС) залишаються поширеним захворюванням, особливо в дитячому віці [6, 11]. Майже 80 % хімічних пошкоджень стравоходу спричинені випадковим прийняттям отруйних речовин дітьми віком від 1 до 8 років [6, 7]. Це пов'язано з виробництвом нових луговмісних засобів очищення в яскравих пляшечках та недбалим зберіганням дорослими хімічних речовин у побуті.

Глибина опіку стравоходу залежить від концентрації хімічної речовини, її природи, кількості та часу контакту зі слизовою оболонкою. Провідне місце в патогенезі опіків стравоходу належить гіпоксії тканин [10, 13].

До ранніх наслідків ХОС належать набряк гортані, токсичний шок, кровотеча, некроз стінки стравоходу або шлунка, медіастеніт і формування рубцевого стенозу [10, 13, 18]. Пізніми наслідками ХОС є гастроезофагеальний рефлюкс (ГЕР) [9, 16], порушення моторики [2], кандидоз [3], малігнізація у віддалений період [19] тощо.

Отже, опікова хвороба є важливою проблемою, яка потребує негайного вирішення.

На сьогодні існує ряд експериментальних моделей ХОС [12, 14, 15, 17], але вони є недостатньо коректними для проведення досліджень, оскільки при їх створенні застосовують хімічні речовини, які самі по собі впливають на ряд біохімічних показників, зумовлюючи похибку в результатах. Крім того, для наших

© Я. Б. Раєцька, Т. В. Іщук, О. М. Савчук, Л. І. Остапченко, 2013.

досліджень принциповим було розробити модель опіку, яка б відповідала тій, що характерна для дітей віком від 1 до 8 років. Традиційно при створенні моделі опіку стравоходу використовують статевозрілих щурів, які за віком, як правило, відповідають дорослій людині [4].

Для відтворення ХОС було обрано розчин 10 % NaOH, оскільки більшість отруйних речовин, які викликають хімічні пошкодження стравоходу в дітей, є луговмісними (елементи живлення, мийні засоби, речовини для очистки).

Метою даної роботи було створити адекватну експериментальну модель XOC I ступеня, яку можна застосовувати для широкого спектра досліджень особливостей опікового патогенезу, перш за все у дітей віком від 1 до 8 років.

МЕТОДИ ДОСЛІДЖЕННЯ. У дослідах використовували білих нелінійних статевонезрілих щурів (одномісячних) масою 90–110 г, яких утримували на стандартному раціоні віварію. У тварин експериментально моделювали опік стравоходу розчином 10 % NaOH: у стравохід вводили зонд із запаяним торцем і отвором на відстані 2 мм від нього. Зонд вводили на глибину 4,0 см від верхніх різців щура. Після цього через зонд повільно вводили 0,1 мл розчину 10 % NaOH. Контрольним щурам одноразово перорально вводили 0,1 мл води для ін'єкцій.

Стан слизової оболонки стравоходу досліджували на 1-шу, 3-тю і 7-му доби після вве-

дення розчину лугу. Вибір термінів дослідження зумовлений розвитком патоморфологічних процесів при хімічних опіках стравоходу [1]. Наприкінці експерименту тварин умертвляли методом дислокації шийних хребців. Отриманий стравохід розрізали поздовжньо, промивали холодним фізіологічним розчином. Для морфологічного дослідження використовували шматочки стравоходу довжиною близько 1,5 см. Їх фіксували в розчині 12 % формаліну і заливали в парафін. Депарафіновані зрізи товщиною 5 мкм фарбували гематоксилін-еозином за ван Гізон. Дослідження стану слизової оболонки стравоходу проводили візуальним методом. Макроскопічно за допомогою лупи при яскравому освітленні визначали кількість і площу деструкцій.

Біохімічні показники визначали в сироватці крові, яку отримували шляхом центрифугування крові при 2000 g 40 хв. У нашому дослідженні використовували біохімічний аналізатор Humalyser 3000. Вміст загального білка визначали із застосуванням набору для колориметричного фотометричного визначення концентрації загального білка біуретовим методом, рівень альбуміну – набору для колориметричного визначення концентрації альбуміну з використанням бромкрезолового зеленого, рівень іонів К+ - набору для фотометричного турбідиметричного визначення концентрації іонів К+, активність аланінамінотрансферази (АлАТ) - набору для колориметричного визначення АлАТ, активність аспартатамінотрансферази (AcAT) - набору для колориметричного визначення АсАТ.

Статистичну обробку отриманих результатів проводили за допомогою методів варіаційної статистики та кореляційного аналізу з використанням комп'ютерної програми Excel. Для визначення достовірності відмінностей між двома вибірками застосовували критерій Стьюдента (t). При цьому достовірною вважали різницю при p<0,05.

РЕЗУЛЬТАТИ Й ОБГОВОРЕННЯ. Відомо, що луги пошкоджують слиз і білкову субстанцію клітин, омилюють жири, утворюючи лужні альбуміни, розпушують і розм'якшують тканини, які стають більш доступними для проникнення речовин у глибші шари стравоходу. Луги залишають глибокі опіки в стравоході, тоді як шлунок страждає менше, ніж при отруєнні кислотами, у зв'язку з частковою нейтралізацією лугу шлунковим соком [8].

Було показано, що 10 % NaOH проникає в тканини і призводить до значних уражень слизової оболонки стравоходу (рис. 1). Вияв-

лено набряк, гіперемію, пошкодження поверхневих шарів епітелію, крововиливи в підслизовий шар.

Α

E

Рис. 1. Макрофотографія слизової оболонки стравоходу щурів при експериментальному моделюванні хімічного опіку стравоходу 10 % NaOH (A – 1-ша доба, Б – 7-ма доба).

Мікрофотографія слизової оболонки стравоходу демонструє ураження тканин стравоходу щурів за умов експериментального моделювання ХОС 10 % NaOH: десквамативний езофагіт, гіперемію, набряк, підвищену ранимість слизової оболонки (рис. 2). Порівняння виявлених уражень та результатів досліджень стану слизової оболонки стравоходу дітей з опіком І ступеня показало відповідність експериментальної моделі (С. Д. Терновский, 1963; Э. Н. Ванцян, Р. А. Тощаков, 1991).

Як відомо, опік стравоходу супроводжується тривалими порушеннями вуглеводного, ліпідного та білкового обмінів, що призводить до патологічних змін у функціонуванні різних органів і систем [8]. Тому одним з основних діагностичних критеріїв тяжкості ХОС є визначення біохімічних показників. Було обрано

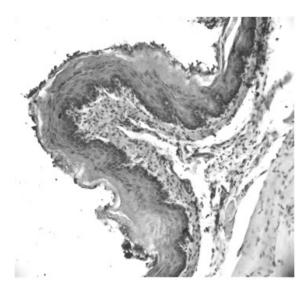


Рис. 2. Мікрофотографія слизової оболонки стравоходу щурів за умов експериментального моделювання хімічного опіку стравоходу 10 % NaOH.

такі показники, як рівні загального білка, альбуміну, сечовини, іонів калію, креатиніну, АсАТ, АлАТ, що є головними біохімічними показниками сироватки крові, за якими можна охарактеризувати функціональний стан організму та оцінити ступінь метаболічних порушень за умов досліджуваної патології.

Було визначено концентрацію загального білка в сироватці крові щурів з хімічним опіком стравоходу 10 % NaOH, у ході дослідження отримано дані, які наведено в таблиці.

Встановлено, що експериментальний опік стравоходу 10 % NaOH призводить до значних змін вмісту загального білка. На 1-шу, 3-тю і 7-му доби спостережень він поступово знижувався – в 1,2, 1,5 та 1,6 раза відповідно порівняно з контрольними значеннями.

Показано, що на 3-тю і 7-му доби поступово знижувався вміст альбуміну – в 1,7 і 2,1 раза відповідно порівняно з контрольними значеннями. Отже, має місце гіпопротеїнемія, яка виникає переважно за рахунок зменшення кількості альбумінів.

У клінічній лабораторній діагностиці велику роль відіграє визначення вмісту кінцевих продуктів обміну білка, які розглядають як систему залишкового азоту. Майже половина компонентів цієї системи припадає на сечовину. В клініці показник рівня сечовини має вирішальне значення для діагностики захворювань нирок. За умов хімічного опіку 10 % NaOH ми спостерігали підвищення на 1-шу, 3-тю та 7-му доби рівня сечовини в 1,3, 1,9 та 2,1 раза відповідно, що може свідчити про розвиток тяжкого патологічного процесу.

Було визначено рівень креатиніну в сироватці крові піддослідних тварин. У ході дослідження отримано дані (табл.), які свідчать про те, що експериментальний опік стравоходу в період 1-ї, 3-ї і 7-ї діб призводив до значних змін рівня креатиніну, який зазвичай використовується як маркер токсичного впливу на організм та може вказувати на ниркову недостатність. Експериментальний опік стравоходу зумовлював підвищення рівня креатиніну в сироватці крові в період усього терміну дослідження, на 1-шу, 3-тю і 7-му доби в 1,5, 2,1 та 2,3 раза, порівняно з контрольними значеннями, що відповідає літературним даним. Отже, опікова хвороба характеризується гострою інтоксикацією, порушенням в організмі водно-сольового обміну, що часто призводить до ураження нирок [1, 5, 8].

Дослідження рівня іонів K^+ в сироватці крові щурів з хімічним опіком стравоходу дозволило встановити його зростання в 1,4, 2,4, 2,9 раза у всі терміни.

Вивчення динаміки активності амінотрансфераз у сироватці крові щурів при моделюванні опіку стравоходу показало, що активність АлАТ підвищувалась у 2,5, 2 і 1,5 раза, активність АсАТ – у 1,5, 1,3, 1,2 раза відповідно на 1-шу, 3-тю, 7-му доби експерименту.

Встановлені зміни основних печінкових трансфераз за умов моделювання хімічного опіку вказують на суттєві порушення функціо-

Таблиця – Біохімічні параметри сироватки крові щурів за умов експериментального моделювання хімічного опіку стравоходу 10 % NaOH (M±m, n=10)

Показник	Контроль	XOC, 10 % NaOH		
		1-ша доба	3-тя доба	7- а доба
Загальний білок, г/л	65,01±0,1	51,02±2,1*	44,8±2,1*	41,2±1,0*
Альбу ін, г/л	37,5±0,12	21,9±1,6*	20,9±2,4*	18,3±1,3*
Сечовина, оль/л	8,8±0,2	12,2±1,23	18,3±1,01*	20,7±1,3*
Креатинін, к оль/л	88,0±0,1	130,8±4,2*	140,6±5,02*	178,8±3,98*
К⁺, оль/л	5,0±0,1	5,7±0,1*	11,8±1,01*	14,6±0,9*
АлАТ, од./л	27,7	68,31*	70,99*	78,12*
АсАТ, од./л	55,5	61,33*	62,12*	67,11*

Примітка. * - р<0,05 відносно контролю.

нування різних органів, що може бути підтвердженням формування стійкого стану опіку стравоходу І ступеня в піддослідних тварин.

ВИСНОВКИ. За допомогою 10 % NaOH було відтворено модель XOC I ступеня, яка супроводжувалась відповідними морфологічними ураженнями слизової оболонки стра-

воходу та змінами основних біохімічних показників. Отримані результати дозволяють стверджувати, що змодельований стан є адекватною моделлю хімічного опіку стравоходу І ступеня в дітей віком від 1 до 8 років. Даний підхід може бути використаний у дослідженні біохімічних та імунологічних механізмів патогенезу хімічного опіку стравоходу І ступеня на тваринах.

СПИСОК ЛІТЕРАТУРИ

- 1. Ванцян Э. Н. Лечение ожогов и рубцовых сужений пищевода / Э. Н. Ванцян, Р. А. Тощаков. М., 1971. 260 с.
- 2. Волков С. В. Химические ожоги пищевода и желудка / С. В. Волков, А. С. Ермолаев, Е. А. Лужников. М.: Медпрактика-М, 2005. 119 с.
- 3. Выбор метода эзофагопластики при доброкачественных заболеваниях пищевода / А. Ф. Черноусов, В. А. Адрианов, С. А. Домрачеев [и др.] // Анналы хирургии. – 1998. – № 1. – С. 48–50.
- 4. Гелашвили О. А. Вариант периодизации биологически сходных стадий онтогенеза человека и крысы / О. А. Гелашвили // Саратов. науч.-мед. журн. 2008. **22**, № 4. С. 125–126.
- 5. Гонський Я. І. Біохімія людини / Я. І. Гонський, Т. П. Максимчук. Тернопіль : Укрмедкнига, 2001. 736 с.
- 6. Доржиев Б. Д. Экспериментальная модель химического ожога пищевода и желудка современными агрессивными химическими агентами / Б. Д. Доржиев, М. Л. Тыхенова, К. Д. Пунсуков // Бюлетель ВСНЦ СО РАМН. 2012. № 4 (86). С. 46.
- 7. Ивашкин В. Т. Болезни пищевода / В. Т. Ивашкин, А. С. Трухманов. М.: Триада-Х, 2000. 179 с.
- 8. Лужников Е. А. Клиническая токсикология : учебник / Е. А. Лужников. 2-е изд., перераб. и доп. М. : Медицина, 1994. 255 с.
- 9. Салахов Э. С. Лечение химических ожогов пищевода у детей: дисс. ... канд. мед. наук / Э. С. Салахов. СПб., 2007. 21 с.
- 10. Сапожникова М. А. Химические ожоги пищевода и их отдаленные исходы при различных методах лечения : дисс. ... доктора мед. наук / М. А. Сапожникова. М., 1978. 31 с.

- 11. Эволюция взглядов на хирургическое лечение детей с химическими ожогами пищевода / А. Ю. Разумовский, Р. В. Обыденнова, Н. В. Куликова [и др.] // Росс. вестник детской хирургии, анестезиологии и реаниматологии. 2011. № 1. C.51–59.
- 12. Bustamantel T. F. The use of mitomycin C in caustic esophagitis in rats / T. F. Bustamantel // Acta Cirurgica Brasileira. 2013. **28** (2). P. 136–141.
- 13. Effects of time of contact and concentration of caustic agent on the injuries / G. M. Mattos, D. D. Lopes, R. C. Mamede [et al.] // Laryngoscope. 2006. **116**, N_2 3. P. 456–460.
- 14. Ekingen G. Effect of the prostacyclin derivate iloprost in experimental caustic esophageal burn / G. Ekingen // Pediatr Surg Int. 2005. **21**. P. 441–444.
- 15. Guven A. The efficacy of ozone therapy in experimental caustic esophageal burn / A. Guven // Journal of Pediatric Surgery. **43**, Issue 9, September 2008. P. 1679–1684.
- 16. Mutaf O. The treatment of corrosive esophageal strictures by long-term stenting / O. Mutaf // J. Pediatr. Surg. 1996. 31, Nº 5. P. 681–685.
- 17. Ocakc A. Role of caffeic acid phenethyl ester, an active component of propolis, against NAOH-induced esophageal burns in rats International / A. Ocakc // Journal of Pediatric Otorhinolaryngology. **70**, Issue 10, October 2006. P. 1731–1739.
- 18. Pediatric Thoracic Surgery / [Dakshesh H. Parikh, David C. G. Crabbe, Alexander W. Auldist et al.]. Rothenberg: London Limited, 2009. 601 p.
- 19. Ziegler M. M. Operative pediatric surgery / M. M. Ziegler, R. G. Azizkhan, T. R. Weber. New York : McGraw-Hill, 2003. P. 341–345.

ВОСПРОИЗВЕДЕНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ МОДЕЛИ ХИМИЧЕСКОГО ОЖОГА ПИЩЕВОДА I СТЕПЕНИ У КРЫС

Резюме

В эксперименте на крысах воспроизведена модель химического ожога пищевода I степени. Смоделированное состояние является адекватной моделью химического ожога пищевода I степени, что подтверждено определением биохимических показателей крови животных с моделью химического ожога пищевода. Данный подход может быть использован при исследовании биохимических и иммунологических механизмов патогенеза химического ожога в эксперименте.

КЛЮЧЕВЫЕ СЛОВА: химический ожог пищевода, биохимические показатели.

Ya. B. Rayetska, T. V. Ishchuk, O. M. Savchuk, L. I. Ostapchenko.

TARAS SHEVCHENKO KYIV NATIONAL UNIVERSITY,
ESC "THE INSTITUTE OF BIOLOGY"

EXPERIMENTAL MODELING OF FIRST-DEGREE CHEMICALLY-INDUCED ESOPHAGEAL BURNS IN RATS

Summary

We reconstituted the first-degree chemical burns of esophagus in rats in the study. The model was shown to be an optimal for first-degree chemical esophageal burns research. It was confirmed by determination of biochemical blood parameters of experimental animals under chemically-induced esophageal burns. This approach can be used to study biochemical and immunological mechanisms of pathogenesis of first-degree chemically-induced esophageal burns.

KEY WORDS: chemical esophageal burns, biochemical parameters.

Отримано 28.10.13

Адреса для листування: Я. Б. Раєцька, пр-т Глушкова 2/12, ННЦ "Інститут біології" Київського національного університету імені Тараса Шевченка, Київ, 03127, Україна, е-mail: raetska@ya.ru.