JEL Classification: L10	ENERGOMODERNIZATION	OF	BUDGET
	EDUCATIONAL INSTITUTIONS	ON	THE BASIS
UDC: 338:378	OF IMPLEMENTATION OF	THE	MECHANISM
	OF ENERGY CONSTRUCTIONS		

O. SHEVCHENKO¹

¹ Kyiv National University of Technologies and Design, Ukraine

Introduction. Taking into account the rapid growth of energy tariffs and the lack of proper budget financing, efficient use of energy resources and energy efficiency is one of the tools for increasing the competitiveness of universities [5], since it enables to redistribute the saved funds to develop its own scientific and educational potential. As practice shows to date, outsourcing energy service projects are one of the most effective mechanisms for implementing the energy potential of universities. An important feature of such projects is to increase the efficiency of the use of energy resources as a result of their implementation. After the implementation of the energy service project, educational institution can obtain an significant cost savings and improve energy management. It is this circumstance that has become the basis for widespread practice of implementation of such energy-saving projects, through the creation of specialized energy service companies (ESCOs) in the world and is beginning to be intensively implemented in Ukraine.

Aim. Study of the legislative field and ways of energy modernization of higher educational institutions of Ukraine with the help of investment programs, based on the introduction of the ESCO energy service contracts mechanism and the use of renewable energy sources.

Research methods. In the article were used general scientific empirical such and theoretical methods as: expert analysis; systematic and analytical analysis (to determine the feasibility of implementing energy service contracts when making managerial decisions and disclosing the principles and tools of the energy services mechanism), the method of analogy and comparative reflection.

Results. The expediency of introduction of the energy management mechanism of budget institutions of higher educational institutions of Ukraine on the basis of ESCO's energy service contract is considered. The results of the development of a financial model for the use of renewable energy sources are presented.

Conclusions. Recommendations are given and negative and positive aspects of the implementation of the energy service contracts mechanism are based on international experience and in connection with the improvement of the legislative field aimed at supporting energy service projects in the budget sphere in Ukraine.

Keywords: energy service contract, ESCO, energy management systems, increase of energy efficiency, higher educational establishments.

Problem statement and its connection with important scientific and practical tasks. Investment projects related to energy saving tend to be characterized by lower rates of internal rate of return (IRR) and periods of payback due to the need to invest significant funds at an early stage. However, the main reasons that prevent most HEIs from using energy saving potential is the lack of sufficient qualified own experts and experience in implementation of

energy saving projects, as well as lack of financial resources for their implementation. In addition, at this stage, the investment development of projects is poorly developed with the purpose of attracting investments for modernization of objects of the budget sphere, and banks are concerned about the high risks of implementing energy-saving projects and the lack of legal guarantees for the repayment of the loans granted. In these circumstances, one of the opportunities for improvement is the implementation of energy efficiency projects by involving energy service contracting mechanisms and partnerships with energy services companies (ESCOs).

In Ukraine, a number of legislative acts aimed at enhancing the investment attractiveness of the country, including in the field of energy efficiency and energy saving, were adopted by introducing a new mechanism for energy modernization of buildings of budget institutions - the mechanism of the energy service.

Such acts include the Laws of Ukraine: "On Amendments to the Budget Code of Ukraine (regarding the implementation of energy efficiency measures in budgetary institutions)", "On Amendments to the Law of Ukraine" On Energy Conservation"; "On Investment Activity"; "On introducing new investment opportunities, guaranteeing the rights and legitimate interests of business entities for large-scale energy modernization" [2]; "On the Energy Efficiency Fund" [3], which establishes the general legal, economic and social conditions of investment activity in Ukraine and aimed at ensuring the protection of the rights, interests and property of the subjects of investment activity, as well as determine the legal and economic bases of the implementation of the energy service to increase energy efficiency, the efficiency of objects of state and communal property. In pursuance of these Laws, the Model Energy Service Contract [5] and the Ministry of Finance of Ukraine approved the Order of 06.11.2015 №996 "On Making Changes to the Economic Classification of Budget Expenditures", according to which an economic classification was added - the classification of budget expenditures under item 2276 "Payment for the Energy Service" (Order of the Ministry of Finance No. 11 dated January 14, 2007 "On Budget Classification"), which will allow budget institutions to formulate expenditures, with taking into account the costs incurred by "energy service contracts". Particularly significant are the existing changes to the Budget Code, which stipulate the existence of a long-term commitment to the energy service contract - the conclusion during the budget period of an energy service contract, under which it is necessary to make payments during the same period and / or in the future, subject to the availability of cost savings for the payment of utilities and energy. Thus, the legislative basis for the successful introduction of the energy service mechanics in the universities of Ukraine has now been formed.

Analysis of recent publications on the problem. Although the modern approach to defining the basic principles and concepts for the implementation of the energy service contract mechanism is rather new, a large number of studies in this area have now been published. A recognized leader in the modern paradigm of the development of this mechanism is the researcher Shirley Hansen (Hansen, Shierly J.), who has given a large number of his scholarly works to interpret this question. Among them there is a well-known book: "ESCO Worldwide: Lessons Learned in 49 Countries", in which Pierre Langlois and Paolo Bertoldi, the scientist, gave an assessment of the current development of ESCO's energy services in different countries around the world [9].

The significant contribution of foreign researchers to the implementation of energy services and mechanisms based on the ESCO approach has been formulated in the writings of such researchers as J. Weisman, Steve Sorrell [12], Sandra Backlund, Patrick Thollander [6], Edward Vine [14], Felix Suerkemper, Paolo Bertoldi, Wolfgang Irrek, Bruno Duplessis, Nicola Labanca [11] and others.

Among national scholars and scientists in the post-Soviet space, who are studying the issues of energy service mechanisms and other issues of project financing were I.A. Bashmakova, V.V. Bocharova, S.P. Denysyuk, B.S. Irniyazov, M.P. Kovalko, E.E. Nikitina, A.V. Prahovnik, S.B. Sivaev, V.A. Stepanenko, O.M. Sukhodoli, O.O. Lyakhova, Yu.I. Shulga and others.

The results of individual studies related to renewable energy sources that are used as an alternative substitute for traditional energy sources in energy service projects and aimed at the implementation of sustainable development goals are not studied. In this direction, we can mention the work of Daniel Schinnerl, Jan W. Bleyl and others. However, it should be noted that the number of studies in this direction is not significant and requires further versatile research.

Presentation of the main results and their justification. The prototype of the term "energy service contract" was the so-called Performance Contract (ESPC – Energy-savings performance contract). For the first time, the legal instrument originated in the United States. Currently, the legal regulation of performance contracts is carried out in accordance with the provisions of the US Energy Policy Act of 1992 (EPACT 1992). The Code of Federal Regulations (CFA) consolidates the concept of performance contract and the main responsibilities of the parties.

The US experience has been used in the European Union, where performance contracts have been used since the 80's of the last century. The legal definition of a performance contract, the so-called "energy contract", was entrusted by the European Commission only in 2006, within the framework of the Energy Services Directive 2006/32/EU of 5 April 2006 and improved by a

new definition in accordance with Directive 2012/27E of 25 October 2012 "On Energy Efficiency" as an "Energy Efficiency Contract". "Energy performance contracting" is a contractual agreement between a beneficiary and a supplier of energy efficiency improvement measures that is subject to verification and control throughout the contract period, where investments in such an event (work, supply or service) are paid in accordance with an agreed energy efficiency improvement contract or another agreed energy efficiency criterion such as cost savings" [1]. That is, the payment for the attracted financial resources and performed ESCO work is carried out by the customer after the project implementation at the expense of funds that are economic effect of the introduction of energy-saving technologies. In addition, the customer does not distract his own funds for the implementation of the project Fig. 1.

\mathbf{Q}_{Σ} , energy consumption

Fig. 1. Scheme of energy consumption after the introduction of an energy service contract

In accordance with the Model of Energy Service Contract [4] payment of the billing period Px_n is calculated by formula:

$$Px_n = \frac{B \times (BP_n - \Phi P_n) \times T_n}{100\%},\tag{1}$$

n – defined settlement period (not more than 10 years); B – agreed by the parties the percentage of the annual reduction of customer costs; BP_n – the basic level of consumption of fuel and energy resources and / or housing and communal services in natural terms for the relevant billing period; ΦP_n – the actual level of consumption of fuel and energy resources and / or housing and communal services in the relevant accounting period, recorded by accounting

devices; T_n – price (tariff) for fuel and energy resources and / or housing and communal services, effective at the end of the relevant billing period.

The exemplary energy service contract provides for the definition of such essential conditions: a list of measures, terms and conditions for the implementation of the energy service (paragraph 1, appendix 1–2), the contract price (paragraph 2), the base level of energy consumption and utilities (p. 4–6, annex 3), the level of reduction of consumption and / or expenses (Annex 4.5), the validity of the energy service contract (items 9–10), the procedure for payment for the energy service (paragraphs 11–15, annex 6), rights and obligations parties (p. 21–26), responsibility for non-fulfillment of obligations under the agreement (p. 27–30), conditions, order and consequences of termination of contracts (p. 31–33), the procedure of transfer of property (section 34), the adjustment procedure and assessment by the implementation energy service (p. 35, Annex 7).

The existence of such a normative basis greatly simplifies the management decision to enter into a contract in order to obtain energy services. In this case, the effectiveness of such an energy service contract E_{ec} can be represented as a functional complex dependence:

$$E_{ec} = f(Q_{ec}, L_{ec}, t_n), \qquad (2)$$

 Q_{ec} – the share of savings to be paid by ESCO to the customer (at least 80% and no more than 90% savings); L_{ec} – level of reduction of customer's expenses on energy:

$$L_{ec} = Q_{no} \ge T_0, \tag{3}$$

 Q_{no} – Declared by ESCO company savings in physical units; T – tariff, valid on the date of announcement of purchase;

 t_n – period of validity of the energy service contract) – according to the current legislation it should be no more than 10 years.

These indicators are determined by the ESCO at the stage of preparation of the tender offer. On its basis, the estimated efficiency indicator of the proposed energy service contract is calculated by the customer.

An important stage in the management decision regarding the conclusion of an energy service contract is the choice of the type of acceptable business model and ESCO executor.

In order to assess the ESCO qualification, the international standard BS EN 15900, which defines the minimum requirements for energy efficiency services, and Annex A provides an example of the process for providing energy efficiency services, can be used as additional material. BS EN 15900 can be used as a guide for customers and suppliers of energy efficiency services, as referred to in Article 1 of Directive 2006/32 / EU.

The study of existing options gives the author the opportunity to offer three options for selecting for a specific situation model of Table 1.

Table 1

	Busine	ess model of the energy service	contract
	Light	Base	Complex
	(low cost)	(medium-cost)	(high cost)
	1	2	3
Feature of	Energy efficiency	ESCO carries out a full range	This business model
the model	measures with zero	of works: planning and	expands the area
	investments are	implementation of technical	covered by the base
	carried out by ESCO,	measures, financing of	model.
	which include energy	technical equipment,	ESCO is additionally
	conservation	maintenance and energy	responsible for the
	guarantees within the	management during the term	planning, installation
	term of the agreement	of the contract; Guarantee full	and financing of
	2–3 years. ESCO	cost recovery due to energy	thermal insulation of
	recommends further	savings and maintenance costs	buildings.
	measures with a	over a specified period.	Significant investment
	certain level of	The customer of the energy	costs.
	investment. If a	service pays the savings that is	Long term payback
	decision is taken on	actually achieved.	period of the project.
	the implementation of	The term of the contract is	Longer term of the
	such measures, the	3–5 years.	contract (more than
	share of achieved	Fixed price (payment) related	5 years with further
	savings from these	to the implementation of the	prolongation)
	measures can be	main requirements of the	
	attributed to the	project, throughout the term of	
	guarantee provided by	the contract.	
	ESCO for saving. All	The technical equipment is	
	fixed assets and	transferred to the customer	
	technical equipment	after the project has been	
	belong to the owner	approved.	
	of the facility.		
Energy-	Operative	Measures in the field of	ESCO in addition to the
saving	optimization of	electricity consumption	Basic Model carries
measures	systems of lighting,	(lighting, air conditioning,	out:
	heating, ventilation	ventilation etc.).	- measures for the
	and use of hot water		repair of fencing
	generation.	Measures in the field of	constructions and
	Tariain 1	heating (installation of heat	complex insulation of
	I raining and	pumps, central (individual)	the customer's
	motivation of the	heat points, solid fuel boilers),	buildings;
	Customer's personnel.	installation of distribution	- replacement of most
	ESCO is responsible	heating system, heat recovery	power plants;
	for maintenance of	system, cooling system, hot	- installation of inte-
	technical equipment	water generation).	grated control systems;

Variants of business models of energy service contracts for ESCO

	1	2	3
		Installation of thermal	- cogeneration;
		equipment using alternative	- utilization of heat;
		energy resources (boiler on	insulation of protective
		biomass, wind turbines, solar	structures: external
		collectors etc.).	walls, overlappings,
			basements; the use of
			alternative energy
			sources etc.
Financial	ESCO carries out staff	The main financing method is	Basic funding methods:
Scheme	costs for the periodic	financing by ESCO funds,	- financing from ESCO
	inspection of	which can attract credit funds	funds (ESCO can
	buildings and	from financial institutions.	attract loans from
	technical equipment.	Other funding methods:	financial institutions)
	They receive monthly	additional financing of	financing from ESCO
	or quarterly payments	projects by the customer of the	funds in conjunction
	from a budget	energy service financing of	with financing from
	institution, and the	projects with the attraction of	energy efficiency funds.
	rest of the payments –	funds for energy efficiency,	Other funding methods:
	after the final account	financing of all works on	- additional financing
	of achieved energy	project planning and	of projects by the
	savings.	investment costs from the	customer of the energy
		customer's own budget,	service one-time or
		the energy service or at the	parts during the
		expense of loans borrowed by	duration of the
		the customer.	contract);
			- financing of projects
			with attraction of state
			subsidies;
			- a combination of the
			above methods of
			financing.
Assessment	Energy savings are	Energy savings, which is	All energy savings
and	calculated on the basis	confirmed by a fixed price for	(from repair and
monitoring	of invoices for the	energy during the contract	technical measures) are
	the specified energy	and water costs or maters	subtracted from energy
	aget bagaling or (if it	ESCOs periodically control	and water accounts of
	is not yet available)	energy and water consumption	anaray matara
	then based on metric	often through remote monitoring	ESCO is responsible for
	roadings	and remote access to the	noriodically controlling
	It is necessary to take	building automation system All	energy consumption
	into account the on	energy consumption data is	adjusting technical
	mul correction of	collected and documented	narameters annual
	climate at need abon	together with revisions in the	reports from energy
	ge to use building or	annual report and in the annual	saving and annual
	bigh level of sovings	annual report and in the annual savings account	saving and annual
	mgn ievel of savings	savings account.	savings accounts.

	1	2	3
	in implementing	ESCO takes care of the quality	
	measures, carried out	assurance and maintenance of	
	by the owner of the	all installed technical devices	
	building.		
ESCO risks	Determination of the	Economic risks (possibility of	Економічні ризики
	baseline energy	non-achievement of savings	Economic risks ESCO
	consumption, energy	and, consequently, non-	(absence of ESCO
	saving guarantees and	reimbursement of expenses of	experience in
	operational errors.	ESCO; wrong	calculating heat
	Adjustments related	calculation of the base level of	insulation measures;
	to user behavior	energy consumption and,	increased complexity of
	adjustments related to	consequently, incorrect	calculation of savings
	other energy saving	calculation of energy saving;	for thermal insulation
	measures, made by	increase in investment in	measures; high
	the owner of the	projects).	possibility of additional
	building	Technical risks (failure of	costs for replacement of
	control over energy	technical equipment or errors	equipment that may
	saving	in its collection).	fail; limited period of
		Administrative Risks	fixed interest on a loan
		(Municipality Delay with	for a long period of
		definition of tariffs or	project implementation)
		subsidies; untimely adoption	Technical and
		installation works).	administrative risks of
			ESCO (low quality of
			planning of ventilation
			systems, the role of
			which is much greater
			due to changes in the
			heat load on heating,
			the need for
			harmonization of legal
			supply New, connected
			with the reconstruction
			of the facades of
			buildings)
Strategies	Accurate calculation	Involvement of experienced	Cooperation of ESCO
for risk	of energy savings;	mediator during project prepa-	with external architects,
reduction	ESCO's experience in	ration (baseline verification,	engineers and other
	operating and	reliability of the guarantee	companies and balanc-
	optimizing technical	saving and calculated costs,	ing of all savings;
	equipment;	checking planning);	use of a deep approach
	participation of	detailed planning and calculation	to the calculation of
	experienced project	of savings and investments;	savings; thermal
	intermediaries at the	the establishment and	insulation measures
	preparatory stage	observance of clear rules of	calculation of expenses
	project;	contracts that relate to the	for repayment of loans,

	1	2	3
	definition of clear	responsibilities of	with taking into account
	contractual rules to	counterparties;	possible increase in
	avoid conflicts.	ESCO should experience in	interest rate; when
		using technical equipment and	planning measures to
		employing skilled personnel.	take into account the
			constraints in the field
			of heritage protection, a
			higher degree of
			coordination of actions
Main	Detailed control over	Detailed control over the	Reduction of heat load
benefits	the annual energy	annual energy consumption of	for heating and air
	consumption of each	each building;	conditioning in
	buildings;	the ability to measure and	buildings;
	real savings are	document real savings;	improvement of indoor
	measured and	obtaining real savings in the	climate;
	documented;	amount of 20 to 50%;	the best quality of
	Expanded proposals	(depending on activities)	indoor space and,
	for measures in	increase in the market value of	consequently, a lower
	buildings with low	the building;	level of morbidity of
	or high investment;	reduction of investment costs	users;
	cooperation between	of the customer of the energy	increase of architectural
	the state body	service in comparison with	quality through
	(budgetary institution)	purchases without ESCO;	renovation of facades of
	and experienced	training of technical staff	buildings;
	ESCO;	through trainings.	Better reputation of the
	entry into the market		building through the
	of new ESCOs and		provision of
	municipalities, with		environmentally sound
	little private-public		construction.
	partnership		
	experience, short		
	duration of the		
	contract		

The next step in the implementation is the need to assess the existing energy saving potential of the university. Based on the studies of the Joint Research Center (JRC) of the European Commission [17], it is appropriate to assume in the first approximation that the typical measure of the energy service mainly concerns lighting and heating systems. LED bulbs, electronic ballasts, presence sensors, and the construction of an internal energy management system are the most interesting technologies on which ESCO can successfully develop a business plan as a first step in cooperation. According to JRC experts, such energy savings measures in Europe are applied to 60% of existing public buildings, including training. The correct combination of these technologies (depending on the type of building and the main end-use) can lead to an average energy saving (r) of up to 25% with a maximum payback period of 8 years.

Using these assumptions, you can calculate the investment costs associated with these recovery measures in the opposite direction. In fact, they can simply be obtained by multiplying the annual economic savings by the payback period:

$$s = r \times (FEC_H \times (p_{el} \times H_{el} + p_f \times (1 - H_{el})) + FEC_{other} \times p_{el}), \qquad (4)$$

r – energy saving factor; FEC_H – final energy consumption for heating of a certain territory and FEC_{other} for other end uses; p_{el} and p_f are prices for electricity and fossil fuelso; H_{el} – the percentage of buildings heated by electrical systems.

JRC calculations based on available EUROSTAT data [17] showed that European Union education institutions could save 16719 GW of energy and save 1319 million. EUR with a need for investment of 11301 million. EUR

Currently, due to the difficult economic situation, ESCO services for Ukraine provide an opportunity for universities to introduce energy saving measures that are financed by the customer due to the achieved energy saving and the costs spent on their purchase. ESCO, in the framework of the signed agreement, guarantees the specified savings, as well as that the cost of energy after the implementation of energy saving measures will not exceed predetermined factors. The technical risk of the customers of the energy service is minimal. When preparing an energy service contract, the parties determine the following key factors: financial savings in cash equivalent; saving of fuel and energy resources in kind, etc. At the same time, if the project's level of energy saving during the implementation period of the contract is not reached, ESCO does not receive remuneration in the planned volume.

In practice, there are several ESCO types in the world (Table 2) agreements:

- Energy supply and energy management ("Chauffage");
- Distribution of income from achieved savings (Shared Savings);
- First-Out, First Pay-Out, Fast Returns and Returns;
- With guaranteed savings (Guaranteed Savings),

- BOOT: creation – ownership – exploitation – transfer of ownership (build-own-operate-transfer (BOOT).

One of the most economically advantageous for ESCO is energy service projects for energy supply implemented with the use of the green tariff. Such projects are intended for the supply of electricity produced using solar, wind, hydro and bio energy. Electricity generated from renewable energy sources is supplied to the general grid and is paid for by the green tariff on the wholesale electricity market, thus stimulating the replacement of natural gas in the heat supply sector.

Table 2

of various types of energy service contracts [16]					
Type of	Key features	Distribution of risks between customer and ESCO			Most spread
ESCO Key leatures		not comp- leted	Finan- cial	Tech- nical	count- ries
Contract for energy supply and energy management "Chauffage" Schauffage	The resource provider is the provider of energy services. Supply of energy resources is carried out at a fixed price during the term of the contract. Long term contract. Guaranteed reduction in resource	ESCO	ESCO / Customer	ESCO	France, EU countries
from French – heating).	ESCO is the owner of energy saving equipment				
An agreement to distribute revenues from achieved savings (Shared Savings)	Distribution of revenues from savings resulting from technical re- equipment of the customer. ESCO finances the implementation of the project and assumes all financial and risks associated with failure to reach the planned level of energy efficiency. The share of the customer in the distribution of income is about 20. Suitable at the initial stage of development of the national market of energy services services [16, p. 6].	ESCO	ESCO	ESCO / Custo- mer	China, Japan, Australia, Brazil, Philip- pines, India South Africa
First-Out, First Pay-Out	This type of contract is a variation of the model of saving distribution. The difference - 100% of the proceeds received from the implementation of the project, remains in ESCO until full payback with the predicted level of profitability. Distribution of income between ESCO and the customer after the return on investment or full transfer of all rights to the project from ESCO to the customer, including the right to receive the entire amount of profit from	ESCO	ESCO	ESCO / Custo- mer	USA, OAI, Jordan

Distribution of risks, territorial distribution and key characteristics of various types of energy service contracts [16]

Type of	Key features	Distribution of risks between customer and ESCO			Most spread
ESCO	Key reatures	not comp- leted	Finan- cial	Tech- nical	count- ries
Guaranteed Savings Agreement	ESCO takes a commitment to the customer to reduce the cost of energy resources. During the term of the contract ESCO is responsible for covering the costs of energy suppliers. The customer does not pay for the energy directly to the suppliers, and monthly pays the energy service company through an intermediary, which usually amounts to 85-90% of the basic cost of the customer's energy. The amount actually provided by the savings does not directly affect the customer's payments. In all circumstances, the customer reduces energy costs by 10-15%. ESCOs have a full risk of saving.	ESCO	ESCO / Customer	ESCO	Canada, Japan
BOOT contract for: building- own-operate- transfer (BOOT).	The basis of the agreement is a public-private partnership in which ESCO concludes a contract with a partner in the public sector. The BOOT project is considered as a way of developing a large public infrastructure project through private funding.	ESCO	ESCO / Customer	ESCO	South Africa, Thailand, Colombia

According to the "Energy Strategy of Ukraine for the period up to 2035 "Safety, Energy Efficiency, Competitiveness", approved by the Cabinet of Ministers of Ukraine from August 18, 2017, No. 605-p, it was determined that by 2020 the share of "green" energy, at the expense of renewable resources , in the general fuel and energy balance of Ukraine (GFEBU) should be at least 8%, and by 2035 this figure should reach 25%. Particular attention deserves attention to the projects related to the construction of cogeneration (trigeneration) systems using biomass, biofuels and waste energy, the share of which in the GFEBU of the indicated Energy Strategy is planned at the level of 4.9% in 2020 and 11.9% in 2035.

The use of cogeneration units in universities will reduce the cost of heating and hot water supply, and the possibility of selling ESCOs, generating electricity using the "green" tariff, will significantly reduce the payback period of the implemented investment project.

The financial model, which confirms the assumptions, was designed by specialists of LLC "CLIAR ENERGY" in the framework of preparation of a commercial proposal for the NTU of Ukraine "Kyiv Polytechnic Institute. Igor Sikorsky". According to the terms of this project, with almost 30% discount on the cost of thermal energy for the consumer (planned annual sales of heat – 28208 Gcal), compared to the approved tariffs in force in Ukraine and the sale of electricity to the wholesale market at the "green" tariff (planned annual electricity sales – 47191 thousand sq. year), the payback period of the project is no more than three years, and internal rate of return (Internal Rate of Return, IRR) of 25%. As a fuel for CHP, it is suggested to use wood waste. The norms of the complex emissions into the atmosphere, according to calculations, are almost three times lower than those set for natural gas boiler-houses. Thus, the environmental microclimate in the university will be improved, the budget for energy costs reduced, millions of cubic meters of expensive Russian gas replaced by local renewable raw materials.

In addition, the value and innovation of the offer of LLC "KLIAR ENERGY" is that, in addition to the construction of a cogeneration complex (electricity generation – 6.3 MW of electricity and thermal generation – 4.5 MW), on its basis it is planned to create a scientific and educational training base for profile students and graduate students, as well as the opening of an experimental research laboratory for the development of Ukrainian technologies in the field of energy.

Conclusions and perspectives of further research. Implementation of the ESCO-mechanism is another urgent step to support the energy-efficient state strategy aimed at improving energy security and reducing Ukraine's energy dependence on imported energy and increasing the number of renewable energy projects.

At present, the domestic legislative base for supporting the development of the energy services market and the long experience of foreign countries is an essential prerequisite for increasing the number of state institutions ready to make a decision on the launch of the ESCO-mechanism. At the same time, the increase in the number of participants in the energy services market, in the budget sphere, prompts the development of tendencies to reduce the contractual price, including at the expense of cheaper loans, and will require the development of specialized educational programs and qualified methods for assessing the effectiveness of energy service projects and risk reduction mechanisms. The author's experience in practical development of a financial model for the construction of a cogeneration complex in the territory of a higher educational institution confirmed the investment attractiveness of the project and presented new possibilities for introducing innovative forms of its possible functioning, especially on the basis of the specifics of the university.

The mechanisms for the formation and development of energy service clusters and public-private partnerships to support the development of the energy service contracts institute can effectively contribute to solving the abovementioned tasks. The core of the energy service cluster should be energy service companies that manage the implementation of specific energy saving projects. Implementation of the mechanism of energy service clusters in practice will allow the development of national developments and their inclusion in specific investment projects with subsequent implementation in production in order to achieve the capitalization of the effects of reduction energy intensity of products and increase of value added. In Ukraine, due to the slow dissemination of the idea of an energy service contract, the idea of clusterization requires a more detailed study.

References

1. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EU and 2010/30/EU and repealing Directives 2004/8/EU and 2006/32/EU. Official Journal of the European Union No. I. 315/1 dated 14.11.2012.

2. Pro zaprovadzhennia novykh investytsiinykh mozhlyvostei, harantuvannia prav ta zakonnykh interesiv subiektiv pidpryiemnytskoi diialnosti masshtabnoi enerhomoderprovedennia dlia nizatsii: Zakon Ukrainy [The Law of Ukraine on introducing new investment opportunities, guaranteeing the rights and legitimate interests of business entities for large-scale energy modernization]. Information from the Verkhovna Rada, 2015, No. 26, 220 [in Ukrainian].

3. Pro Fond enerhoefektyvnosti: Zakon Ukrainy [The Law of Ukraine on the Energy Efficiency Fund]. Official Bulletin of Ukraine from 04.08.2017, No. 61 [in Ukrainian].

4. Pro zatverdzhennia Prymirnoho enerhoservis-
noho dohovoru: Postanova Kabinetu Ministriv
Ukrainy vid 21.10.2015 No. 845 [Resolution of the4. Про
енергосер
Кабінету

Література

1. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EU and 2010/30/EU and repealing Directives 2004/8/EU and 2006/32/EU. Official Journal of the European Union No. I. 315/1 dated 14.11.2012.

2. Про запровадження нових інвестиційних можливостей, гарантування прав та законних інтересів суб'єктів підприємницької діяльності для проведення масштабної енергомодернізації: Закон України // Відомості Верховної Ради (ВВР). – 2015. – № 26. – Ст. 220.

3. Про Фонд енергоефективності: Закон України // Офіційний вісник України. – 04.08.2017. – № 61.

4. Про затвердження Примірного енергосервісного договору: Постанова Кабінету Міністрів України від

2

_

Cabinet of Ministers of Ukraine On Approval of the Model of Energy Service Contract dated October 21, 2015, No. 845]. The Official Bulletin of Ukraine dated November 13, 2015, No. 88, 30, article 2922, code of act 79185/2015 [in Ukrainian].	21.10.2015 № 845 // Офіційний вісник України. – 13.11.2015. – № 88. – С. 30. – Ст. 2922. – Код акту 79185/2015.
5. Gryshchenko, I.M., Kaplun, V.V., Dyachenko, M.V. et al. (2013). Upravlinnya enerhospozhyvan- nyam u vyshchykh navchal'nykh zakladakh: monohrafiya [Management of power consumption in higher educational institutions: monograph]. Ed. I.M. Gryshchenko. Kyiv KNUTD. 245 p. [in Ukrainian]	5. Грищенко І.М. Управління енерго- споживанням у вищих навчальних закладах: Монографія / І.М. Грищенко, В.В. Каплун, М.В. Дяченко та ін.; За ред. І.М. Грищенка. – К.: КНУТД, 2013. – 245 с.
6. Backlund, S., Thollander, P. (2011). The' energy-service gap: What does it mean? In: CEEE 2011 SUMMER STUDY, Energy efficiency first: The foundation of a low-carbon socie. Retrieved from: http://liu.diva-portal.org/smash/get/diva2: 453827/fulltext01.pdf.	6. Backlund S. The' energy-service gap: What does it mean? / S. Backlund, P. Thollander // CEEE 2011 SUMMER STUDY, Energy efficiency first: The foundation of a low-carbon socie. Retrieved from: http://liu.diva-portal.org/ smash/get/diva2:453827/fulltext01.pdf.
 Bertoldi, P., Rezessy, S., Vine, E. (2006). Energy service companies in European countries: Current status and a strategy to foster their development. Energy Policy, 34: 1818–1832. BS EN 15900:2010 Energy efficiency 	 7. Bertoldi P. Energy service companies in European countries: Current status and a strategy to foster their development / P. Bertoldi, S. Rezessy, E. Vine // Energy Policy 2006 # 34 P. 1818-1832. 8. BS EN 15900:2010 Energy efficiency
 services. Definitions and requirements. Hansen, S.J., Bertoldi, P., Langlois, P. (2009). ESCOs Around the World: Lessons Learned in 49 Countries. Lilburn: The Fairmont Press. 377 p. IO ISO 50001:2011 Energy management systems 	 services. Definitions and requirements. Hansen S.J. ESCOs Around the World: Lessons Learned in 49 Countries / Shierly J. Hansen, P. Bertoldi, P. Langlois. – Lilburn: The Fairmont Press, 2009. – 377 p. 10 ISO 50001:2011 Energy management
Requirements with guidance for use.	systems Requirements with guidance for use.
11. Labanca, N., et al. (2015). Energy efficiency services for residential buildings: market situation and existing potentials in the European Union, Journal of Cleaner Production. Retrieved from: http://dx.doi.org/10.1016/j.jclepro2015.02. 077.	11. Labanca N. Energy efficiency services for residential buildings: market situation and existing potentials in the European Union / N. Labanca et al. // Journal of Cleaner Production. – 2015. – http://dx.doi.org/10.1016/j.jclepro2015.0 2.077.
12. Sorrell, S. (2007). The economics of energy service contracts. Energy Policy, 35(1): 507–521. doi:10.1016/j.enpol.2005.12.009.	12. Sorrell S. The economics of energy service contracts / S. Sorrell // Energy Policy. $-2007 Vol. 35$, $N_{2} 1 P. 507-521$, doi:10.1016/j.engol.2005.12.000
13. Schinnerl, D., Bleyl, J.W. (2008). "Energy Contracting" to Achieve Energy Efficiency and Renewables using Comprehensive Refurbishment of Buildings as an example. In: Urban Energy	13. Schinnerl D. "Energy Contracting" to Achieve Energy Efficiency and Renewables using Comprehensive Refurbishment of Buildings as an

E

=

Transition edited by Peter Droege. Elsevier.	example / Daniel Schinnerl, Jan W. Bleyl
	// Urban Energy Transition / Edited by
	Peter Droege. – Elsevier, 2008.
14. Vine, E. (2005). An international survey of the	14. Vine E. An international survey of the
energy service company (ESCO) industry. Energy	energy service company (ESCO) industry
Policy, 33: 691–704.	/ E. Vine // Energy Policy. -2005
	# 33P. 691 - /04.
15. Energy Performance Contracting in the	15. Energy Performance Contracting in
European Union Joint Research Centre Institute	the European Union Joint Research
for Energy and Transport. European Commission.	Centre Institute for Energy and Transport
Retrieved from: http://www.euesco.org/fileadmin/	// European Commission. Retrieved
euesco_daten/pdfs/euESCO_response_concerning	from: http://www.euesco.org/fileadmin/
_EPC.pdf.	euesco_daten/pdfs/euESCO_response_co
	ncerning_EPC.pdf.
16. ESCO Market Report for Non-European	16. ESCO Market Report for Non-
Countries 2013. Joint Research Centre Institute	European Countries 2013 // Joint Research
for Energy and Transport. European Commission.	Centre Institute for Energy and Transport //
Retrieved from: http://iet.jrc.ec.europa.eu/energy	European Commission. Retrieved from:
efficiency/publication/esco-market-report-non-	http://iet.jrc.ec.europa.eu/energyefficiency/
european-countries-2013-0.	publication/esco-market-report-non-euro
	pean-countries-2013-0.
17. Bertoldi, P. (2017). Practices and opportunities	17. Bertoldi P. Practices and
for Energy Performance Contracting in the public	opportunities for Energy Performance
sector in EU Member States 2017. Retrieved from:	Contracting in the public sector in EU
http://publications.jrc.ec.europa.eu/repository/	Member States 2017 / P. Bertoldi. –
bitstream/JRC106625/kjna28602enn.pdf.	Retrieved from: http://publications.jrc.ec.
	europa.eu/repository/bitstream/JRC10662
	5/kjna28602enn.pdf.